Volume 29 Issue 12
Dec.  2021
Turn off MathJax
Article Contents
WANG Y, MIN J, SHI P H, MA M K, HAO Y Q, SHI W M. Comparison of two monitoring methods for ammonia volatilization based on rice-wheat rotation system[J]. Chinese Journal of Eco-Agriculture, 2021, 29(12): 1990−2001 doi: 10.13930/j.cnki.cjea.210210
Citation: WANG Y, MIN J, SHI P H, MA M K, HAO Y Q, SHI W M. Comparison of two monitoring methods for ammonia volatilization based on rice-wheat rotation system[J]. Chinese Journal of Eco-Agriculture, 2021, 29(12): 1990−2001 doi: 10.13930/j.cnki.cjea.210210

Comparison of two monitoring methods for ammonia volatilization based on rice-wheat rotation system

doi: 10.13930/j.cnki.cjea.210210
Funds:  This study was supported by the National Key Research and Development Program of China (2016YFD0801102), the Key Research and Development Program of Shandong Province of China (2019JZZY010701) and the Natural Science Foundation of Jiangsu Province of China (BK20170586)
More Information
  • Corresponding author: E-mail: wmshi@issas.ac.cn
  • Received Date: 2021-04-07
  • Accepted Date: 2021-06-08
  • Available Online: 2021-07-14
  • Publish Date: 2021-12-07
  • Ammonia volatilization is an important pathway of active nitrogen (N) loss from farmlands. The accurate and effective measurement of farmland ammonia emissions is the basis for environmental assessments and policymaking. Soil ammonia volatilization is controlled by fertilizer application rates, fertilizer application methods, soil properties, and meteorological conditions, so there is a wide variability in the cumulative ammonia emissions and emission factors in different studies. There are also different methods for ammonia volatilization measurements, which further reduce the comparability of data across studies. The most widely used methods for soil ammonia volatilization measurements in China are the ventilated sponge absorption method and the intermittent airflow enclosure method. However, consistency between measurements is unclear because of substantial differences in the ventilation rates between methods, and only a few studies have compared the two methods. Based on a typical rice-wheat rotation system in the Lower Reaches of the Yangtze River, this study set up treatments with different N fertilizer application rates (N0: no N fertilizer; N1: 200 kg(N)·hm−2 for rice and 180 kg(N)·hm−2 for wheat; N2: 300 kg(N)·hm−2 for rice and 270 kg(N)·hm−2 for wheat; and N3: 400 kg(N)·hm−2 for rice and 360 kg(N)·hm−2 for wheat). Soil ammonia volatilization was measured continuously after fertilization during rice and wheat growth using the ventilated sponge absorption and intermittent airflow enclosure methods, and the ammonia emission factors in the study area were analyzed using literature analysis. The results showed that the cumulative ammonia emission measured by the ventilated sponge absorption method was 25%–35% lower than that measured by the intermittent airflow enclosure method under the three N application treatments (except for the N0 treatment), and the results were consistent for both rice and wheat seasons. Under fertilization treatments (N1, N2 and N3), the cumulative ammonia emissions measured by the ventilated sponge absorption method ranged from 17.36 to 43.90 kg·hm−2 in the rice season and from 5.90 to 20.43 kg·hm−2 in the wheat season, with emission factors ranging from 2.56% to 10.39%. The cumulative ammonia emissions measured by the intermittent airflow enclosure method ranged from 23.28 to 61.05 kg·hm−2 in the rice season and from 14.63 to 27.73 kg·hm−2 in the wheat season, with emission factors ranging from 7.09% to 15.01%. The cumulative ammonia emissions under the N0 treatment were higher for the ventilated sponge absorption method than for the intermittent airflow enclosure method, and the measurements of the two methods were significantly different in the rice season but not in the wheat season. The results of the literatures analysis in the study area were consistent with the monitoring results. The cumulative ammonia emissions measured by the ventilated sponge absorption method were higher than those measured by the intermittent airflow enclosure method when the N application rate was between 0 and 100 kg·hm−2, with average emission factors of 6.18% and 12.31%, respectively. When the N application rate was between 101 and 200 kg·hm−2, the ventilation sponge absorption method led to 25% lower emissions than the intermittent airflow enclosure method, with average emission factors of 9.46% and 12.61%, respectively. When the N application rate was between 201 and 300 kg·hm−2, the ventilation sponge absorption method led to 5% lower emissions than the intermittent airflow enclosure method, and the average emission factors were 12.71% and 13.43%, respectively. In general, the cumulative ammonia emissions measured by the two methods were consistent; the ventilated sponge absorption method led to higher measured values than the intermittent airflow enclosure method in fields without N application or with low ammonia volatilization rates, and the ventilated sponge absorption method led to lower measurements than the intermittent airflow enclosure method in fields with N application. The measurements of the two methods can be converted using a ratio. The results of this study provide support for the estimation of regional ammonia emissions using the ventilated sponge absorption and intermittent airflow enclosure methods.
  • loading
  • [1]
    卢丽丽, 吴根义. 农田氨排放影响因素研究进展[J]. 中国农业大学学报, 2019, 24(1): 149−162 doi: 10.11841/j.issn.1007-4333.2019.01.19

    LU L L, WU G Y. Advances in affecting factors of ammonia emission in farmland[J]. Journal of China Agricultural University, 2019, 24(1): 149−162 doi: 10.11841/j.issn.1007-4333.2019.01.19
    [2]
    朱兆良. 中国土壤氮素研究[J]. 土壤学报, 2008, 45(5): 778−783 doi: 10.3321/j.issn:0564-3929.2008.05.003

    ZHU Z L. Research on soil nitrogen in China[J]. Acta Pedologica Sinica, 2008, 45(5): 778−783 doi: 10.3321/j.issn:0564-3929.2008.05.003
    [3]
    王桂良. 中国三大粮食作物农田活性氮损失与氮肥利用率的定量分析[D]. 北京: 中国农业大学, 2014

    WANG G L. Quantitative analysis of reactive nitrogen losses and nitrogen use efficiency of three major grain crops in China[D]. Beijing: China Agricultural University, 2014
    [4]
    YU C Q, HUANG X, CHEN H, et al. Managing nitrogen to restore water quality in China[J]. Nature, 2019, 567(7749): 516−520 doi: 10.1038/s41586-019-1001-1
    [5]
    ZHU Z L, CHEN D L. Nitrogen fertilizer use in China— Contributions to food production, impacts on the environment and best management strategies[J]. Nutrient Cycling in Agroecosystems, 2002, 63(2/3): 117−127 doi: 10.1023/A:1021107026067
    [6]
    KONG L, TANG X, ZHU J, et al. Improved inversion of monthly ammonia emissions in China in combination of the Chinese Ammonia Monitoring Network and ensemble Kalman filter[J]. Environmental Science & Technology, 2019, 53(21): 12529−12538
    [7]
    WANG M Y, KONG W M, MARTEN R, et al. Rapid growth of new atmospheric particles by nitric acid and ammonia condensation[J]. Nature, 2020, 581(7807): 184−189 doi: 10.1038/s41586-020-2270-4
    [8]
    PAN Y P, TIAN S L, WU D M, et al. Ammonia should be considered in field experiments mimicking nitrogen deposition[J]. Atmospheric and Oceanic Science Letters, 2020, 13(3): 248−251 doi: 10.1080/16742834.2020.1733919
    [9]
    杨道伟, 许稳, 唐傲寒, 等. 中国东部地区无机氮湿沉降: 南-北不同类型监测点的比较[J]. 应用生态学报, 2016, 27(10): 3205−3212

    YANG D W, XU W, TANG A H, et al. Inorganic nitrogen wet deposition in Eastern China: Comparison of different land use-based monitoring sites in north and south regions[J]. Chinese Journal of Applied Ecology, 2016, 27(10): 3205−3212
    [10]
    ROWE E C, JONES L, DISE N B, et al. Metrics for evaluating the ecological benefits of decreased nitrogen deposition[J]. Biological Conservation, 2017, 212: 454−463 doi: 10.1016/j.biocon.2016.11.022
    [11]
    FRENCY R, TREVITT A C F, 朱兆良, 等. 水田氨挥发的测定方法[J]. 土壤学报, 1987, 24(2): 142−151

    FRENCY J R, TREVITT A C F, ZHU Z L, et al. Methods for estimating volatilization of ammonia from flooded rice fields[J]. Acta Pedologica Sinica, 1987, 24(2): 142−151
    [12]
    MANNHEIM T, BRASCHKAT J, MARSCHNER H. Measurement of ammonia emission after liquid manure application: Ⅱ. Comparison of the wind tunnel and the IHF method under field conditions[J]. Zeitschrift Für Pflanzenernährung Und Bodenkunde, 1995, 158(3): 215−219
    [13]
    黄彬香, 苏芳, 丁新泉, 等. 田间土壤氨挥发的原位测定−风洞法[J]. 土壤, 2006, 38(6): 712−716 doi: 10.3321/j.issn:0253-9829.2006.06.009

    HUANG B X, SU F, DING X Q, et al. German wind-tunnel system for measuring ammonia volatilization from agricultural soil[J]. Soils, 2006, 38(6): 712−716 doi: 10.3321/j.issn:0253-9829.2006.06.009
    [14]
    王朝辉, 刘学军, 巨晓棠, 等. 田间土壤氨挥发的原位测定−通气法[J]. 植物营养与肥料学报, 2002, 8(2): 205−209 doi: 10.3321/j.issn:1008-505X.2002.02.014

    WANG Z H, LIU X J, JU X T, et al. Field in situ determination of ammonia volatilization from soil: Venting method[J]. Plant Nutrition and Fertilizer Science, 2002, 8(2): 205−209 doi: 10.3321/j.issn:1008-505X.2002.02.014
    [15]
    KISSEL D E, BREWER H L, ARKIN G F. Design and test of a field sampler for ammonia volatilization[J]. Soil Science Society of America Journal, 1977, 41(6): 1133−1138 doi: 10.2136/sssaj1977.03615995004100060024x
    [16]
    NÔMMIK H. The effect of pellet size on the ammonia loss from urea applied to forest soil[J]. Plant and Soil, 1973, 39(2): 309−318 doi: 10.1007/BF00014798
    [17]
    周伟, 田玉华, 曹彦圣, 等. 两种氨挥发测定方法的比较研究[J]. 土壤学报, 2011, 48(5): 1090−1095 doi: 10.11766/trxb201003050082

    ZHOU W, TIAN Y H, CAO Y S, et al. A comparative study on two methods for determination of ammonia volatilization[J]. Acta Pedologica Sinica, 2011, 48(5): 1090−1095 doi: 10.11766/trxb201003050082
    [18]
    景建元, 孙晓, 杨阳, 等. 施氮水平对冬小麦冠层氨挥发的影响[J]. 农业环境科学学报, 2017, 36(2): 401−408 doi: 10.11654/jaes.2016-1233

    JING J Y, SUN X, YANG Y, et al. Ammonia volatilization of winter wheat canopy under different nitrogen rates[J]. Journal of Agro-Environment Science, 2017, 36(2): 401−408 doi: 10.11654/jaes.2016-1233
    [19]
    王朝辉, 刘学军, 巨晓棠, 等. 北方冬小麦/夏玉米轮作体系土壤氨挥发的原位测定[J]. 生态学报, 2002, 22(3): 359−365 doi: 10.3321/j.issn:1000-0933.2002.03.011

    WANG Z H, LIU X J, JU X T, et al. In situ determination of ammonia volatilization from wheat maize rotation system field in North China[J]. Acta Ecologica Sinica, 2002, 22(3): 359−365 doi: 10.3321/j.issn:1000-0933.2002.03.011
    [20]
    宋勇生, 范晓晖, 林德喜, 等. 太湖地区稻田氨挥发及影响因素的研究[J]. 土壤学报, 2004, 41(2): 265−269 doi: 10.3321/j.issn:0564-3929.2004.02.016

    SONG Y S, FAN X H, LIN D X, et al. Ammonia volatilation from paddy fields in the Taihu Lake region and its influencing factors[J]. Acta Pedologica Sinica, 2004, 41(2): 265−269 doi: 10.3321/j.issn:0564-3929.2004.02.016
    [21]
    杨士红, 彭世彰, 徐俊增, 等. 不同水氮管理下稻田氨挥发损失特征及模拟[J]. 农业工程学报, 2012, 28(11): 99−104 doi: 10.3969/j.issn.1002-6819.2012.11.017

    YANG S H, PENG S Z, XU J Z, et al. Characteristics and simulation of ammonia volatilization from paddy fields under different water and nitrogen management[J]. Transactions of the Chinese Society of Agricultural Engineering, 2012, 28(11): 99−104 doi: 10.3969/j.issn.1002-6819.2012.11.017
    [22]
    徐万里, 刘骅, 张云舒, 等. 施肥深度、灌水条件和氨挥发监测方法对氮肥氨挥发特征的影响[J]. 新疆农业科学, 2011, 48(1): 86−93 doi: 10.6048/j.issn.1001-4330.2011.01.017

    XU W L, LIU H, ZHANG Y S, et al. Influence of the fertilization depth, irrigation and the ammonia volatilization monitoring method on ammonia volatilization characters of nitrogen fertilizer[J]. Xinjiang Agricultural Sciences, 2011, 48(1): 86−93 doi: 10.6048/j.issn.1001-4330.2011.01.017
    [23]
    康飞, 孟凡乔. 基于文献分析的北方冬麦田氨挥发特性[J]. 农业工程学报, 2020, 36(1): 228−234 doi: 10.11975/j.issn.1002-6819.2020.01.027

    KANG F, MENG F Q. Ammonia volatilization from winter wheat cropland in Northern China based on a literature analysis[J]. Transactions of the Chinese Society of Agricultural Engineering, 2020, 36(1): 228−234 doi: 10.11975/j.issn.1002-6819.2020.01.027
    [24]
    田玉华, 贺发云, 尹斌, 等. 太湖地区氮磷肥施用对稻田氨挥发的影响[J]. 土壤学报, 2007, 44(5): 893−900 doi: 10.3321/j.issn:0564-3929.2007.05.018

    TIAN Y H, HE F Y, YIN B, et al. Ammonia volatilization from paddy fields in the Taihu Lake region as affected by N and P combination in fertilization[J]. Acta Pedologica Sinica, 2007, 44(5): 893−900 doi: 10.3321/j.issn:0564-3929.2007.05.018
    [25]
    SUN H J, ZHANG H L, POWLSON D, et al. Rice production, nitrous oxide emission and ammonia volatilization as impacted by the nitrification inhibitor 2-chloro-6-(trichloromethyl)-pyridine[J]. Field Crops Research, 2015, 173: 1−7 doi: 10.1016/j.fcr.2014.12.012
    [26]
    CHEN G, CHEN Y, ZHAO G H, et al. Do high nitrogen use efficiency rice cultivars reduce nitrogen losses from paddy fields?[J]. Agriculture, Ecosystems & Environment, 2015, 209: 26−33
    [27]
    YAO Y L, ZHANG M, TIAN Y H, et al. Urea deep placement for minimizing NH3 loss in an intensive rice cropping system[J]. Field Crops Research, 2018, 218: 254−266 doi: 10.1016/j.fcr.2017.03.013
    [28]
    邓美华, 尹斌, 张绍林, 等. 不同施氮量和施氮方式对稻田氨挥发损失的影响[J]. 土壤, 2006, 38(3): 263−269 doi: 10.3321/j.issn:0253-9829.2006.03.005

    DENG M H, YIN B, ZHANG S L, et al. Effects of rate and method of N application on ammonia volatilization in paddy fields[J]. Soils, 2006, 38(3): 263−269 doi: 10.3321/j.issn:0253-9829.2006.03.005
    [29]
    俞映倞, 薛利红, 杨林章. 太湖地区稻田不同氮肥管理模式下氨挥发特征研究[J]. 农业环境科学学报, 2013, 32(8): 1682−1689 doi: 10.11654/jaes.2013.08.028

    YU Y L, XUE L H, YANG L Z. Ammonia volatilization from paddy fields under different nitrogen schemes in Tai Lake region[J]. Journal of Agro-Environment Science, 2013, 32(8): 1682−1689 doi: 10.11654/jaes.2013.08.028
    [30]
    王梦凡, 俞映倞, 杨梖, 等. 界面阻隔材料对稻田产量、氮肥利用率和氨挥发排放的影响[J]. 中国生态农业学报(中英文), 2020, 28(6): 803−812

    WANG M F, YU Y L, YANG B, et al. Effects of interface barrier materials on rice yield, nitrogen use efficiency, and NH3 volatilization[J]. Chinese Journal of Eco-Agriculture, 2020, 28(6): 803−812
    [31]
    张翀, 李雪倩, 苏芳, 等. 施氮方式及测定方法对紫色土夏玉米氨挥发的影响[J]. 农业环境科学学报, 2016, 35(6): 1194−1201 doi: 10.11654/jaes.2016.06.024

    ZHANG C, LI X Q, SU F, et al. Effects of different fertilization and measurement methods on ammonia volatilization of summer maize in purple soil[J]. Journal of Agro-Environment Science, 2016, 35(6): 1194−1201 doi: 10.11654/jaes.2016.06.024
    [32]
    朱兆良, 蔡贵信, 徐银华, 等. 种稻下氮肥的氨挥发及其在氮素损失中的重要性的研究[J]. 土壤学报, 1985, 22(4): 320−328

    ZHU Z L, CAI G X, XU Y H, et al. Ammonia volatilization and its significance to the losses of fertilizer nitrogen applied to paddy soil[J]. Acta Pedologica Sinica, 1985, 22(4): 320−328
    [33]
    董文旭, 胡春胜, 张玉铭. 华北农田土壤氨挥发原位测定研究[J]. 中国生态农业学报, 2006, 14(3): 46−48

    DONG W X, HU C S, ZHANG Y M. In situ determination of ammonia volatilization in field of North China[J]. Chinese Journal of Eco-Agriculture, 2006, 14(3): 46−48
    [34]
    JANTALIA C P, HALVORSON A D, FOLLETT R F, et al. Nitrogen source effects on ammonia volatilization as measured with semi-static chambers[J]. Agronomy Journal, 2012, 104(6): 1595−1603 doi: 10.2134/agronj2012.0210
    [35]
    BOUWMAN A F, BOUMANS L J M, BATJES N H. Estimation of global NH3 volatilization loss from synthetic fertilizers and animal manure applied to arable lands and grasslands[J]. Global Biogeochemical Cycles, 2002, 16(2): 8-1−8-14
    [36]
    董文煊, 邢佳, 王书肖. 1994—2006年中国人为源大气氨排放时空分布[J]. 环境科学, 2010, 31(7): 1457−1463

    DONG W X, XING J, WANG S X. Temporal and spatial distribution of anthropogenic ammonia emissions in China: 1994−2006[J]. Environmental Science, 2010, 31(7): 1457−1463
    [37]
    SHERLOCK R, GOH K. Dynamics of ammonia volatilization from simulated urine patches and aqueous urea applied to pasture. Ⅱ. Theoretical derivation of a simplified model[J]. Fertilizer Research, 1985, 6(1): 3−22 doi: 10.1007/BF01058161
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)  / Tables(1)

    Article Metrics

    Article views (271) PDF downloads(62) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return