Volume 30 Issue 5
May  2022
Turn off MathJax
Article Contents
JIN Y L, GU T T, LIU H, AN D G. Research progress on the wheat powdery mildew resistance gene Pm2[J]. Chinese Journal of Eco-Agriculture, 2022, 30(5): 779−786 doi: 10.13930/j.cnki.cjea.210279
Citation: JIN Y L, GU T T, LIU H, AN D G. Research progress on the wheat powdery mildew resistance gene Pm2[J]. Chinese Journal of Eco-Agriculture, 2022, 30(5): 779−786 doi: 10.13930/j.cnki.cjea.210279

Research progress on the wheat powdery mildew resistance gene Pm2

doi: 10.13930/j.cnki.cjea.210279
Funds:  This research was supported by the Strategic Priority Research Program of the Chinese Academy of Sciences (XDA24030102), the National Key Research and Development Program of China (2016YFD0100102) and the National Natural Science Foundation of China (31671771, 31501388)
More Information
  • Corresponding author: E-mail: andiaoguo@163.com
  • Received Date: 2021-05-08
  • Accepted Date: 2021-06-25
  • Available Online: 2021-08-12
  • Publish Date: 2022-05-18
  • Wheat (Triticum aestivum L.) is an important crop in China, high and stable yields are crucial for ensuring food security. Powdery mildew caused by Blumeria graminis f. sp. tritici. (Bgt) is a devastating disease of wheat. Chemical and agricultural control methods are used to prevent powdery mildew, but utilizing host resistance may represent a more economical, environmentally friendly, and effective method to control the epidemic of powdery mildew. The powdery mildew resistance gene Pm2, located on the short arm of chromosome 5D, encodes a CC-NBS-LRR protein and is one of the most widely used Pm genes in wheat powdery mildew resistance breeding because of its excellent resistance and desirable agronomic traits. In this review, the recent progress in Pm2 research and utilization in wheat breeding is systematically summarized in terms of the following aspects: identification and characterization of Pm2, exploration and utilization of the alleles at the Pm2 locus, gene cloning, development of functional markers, haplotype analysis, AvrPm2 gene cloning, and the applications in wheat breeding programs. It has been proposed that: 1) the differences in the resistance of different Pm2 alleles may be caused by diverse genetic backgrounds, other regulatory factors in the disease resistance pathway, or the highly heterozygous state of Bgt isolates. 2) The powdery mildew resistance gene Pm2 should be reasonably distributed and utilized in disease resistance breeding to prolong the service life of disease resistance genes and increase durability. 3) Essential methods to control the epidemic of powdery mildew should include mining and utilizing novel resistance genes and allelic variations and strengthening the innovation of new wheat germplasms. This review aimed to provide a theoretical basis for further work on the resistance mechanism of Pm2 and to accelerate its application in wheat powdery mildew resistance breeding.
  • loading
  • [1]
    APPELS R, EVERSOLE K, FEUILLET C, et al. Shifting the limits in wheat research and breeding using a fully annotated reference genome[J]. Science, 2018, 361: eaar7191 doi: 10.1126/science.aar7191
    [2]
    SAVARY S, WILLOCQUET L, PETHYBRIDGE S J, et al. The global burden of pathogens and pests on major food crops[J]. Nature Ecology & Evolution, 2019, 3(3): 430−439
    [3]
    WATERHOUSE W L. Australian rust studies. Ⅲ. Initial results of breeding for rust resistance[J]. Proceedings of the Linnean Society of New South Wales, 1930, 55: 596−636
    [4]
    MCINTOSH R A, DUBCOVSKY J, ROGERS W J, et al. Catalogue of gene symbols for wheat: 2019 supplement[M]// RAUPP W J, ed. Annual Wheat Newsletter. Manhattan, KS: Wheat Genetic and Genomic Resources at Kansas State University, 2019: 98–113
    [5]
    HE H G, LIU R K, MA P T, et al. Characterization of Pm68, a new powdery mildew resistance gene on chromosome 2BS of Greek durum wheat TRI 1796[J]. Theoretical and Applied Genetics, 2021, 134(1): 53−62 doi: 10.1007/s00122-020-03681-2
    [6]
    HEWITT T, MÜLLER M C, MOLNÁR I, et al. A highly differentiated region of wheat chromosome 7AL encodes a Pm1a immune receptor that recognizes its corresponding AvrPm1a effector from Blumeria graminis[J]. The New Phytologist, 2021, 229(5): 2812−2826 doi: 10.1111/nph.17075
    [7]
    SÁNCHEZ-MARTÍN J, STEUERNAGEL B, GHOSH S, et al. Rapid gene isolation in barley and wheat by mutant chromosome sequencing[J]. Genome Biology, 2016, 17(1): 1−7 doi: 10.1186/s13059-015-0866-z
    [8]
    BRUNNER S, HURNI S, HERREN G, et al. Transgenic Pm3b wheat lines show resistance to powdery mildew in the field[J]. Plant Biotechnology Journal, 2011, 9(8): 897−910 doi: 10.1111/j.1467-7652.2011.00603.x
    [9]
    SÁNCHEZ-MARTÍN J, WIDRIG V, HERREN G, et al. Wheat Pm4 resistance to powdery mildew is controlled by alternative splice variants encoding chimeric proteins[J]. Nature Plants, 2021, 7(3): 327−341 doi: 10.1038/s41477-021-00869-2
    [10]
    XIE J Z, GUO G H, WANG Y, et al. A rare single nucleotide variant in Pm5e confers powdery mildew resistance in common wheat[J]. The New Phytologist, 2020, 228(3): 1011−1026 doi: 10.1111/nph.16762
    [11]
    HURNI S, BRUNNER S, BUCHMANN G, et al. Rye Pm8 and wheat Pm3 are orthologous genes and show evolutionary conservation of resistance function against powdery mildew[J]. The Plant Journal, 2013, 76(6): 957−969 doi: 10.1111/tpj.12345
    [12]
    SINGH S P, HURNI S, RUINELLI M, et al. Evolutionary divergence of the rye Pm17 and Pm8 resistance genes reveals ancient diversity[J]. Plant Molecular Biology, 2018, 98(3): 249−260 doi: 10.1007/s11103-018-0780-3
    [13]
    XING L P, HU P, LIU J Q, et al. Pm21 from Haynaldia villosa encodes a CC-NBS-LRR protein conferring powdery mildew resistance in wheat[J]. Molecular Plant, 2018, 11(6): 874−878 doi: 10.1016/j.molp.2018.02.013
    [14]
    LU P, GUO L, WANG Z Z, et al. A rare gain of function mutation in a wheat tandem kinase confers resistance to powdery mildew[J]. Nature Communications, 2020, 11: 680 doi: 10.1038/s41467-020-14294-0
    [15]
    FU D L, UAUY C, DISTELFELD A, et al. A kinase-START gene confers temperature-dependent resistance to wheat stripe rust[J]. Science, 2009, 323(5919): 1357−1360 doi: 10.1126/science.1166289
    [16]
    LI M M, DONG L L, LI B B, et al. A CNL protein in wild emmer wheat confers powdery mildew resistance[J]. The New Phytologist, 2020, 228(3): 1027−1037 doi: 10.1111/nph.16761
    [17]
    MOORE J W, HERRERA-FOESSEL S, LAN C X, et al. A recently evolved hexose transporter variant confers resistance to multiple pathogens in wheat[J]. Nature Genetics, 2015, 47(12): 1494−1498 doi: 10.1038/ng.3439
    [18]
    ZOU S H, WANG H, LI Y W, et al. The NB-LRR gene Pm60 confers powdery mildew resistance in wheat[J]. The New Phytologist, 2018, 218(1): 298−309 doi: 10.1111/nph.14964
    [19]
    ZELLER F J, KONG L, HARTL L, et al. Chromosomal location of genes for resistance to powdery mildew in common wheat (Triticum aestivum L. em Thell.) 7. Gene Pm29 in line Pova[J]. Euphytica, 2002, 123(2): 187−194 doi: 10.1023/A:1014944619304
    [20]
    李桂萍, 陈佩度, 张守忠, 等. 小麦-簇毛麦6VS/6AL易位染色体对小麦农艺性状的影响[J]. 植物遗传资源学报, 2011, 12(5): 744−749

    LI G P, CHEN P D, ZHANG S Z, et al. Effects of the 6VS/6AL translocation chromosome on agronomic characteristics of wheat[J]. Journal of Plant Genetic Resources, 2011, 12(5): 744−749
    [21]
    曹廷杰, 陈永兴, 李丹, 等. 河南小麦新育成品种(系)白粉病抗性鉴定与分子标记检测[J]. 作物学报, 2015, 41(8): 1172−1182 doi: 10.3724/SP.J.1006.2015.01172

    CAO T J, CHEN Y X, LI D, et al. Identification and molecular detection of powdery mildew resistance of new bred wheat varieties (lines) in Henan Province, China[J]. Acta Agronomica Sinica, 2015, 41(8): 1172−1182 doi: 10.3724/SP.J.1006.2015.01172
    [22]
    PUGSLEY A T, CARTER M V. The resistance of twelve varieties of Triticum vulgare to Erysiphe graminis tritici[J]. Australian Journal of Biological Sciences, 1953, 6(3): 335−346 doi: 10.1071/BI9530335
    [23]
    BRIGGLE L W. Three loci in wheat involving resistance to Erysiphe graminis f. sp. tritici 1[J]. Crop Science, 1966, 6(5): 461−465 doi: 10.2135/cropsci1966.0011183X000600050021x
    [24]
    MCINTOSH R A, BAKER E P. Cytogenetical studies in wheat iv. Chromosome location and linkage studies involving the Pm2 locus for powdery mildew resistance[J]. Euphytica, 1970, 19(1): 71−77 doi: 10.1007/BF01904668
    [25]
    MA Z Q, SORRELLS M E, TANKSLEY S D. RFLP markers linked to powdery mildew resistance genes Pm1, Pm2, Pm3, and Pm4 in wheat[J]. Genome, 1994, 37(5): 871−875 doi: 10.1139/g94-123
    [26]
    QIU Y C, SUN X L, ZHOU R H, et al. Identification of microsatellite markers linked to powdery mildew resistance gene Pm2 in wheat[J]. Cereal Research Communications, 2006, 34(4): 1267−1273 doi: 10.1556/CRC.34.2006.4.268
    [27]
    赵军. 小麦抗白粉病基因的分子标记[D]. 北京: 中国农业大学, 2006: 30−40

    ZHAO J. Molecular markers of powdery mildew resistance genes in wheat[D]. Beijing: China Agricultural University, 2006: 30−40
    [28]
    李根桥, 房体麟, 朱婕, 等. 普通小麦品种‘Brock’抗白粉病基因分子标记定位[J]. 作物学报, 2009, 35(9): 1613−1619 doi: 10.3724/SP.J.1006.2009.01613

    LI G Q, FANG T L, ZHU J, et al. Molecular identification of a powdery mildew resistance gene from common wheat cultivar ‘Brock’[J]. Acta Agronomica Sinica, 2009, 35(9): 1613−1619 doi: 10.3724/SP.J.1006.2009.01613
    [29]
    HUANG J, ZHAO Z H, SONG F J, et al. Molecular detection of a gene effective against powdery mildew in the wheat cultivar Liangxing 66[J]. Molecular Breeding, 2012, 30(4): 1737−1745 doi: 10.1007/s11032-012-9757-0
    [30]
    宋伟, 孙会改, 孙艳玲, 等. 小麦品种汶农14抗白粉病基因的染色体定位[J]. 作物学报, 2014, 40(5): 798−804 doi: 10.3724/SP.J.1006.2014.00798

    SONG W, SUN H G, SUN Y L, et al. Chromosomal localization of the gene for resistance to powdery mildew in the wheat cultivar Wennong 14[J]. Acta Agronomica Sinica, 2014, 40(5): 798−804 doi: 10.3724/SP.J.1006.2014.00798
    [31]
    SUN H G, SONG W, SUN Y L, et al. Resistance of ‘Zhongmai 155’ wheat to powdery mildew: effectiveness and detection of the resistance gene[J]. Crop Science, 2015, 55(3): 1017−1025 doi: 10.2135/cropsci2014.05.0355
    [32]
    SUN Y L, ZOU J W, SUN H G, et al. PmLX66 and PmW14: new alleles of Pm2 for resistance to powdery mildew in the Chinese winter wheat cultivars Liangxing 66 and Wennong 14[J]. Plant Disease, 2015, 99(8): 1118−1124 doi: 10.1094/PDIS-10-14-1079-RE
    [33]
    李丹, 袁成国, 吴海彬, 等. 普通小麦品种农大399抗白粉病基因SSR和AFLP-SCAR分子标记[J]. 植物遗传资源学报, 2013, 14(1): 104−108, 114 doi: 10.3969/j.issn.1672-1810.2013.01.016

    LI D, YUAN C G, WU H B, et al. SSR and AFLP-derived SCAR markers associated with the powdery mildew resistance gene in common wheat cultivar ND399[J]. Journal of Plant Genetic Resources, 2013, 14(1): 104−108, 114 doi: 10.3969/j.issn.1672-1810.2013.01.016
    [34]
    管昌英, 郭军, 薛凤博, 等. 普通小麦DH155抗白粉病基因的分子作图及应用分子标记辅助选择将其转移[J]. 作物学报, 2015, 41(8): 1183−1190 doi: 10.3724/SP.J.1006.2015.01183

    GUAN C Y, GUO J, XUE F B, et al. Molecular mapping of powdery mildew resistance gene MlDH155 in hexaploid wheat DH155 and its transfer by marker assisted selection[J]. Acta Agronomica Sinica, 2015, 41(8): 1183−1190 doi: 10.3724/SP.J.1006.2015.01183
    [35]
    MA P T, XU H X, XU Y F, et al. Molecular mapping of a new powdery mildew resistance gene Pm2b in Chinese breeding line KM2939[J]. Theoretical and Applied Genetics, 2015, 128(4): 613−622 doi: 10.1007/s00122-015-2457-5
    [36]
    XU H X, YI Y J, MA P T, et al. Molecular tagging of a new broad-spectrum powdery mildew resistance allele Pm2c in Chinese wheat Landrace Niaomai[J]. Theoretical and Applied Genetics, 2015, 128(10): 2077−2084 doi: 10.1007/s00122-015-2568-z
    [37]
    MA P T, ZHANG H X, XU H X, et al. The gene PmYB confers broad-spectrum powdery mildew resistance in the multi-allelic Pm2 chromosome region of the Chinese wheat cultivar Yingbo 700[J]. Molecular Breeding, 2015, 35(5): 1−10
    [38]
    MA P T, XU H, ZHANG H X, et al. The gene PmWFJ is a new member of the complex Pm2 locus conferring unique powdery mildew resistance in wheat breeding line Wanfengjian 34[J]. Molecular Breeding, 2015, 35(11): 1−9
    [39]
    MA P T, XU H X, XU Y F, et al. Characterization of a powdery mildew resistance gene in wheat breeding line 10V-2 and its application in marker-assisted selection[J]. Plant Disease, 2018, 102(5): 925−931 doi: 10.1094/PDIS-02-17-0199-RE
    [40]
    MA P T, XU H X, LUO Q L, et al. Inheritance and genetic mapping of a gene for seedling resistance to powdery mildew in wheat line X3986-2[J]. Euphytica, 2014, 200(1): 149−157 doi: 10.1007/s10681-014-1178-1
    [41]
    MA P T, XU H, LI L H, et al. Characterization of a new Pm2 allele conferring powdery mildew resistance in the wheat germplasm line FG-1[J]. Frontiers in Plant Science, 2016, 7: 546
    [42]
    JIN Y L, XU H X, MA P T, et al. Characterization of a new Pm2 allele associated with broad-spectrum powdery mildew resistance in wheat line Subtil[J]. Scientific Reports, 2018, 8: 475 doi: 10.1038/s41598-017-18827-4
    [43]
    CHEN F, JIA H Y, ZHANG X J, et al. Positional cloning of PmCH1357 reveals the origin and allelic variation of the Pm2 gene for powdery mildew resistance in wheat[J]. The Crop Journal, 2019, 7(6): 771−783 doi: 10.1016/j.cj.2019.08.004
    [44]
    JIN Y L, SHI F Y, LIU W H, et al. Identification of resistant germplasm and detection of genes for resistance to powdery mildew and leaf rust from 2,978 wheat accessions[J]. Plant Disease, 2021. DOI: 10.1094/PDIS-03-21-0532-RE
    [45]
    MANSER B, KOLLER T, PRAZ C R, et al. Identification of specificity-defining amino acids of the wheat immune receptor Pm2 and powdery mildew effector AvrPm2[J]. The Plant Journal, 2021, 106(4): 993−1007 doi: 10.1111/tpj.15214
    [46]
    BOURRAS S, MCNALLY K E, MÜLLER M C, et al. Avirulence genes in cereal powdery mildews: the gene-for-gene hypothesis 2.0[J]. Frontiers in Plant Science, 2016, 7: 241
    [47]
    DODDS P N, RATHJEN J P. Plant immunity: towards an integrated view of plant-pathogen interactions[J]. Nature Reviews Genetics, 2010, 11(8): 539−548 doi: 10.1038/nrg2812
    [48]
    JIA Y, MCADAMS S A, BRYAN G T, et al. Direct interaction of resistance gene and avirulence gene products confers rice blast resistance[J]. The EMBO Journal, 2000, 19(15): 4004−4014 doi: 10.1093/emboj/19.15.4004
    [49]
    PRAZ C R, BOURRAS S, ZENG F S, et al. AvrPm2 encodes an RNase-like avirulence effector which is conserved in the two different specialized forms of wheat and rye powdery mildew fungus[J]. The New Phytologist, 2017, 213(3): 1301−1314 doi: 10.1111/nph.14372
    [50]
    贾梦淑. 小麦品种济麦23白粉病抗性的分子鉴定及标记辅助育种[D]. 烟台: 烟台大学, 2020: 33–38

    JIA M S. Molecular identification of the powdery mildew resistance in wheat cultivar Jimai 23 and marker-assisted breeding[D]. Yantai: Yantai University, 2020: 33–38
    [51]
    胡娜, 王永玖, 黄琼瑞, 等. 小麦抗白粉病基因的分子标记检测及其抗性评价[J]. 分子植物育种, 2009, 7(6): 1093−1099

    HU N, WANG Y J, HUANG Q R, et al. Molecular marker identification of powdery mildew resistance-related genes of wheat and resistant valuation[J]. Molecular Plant Breeding, 2009, 7(6): 1093−1099
    [52]
    刘理森, 张倩, 任妍, 等. 241份小麦品种(系)白粉病抗性鉴定与分子标记检测[J]. 分子植物育种, 2016, 14(3): 619−637

    LIU L S, ZHANG Q, REN Y, et al. Identification and molecular detection of powdery mildew resistance of 241 wheat varieties (lines)[J]. Molecular Plant Breeding, 2016, 14(3): 619−637
    [53]
    刘易科, 朱展望, 佟汉文, 等. 湖北省主要小麦品种抗病基因分析[J]. 分子植物育种, 2018, 16(4): 1040−1049

    LIU Y K, ZHU Z W, TONG H W, et al. Analysis of the resistance genes in the main wheat varieties in Hubei Province[J]. Molecular Plant Breeding, 2018, 16(4): 1040−1049
    [54]
    XU H X, CAO Y W, XU Y F, et al. Marker-assisted development and evaluation of near-isogenic lines for broad-spectrum powdery mildew resistance gene Pm2b introgressed into different genetic backgrounds of wheat[J]. Frontiers in Plant Science, 2017, 8: 1322 doi: 10.3389/fpls.2017.01322
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (567) PDF downloads(51) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return