Volume 29 Issue 11
Nov.  2021
Turn off MathJax
Article Contents
XU X F, MI Q, LIU D, FU S L, WANG X G, GUO D Y, ZHOU W L. Effect of phosphorus fertilizer rate on phosphorus fractions contents in calcareous soil and phosphorus accumulation amount in crop[J]. Chinese Journal of Eco-Agriculture, 2021, 29(11): 1857−1866 doi: 10.13930/j.cnki.cjea.210186
Citation: XU X F, MI Q, LIU D, FU S L, WANG X G, GUO D Y, ZHOU W L. Effect of phosphorus fertilizer rate on phosphorus fractions contents in calcareous soil and phosphorus accumulation amount in crop[J]. Chinese Journal of Eco-Agriculture, 2021, 29(11): 1857−1866 doi: 10.13930/j.cnki.cjea.210186

Effect of phosphorus fertilizer rate on phosphorus fractions contents in calcareous soil and phosphorus accumulation amount in crop

doi: 10.13930/j.cnki.cjea.210186
Funds:  This study was supported by the National Key R&D Program of China (2017YFD0201700)
More Information
  • Corresponding author: XU Xiaofeng, E-mail: xuxf101@163.com
  • Received Date: 2021-03-26
  • Accepted Date: 2021-08-29
  • Available Online: 2021-08-27
  • Publish Date: 2021-11-10
  • Excessive application of phosphate fertilizer wastes phosphorus resources and induces eutrophication in lakes and rivers. To study the effect of reduction of phosphorus fertilizer on phosphorus fractions in calcareous soil and its relationship with crop phosphorus accumulation, three treatments were set up, i.e., phosphorus application rates of 150 kg∙hm−2 (P150), 37.5 kg·hm−2 (P37), and 0 kg∙hm−2 (P0). After two consecutive years of “winter wheat-summer maize” crops rotation, the changes in the contents of soil phosphorus fractions were studied using Hedley soil phosphorus fractionation method, and the storage contribution rate and output contribution rate of each fraction were also estimated. The relationship between soil phosphorus fractions contents, phosphorus fertilizer application rate, and crop phosphorus uptake amount were explored by using regression analysis, path analysis, and structural equation model. The results showed that compared with P37, P150 led to a significant increase in soil total phosphorus content. The contents of inorganic phosphorus extracted with anion exchangeresin (resin_Pi), with NaHCO3 (NaHCO3_Pi), with NH4OAc (NH4OAc_Pi) and with NaOH-Na2S2O6 (Fe_Pi), and organic phosphorus extracted with NaHCO3 (NaHCO3_Po) in P150 were significantly higher than those in P37, while the other fractions showed no significant change. P0 did not cause a significant decrease in the contents of soil phosphorus fractions. The storage contribution rates of soil inorganic phosphorus fractions and organic phosphorus fractions were 72.6% and 23.8%, respectively. Among them, the storage contribution rates of inorganic phosphorus extracted with HCl (HCl_Pi), Fe_Pi, NH4OAc_Pi, resin_Pi, and organic phosphorus extracted with HCl (HCl_Po) were 24.45%, 18.1%, 13.62%, 11.15%, and 9.30%, respectively. The output contribution rate of soil inorganic phosphorus fractions was 41.0%, and that of organic phosphorus fractions was 56.4%. Among them, the output contribution rates of HCl_Po, Fe_Pi, and NH4OAc_Pi were 39.44%, 17.36%, and 13.06%, respectively. The output contribution rates of HCl_Pi and resin_Pi were only 1.91% and 0.40%, respectively. In the structural equation model, the load factors of phosphorus fertilizer application rate on Fe_Pi, HCl_Pi, NH4OAc_Pi, resin_Pi, organic phosphorus extracted with NH4F (NH4F_Po), NaHCO3_Pi, and NaHCO3_Po were 0.078, 0.077, 0.061, 0.036, 0.018, 0.015, and 0.012, respectively. The load factors of Fe_Pi, NH4OAc_Pi, and HCl_Po on crop phosphorus uptake were 0.355, 0.334, and −0.039, respectively. The above results show that in calcareous soil, Fe_Pi, NH4OAc_Pi, and HCl_Po were the key phosphorus fractions. Among them, Fe_Pi and NH4OAc_Pi were easily consumed when no phosphorus fertilizer was applied, but they can be easily supplemented by phosphorus fertilizer application. However, HCl_Po was available to the crop but was not easily replenished by phosphorus fertilizer application. The high storage contribution rate and low output contribution rate of HCl_Pi fraction were the important reasons for the low efficiency of phosphate fertilizer in the current season. It is suggested that the choice of phosphorus application rate should be based on the storage contribution rate of the key phosphorus fractions.
  • loading
  • [1]
    王莹, 方俊文, 李博. 2019年我国磷复肥行业运行情况及发展趋势[J]. 磷肥与复肥, 2020, 35(8): 1−8 doi: 10.3969/j.issn.1007-6220.2020.08.002

    WANG Y, FANG J W, LI B. Production and developing trends of phosphate and compound fertilizer industry in China in 2019[J]. Phosphate & Compound Fertilizer, 2020, 35(8): 1−8 doi: 10.3969/j.issn.1007-6220.2020.08.002
    [2]
    杜振宇, 王清华, 周健民, 等. 磷在潮土肥际微域中的迁移和转化[J]. 土壤学报, 2012, 49(4): 725−730 doi: 10.11766/trxb201104190141

    DU Z Y, WANG Q H, ZHOU J M, et al. Movement and transformation of phosphorus in fertilizer microsites in a fluvo-aquic soil[J]. Acta Pedologica Sinica, 2012, 49(4): 725−730 doi: 10.11766/trxb201104190141
    [3]
    吉庆凯, 王栋, 杨文宝, 等. 长期施磷对玉米-小麦轮作系统作物产量和磷素吸收及土壤磷积累的影响[J]. 应用生态学报, 2021, 32(7): 2469−2476

    JI Q K, WANG D, YANG W B, et al. Effects of long-term phosphorus application on crop yield, phosphorus absorption and soil phosphorus accumulation in maize-wheat rotation system[J]. Chinese Journal of Applied Ecology, 2021, 32(7): 2469−2476
    [4]
    李发, 王农, 徐应明, 等. 水稻土对磷的吸持能力及环境风险研究[J]. 环境科学学报, 2017, 37(12): 4734−4739

    LI F, WANG N, XU Y M, et al. Characteristics of phosphorus sorption capacity and its environmental risk in paddy soils[J]. Acta Scientiae Circumstantiae, 2017, 37(12): 4734−4739
    [5]
    GUPPY C N, MCLAUGHLIN M J. Options for increasing the biological cycling of phosphorus in low-input and organic agricultural systems[J]. Crop and Pasture Science, 2009, 60(2): 116 doi: 10.1071/CP07157
    [6]
    TIAN L Y, GUO Q J, YU G R, et al. Phosphorus fractions and oxygen isotope composition of inorganic phosphate in typical agricultural soils[J]. Chemosphere, 2020, 239: 124622 doi: 10.1016/j.chemosphere.2019.124622
    [7]
    汪洪, 宋书会, 张金尧, 等. 土壤磷形态组分分级及31P-NMR技术应用研究进展[J]. 植物营养与肥料学报, 2017, 23(2): 512−523 doi: 10.11674/zwyf.16066

    WANG H, SONG S H, ZHANG J Y, et al. Research advance in soil phosphorus fractionations and their characterization by chemical sequential methods and 31P-NMR techniques[J]. Journal of Plant Nutrition and Fertilizer, 2017, 23(2): 512−523 doi: 10.11674/zwyf.16066
    [8]
    TIESSEN H, STEWART J W B, COLE C V. Pathways of phosphorus transformations in soils of differing pedogenesis[J]. Soil Science Society of America Journal, 1984, 48(4): 853−858 doi: 10.2136/sssaj1984.03615995004800040031x
    [9]
    COSTA M, GAMA-RODRIGUES A, GONÇALVES J, et al. Labile and non-labile fractions of phosphorus and its transformations in soil under Eucalyptus plantations, Brazil[J]. Forests, 2016, 7(12): 15 doi: 10.3390/f7010015
    [10]
    赵伟, 杨圆圆, 蒋丽媛, 等. 减施磷肥提高设施番茄氮磷钾生理效率并减少土壤速效磷累积[J]. 植物营养与肥料学报, 2019, 25(10): 1710−1718 doi: 10.11674/zwyf.18427

    ZHAO W, YANG Y Y, JIANG L Y, et al. Reducing conventional phosphorus input increase physiological efficiencies of absorbed nitrogen, phosphorus and potassium in greenhouse tomato and decrease soil available phosphorus accumulation[J]. Journal of Plant Nutrition and Fertilizers, 2019, 25(10): 1710−1718 doi: 10.11674/zwyf.18427
    [11]
    陈浩, 汪玉, 袁佳慧, 等. 太湖稻麦轮作区减施磷肥对土壤供磷和小麦吸收磷的影响[J]. 农业环境科学学报, 2018, 37(4): 741−746 doi: 10.11654/jaes.2017-1551

    CHEN H, WANG Y, YUAN J H, et al. The effect of phosphorus-reduction on soil phosphorus supply and wheat phosphorus uptake in a rice-wheat rotation system in the Taihu Lake Region[J]. Journal of Agro-Environment Science, 2018, 37(4): 741−746 doi: 10.11654/jaes.2017-1551
    [12]
    蒋柏藩, 顾益初. 石灰性土壤无机磷分级体系的研究[J]. 中国农业科学, 1989, 22(3): 58−66 doi: 10.3321/j.issn:0578-1752.1989.03.012

    JIANG B F, GU Y C. A suggested fractionation scheme of inorganic phosphorus in calcareous soils[J]. Scientia Agricultura Sinica, 1989, 22(3): 58−66 doi: 10.3321/j.issn:0578-1752.1989.03.012
    [13]
    鲁如坤. 土壤农业化学分析方法[M]. 北京: 中国农业科技出版社, 2000: 172–178

    LU R K. Analysis Methods of Soil Agrochemistry[M]. Beijing: China Agricultural Science and Technology Press, 2000: 172–178
    [14]
    杜艳玲, 周怀平, 杨振兴, 等. 长期施肥下褐土中不同磷组分对磷素盈余的响应[J]. 华北农学报, 2018, 33(3): 224−231 doi: 10.7668/hbnxb.2018.03.033

    DU Y L, ZHOU H P, YANG Z X, et al. Response of different P component to P balance in cinnamon soil under long-term fertilization[J]. Acta Agriculturae Boreali-Sinica, 2018, 33(3): 224−231 doi: 10.7668/hbnxb.2018.03.033
    [15]
    谢英荷, 洪坚平, 韩旭, 等. 不同磷水平石灰性土壤Hedley磷形态生物有效性的研究[J]. 水土保持学报, 2010, 24(6): 141−144

    XIE Y H, HONG J P, HAN X, et al. Study on soil bioavailability of the Hedley P forms in calcareous soil with different phosphorus level[J]. Journal of Soil and Water Conservation, 2010, 24(6): 141−144
    [16]
    YANG X, POST W M. Phosphorus transformations as a function of pedogenesis: a synthesis of soil phosphorus data using Hedley fractionation method[J]. Biogeosciences, 2011, 8(10): 2907−2916 doi: 10.5194/bg-8-2907-2011
    [17]
    王海龙, 张民, 刘之广, 等. 多年定位试验条件下不同施磷水平对土壤无机磷分级的影响[J]. 水土保持学报, 2018, 32(5): 318−324

    WANG H L, ZHANG M, LIU Z G, et al. Effects of different phosphorus application levels on the inorganic phosphorus fraction under multi-year location experiment[J]. Journal of Soil and Water Conservation, 2018, 32(5): 318−324
    [18]
    廖文华, 刘建玲, 黄欣欣, 等. 潮褐土上蔬菜产量和土壤各形态磷变化对长期过量施磷的响应[J]. 植物营养与肥料学报, 2017, 23(4): 894−903 doi: 10.11674/zwyf.16333

    LIAO W H, LIU J L, HUANG X X, et al. Responses of vegetable yield and changes of phosphorus fractions in cinnamon soil to long-term excess phosphorus application[J]. Journal of Plant Nutrition and Fertilizer, 2017, 23(4): 894−903 doi: 10.11674/zwyf.16333
    [19]
    张为政. 土壤磷组分的通径分析及其相对有效性[J]. 土壤学报, 1991, 28(4): 417−425

    ZHANG W Z. Path analysis and relative availability of inorganic and organic phosphorus fractions in soils[J]. Acta Pedologica Sinica, 1991, 28(4): 417−425
    [20]
    ACKSEL A, BAUMANN K, HU Y F, et al. A critical review and evaluation of some P-research methods[J]. Communications in Soil Science and Plant Analysis, 2019, 50(22): 2804−2824 doi: 10.1080/00103624.2019.1679165
    [21]
    GAMA-RODRIGUES A C, SALES M V S, SILVA P S D, et al. An exploratory analysis of phosphorus transformations in tropical soils using structural equation modeling[J]. Biogeochemistry, 2014, 118(1/2/3): 453−469
    [22]
    HOU E Q, CHEN C R, KUANG Y W, et al. A structural equation model analysis of phosphorus transformations in global unfertilized and uncultivated soils[J]. Global Biogeochemical Cycles, 2016, 30(9): 1300−1309 doi: 10.1002/2016GB005371
    [23]
    LIANG Y T, XIAO X, NUCCIO E E, et al. Differentiation strategies of soil rare and abundant microbial taxa in response to changing climatic regimes[J]. Environmental Microbiology, 2020, 22(4): 1327−1340 doi: 10.1111/1462-2920.14945
    [24]
    XU P D, LIU Y R, ZHU J, et al. Influence mechanisms of long-term fertilizations on the mineralization of organic matter in Ultisol[J]. Soil and Tillage Research, 2020, 201: 104594 doi: 10.1016/j.still.2020.104594
    [25]
    LI Y H, JONES D L, CHEN Q, et al. Acidification and anaerobic digestion change the phosphorus forms and distribution in particle fractions of cattle slurry and phosphorus dynamics in soil after application[J]. Biosystems Engineering, 2020, 200: 101−111 doi: 10.1016/j.biosystemseng.2020.09.005
    [26]
    KAMEL G, GUILLAUME B. Structural Equatin Modeling with Lavaan[M]. London: Wiley, 2019: 73–85
    [27]
    曹莹菲, 张红, 刘克, 等. 不同施肥方式对土土壤磷素各组分含量的影响[J]. 干旱地区农业研究, 2015, 33(5): 115−120 doi: 10.7606/j.issn.1000-7601.2015.05.21

    CAO Y F, ZHANG H, LIU K, et al. Effects of different fertilization implementations on phosphorus fraction of manural loessial soil[J]. Agricultural Research in the Arid Areas, 2015, 33(5): 115−120 doi: 10.7606/j.issn.1000-7601.2015.05.21
    [28]
    吴璐璐, 张水清, 黄绍敏, 等. 长期定位施肥对潮土磷素形态和有效性的影响[J]. 土壤通报, 2021, 52(2): 379−386

    WU L L, ZHANG S Q, HUANG S M, et al. Effect of long-term fertilization on phosphorus fraction and availability in fluvo-aquic soil[J]. Chinese Journal of Soil Science, 2021, 52(2): 379−386
    [29]
    杨振兴, 周怀平, 解文艳, 等. 长期施肥褐土不同磷组分对磷素盈余的响应[J]. 植物营养与肥料学报, 2020, 26(5): 924−933 doi: 10.11674/zwyf.19291

    YANG Z X, ZHOU H P, XIE W Y, et al. Response of phosphorus components to phosphate surplus in cinnamon soil under long-term fertilization[J]. Journal of Plant Nutrition and Fertilizers, 2020, 26(5): 924−933 doi: 10.11674/zwyf.19291
    [30]
    金欣, 姚珊, Batbayar Javkhlan, 等. 冬小麦–夏休闲体系作物产量和土壤磷形态对长期施肥的响应[J]. 植物营养与肥料学报, 2018, 24(6): 1660−1671 doi: 10.11674/zwyf.18260

    JIN X, YAO S, JAVKHLAN B, et al. Response of wheat yield and soil phosphorus fractions to long-term fertilization under rainfed winter wheat-summer fallow cropping system[J]. Journal of Plant Nutrition and Fertilizers, 2018, 24(6): 1660−1671 doi: 10.11674/zwyf.18260
    [31]
    宋书会. 磷肥减施及覆膜条件下黑土磷素供应特征与转化机制[D]. 北京: 中国农业科学院, 2019

    SONG S H. Phosphorus supply and transformation in mollisol under reduced phosphate rate and plastic film mulching[D]. Beijing: Chinese Academy of Agricultural Sciences, 2019
    [32]
    陈磊, 云鹏, 高翔, 等. 磷肥减施对玉米根系生长及根际土壤磷组分的影响[J]. 植物营养与肥料学报, 2016, 22(6): 1548−1557 doi: 10.11674/zwyf.16061

    CHEN L, YUN P, GAO X, et al. Effects of reducing phosphorus fertilizer rate on root growth and phosphorus fractions in rhizosphere soils of summer maize[J]. Journal of Plant Nutrition and Fertilizer, 2016, 22(6): 1548−1557 doi: 10.11674/zwyf.16061
    [33]
    侯云鹏, 王立春, 李前, 等. 覆膜滴灌条件下基于玉米产量和土壤磷素平衡的磷肥适用量研究[J]. 中国农业科学, 2019, 52(20): 3573−3584 doi: 10.3864/j.issn.0578-1752.2019.20.008

    HOU Y P, WANG L C, LI Q, et al. Research on optimum phosphorus fertilizer rate based on maize yield and phosphorus balance in soil under film mulched drip irrigation conditions[J]. Scientia Agricultura Sinica, 2019, 52(20): 3573−3584 doi: 10.3864/j.issn.0578-1752.2019.20.008
    [34]
    王斌, 刘骅, 马义兵, 等. 长期施肥对灰漠土无机磷组分的影响[J]. 土壤通报, 2017, 48(4): 917−921

    WANG B, LIU H, MA Y B, et al. Effect of long-term fertilization on fractions of inorganic phosphorus in grey desert soil[J]. Chinese Journal of Soil Science, 2017, 48(4): 917−921
    [35]
    李若楠, 王政培, BATBAYAR Javkhlan, 等. 等有机质土有效磷和无机磷形态的关系[J]. 中国农业科学, 2019, 52(21): 3852−3865 doi: 10.3864/j.issn.0578-1752.2019.21.014

    LI R N, WANG Z P, JAVKHLAN B, et al. Relationship between soil available phosphorus and inorganic phosphorus forms under equivalent organic matter condition in a tier soil[J]. Scientia Agricultura Sinica, 2019, 52(21): 3852−3865 doi: 10.3864/j.issn.0578-1752.2019.21.014
    [36]
    许艳, 张仁陟. 陇中黄土高原不同耕作措施下土壤磷动态研究[J]. 土壤学报, 2017, 54(3): 670−681

    XU Y, ZHANG R Z. Dynamics of soil phosphorus as affected by tillage on the Loess Plateau in central Gansu, China[J]. Acta Pedologica Sinica, 2017, 54(3): 670−681
    [37]
    朱芸芸, 李敏, 曲博, 等. 芦苇根际土壤有机磷组分的季节变化及与磷酸酶活性的关系[J]. 土壤, 2016, 48(6): 1108−1113

    ZHU Y Y, LI M, QU B, et al. Seasonal variations of organic phosphorus composition and their relationship with phosphatase activity in Phragmites communis rhizosphere soil[J]. Soils, 2016, 48(6): 1108−1113
    [38]
    刘津, 李春越, 邢亚薇, 等. 长期施肥对黄土旱塬农田土壤有机磷组分及小麦产量的影响[J]. 应用生态学报, 2020, 31(1): 157−164

    LIU J, LI C Y, XING Y W, et al. Effects of long-term fertilization on soil organic phosphorus fractions and wheat yield in farmland of Loess Plateau[J]. Chinese Journal of Applied Ecology, 2020, 31(1): 157−164
    [39]
    孙锋, 曾令达, 彭长连, 等. 南美蟛蜞菊、蟛蜞菊和杂交蟛蜞菊土壤磷组分特征及其影响因素[J]. 土壤学报, 2021, 58(3): 798−804

    SUN F, ZENG L D, PENG C L, et al. Effect of growing of Wedelia trilobata,W. chinensis or their hybrid on soil phosphorus fractionation in south China and their affecting factors[J]. Acta Pedologica Sinica, 2021, 58(3): 798−804
    [40]
    曾晓敏, 范跃新, 林开淼, 等. 亚热带不同植被类型土壤磷组分特征及其影响因素[J]. 应用生态学报, 2018, 29(7): 2156−2162

    ZENG X M, FAN Y X, LIN K M, et al. Characteristics of soil phosphorus fractions of different vegetation types in subtropical forests and their driving factors[J]. Chinese Journal of Applied Ecology, 2018, 29(7): 2156−2162
    [41]
    QU Y, WANG C, GUO J S, et al. Characteristics of organic phosphorus fractions in soil from water-level fluctuation zone by solution 31P-nuclear magnetic resonance and enzymatic hydrolysis[J]. Environmental Pollution, 2019, 255: 113209 doi: 10.1016/j.envpol.2019.113209
    [42]
    袁佳慧, 汪玉, 王慎强, 等. 稻麦轮作磷肥减施下水稻土磷素生物有效性特征[J]. 生态与农村环境学报, 2018, 34(7): 599−605 doi: 10.11934/j.issn.1673-4831.2018.07.004

    YUAN J H, WANG Y, WANG S Q, et al. Characteristic of soil P availability in reduced P-input rice-wheat cropping rotation paddy soils[J]. Journal of Ecology and Rural Environment, 2018, 34(7): 599−605 doi: 10.11934/j.issn.1673-4831.2018.07.004
    [43]
    王静, 王磊, 张爱君, 等. 长期增施有机肥对土壤不同组分有机磷含量及微生物丰度的影响[J]. 生态与农村环境学报, 2020, 36(9): 1161−1168

    WANG J, WANG L, ZHANG A J, et al. Effects of long-term organic fertilization on the content of soil organic phosphorus fractions and abundance of soil microorganism[J]. Journal of Ecology and Rural Environment, 2020, 36(9): 1161−1168
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(1)  / Tables(5)

    Article Metrics

    Article views (221) PDF downloads(40) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return