Volume 29 Issue 10
Oct.  2021
Turn off MathJax
Article Contents
JIANG P, XU F X, ZHANG L, ZHOU X B, ZHU Y C, GUO X Y, LIU M, CHEN L, ZHANG R, XIONG H. Effect of increased plant density with reduced nitrogen on yield formation and nitrogen use efficiency of hybrid rice under high temperature and high humidity conditions[J]. Chinese Journal of Eco-Agriculture, 2021, 29(10): 1679−1691 doi: 10.13930/j.cnki.cjea.210288
Citation: JIANG P, XU F X, ZHANG L, ZHOU X B, ZHU Y C, GUO X Y, LIU M, CHEN L, ZHANG R, XIONG H. Effect of increased plant density with reduced nitrogen on yield formation and nitrogen use efficiency of hybrid rice under high temperature and high humidity conditions[J]. Chinese Journal of Eco-Agriculture, 2021, 29(10): 1679−1691 doi: 10.13930/j.cnki.cjea.210288

Effect of increased plant density with reduced nitrogen on yield formation and nitrogen use efficiency of hybrid rice under high temperature and high humidity conditions

doi: 10.13930/j.cnki.cjea.210288
Funds:  This study was supported by the National Natural Science Foundation of China (31971844), the Foundation of Youth Science Program of Sichuan Academy of Agricultural Sciences (2019QNJJ-020) and the Special Fund for the Industrial Technology System Construction of Modern Agriculture of China (CARS-01-25)
More Information
  • Corresponding author: E-mail: xu6501@163.com
  • Received Date: 2021-05-18
  • Accepted Date: 2021-06-30
  • Available Online: 2021-07-14
  • Publish Date: 2021-10-01
  • The effects of increased plant density with reduced nitrogen (N) application rate on yield formation and nitrogen use efficiency (NUE) of hybrid rice were studied to provide a theoretical basis for optimum nitrogen fertilizer management and plant density under high temperature with high humidity conditions. Field experiments were conducted in Luzhou City from 2018 to 2019. The high yield and high quality hybrid rice variety ‘Nei6you107’ was grown under six combinations of plant density and N application rate: 1) locally recommended combination with a plant density of 16.5×104 hills∙hm−2 and a N rate of 180 kg∙hm−2 (LDNck); 2) combination of a plant density of 16.5×104 hills∙hm−2 and a reduced N rate by 15% (153 kg∙hm−2, LDN−15%); 3) combination of a plant density of 16.5×104 hills∙hm−2 and a reduced N rate by 30% (126 kg∙hm−2, LDN−30%); 4) combination of a increased plant density by about 27% (21.0×104 hills hm−2) and a reduced N rate by 15% (153 kg∙hm−2, HDN−15%); 5) combination of a increased plant density by about 27% (21.0×104 hills∙hm−2) and a reduced N rate by 30% (126 kg∙hm−2 HDN−30%); and 6) combination of a plant density of 16.5×104 hills∙hm−2 and zero N rate (LDN0). The grain yield, yield components, dry matter, N uptake and NUE were measured. The results showed that the grain yield of hybrid rice was significantly affected by different combinations of plant density and N rate (P<0.01). HDN−15% and HDN−30% produced higher grain yields than LDNck by 4.3%−4.9% and 2.3%−3.6%, respectively. The higher grain yields under HDN−15% and HDN−30% were attributed to improvement in spikelets per panicle, grain filling rate, translocation of dry matter accumulated at heading stage (TDMHD), translocation percentage of dry matter accumulated at heading stage (TPDMHD), contribution percentage of pre-anthesis dry matter translocation to grain yield (CPDMTGHD) and harvest index. The LDN−15% and LDN−30% had 2.3%−2.5% and 4.8%−5.0% lower grain yield than LDNck, respectively. The yield gap between LDN−15%, LDN−30% and LDNck was attributed to the difference in effective panicles, total dry matter, dry matter accumulation from heading to maturity, and contribution percentage of dry matter accumulation from heading to maturity stage to grain yield (CPDMGHD-MA). The HDN−15% and HDN−30% had lower nitrogen accumulation from heading to maturity and total N uptake than LDNck, whereas the translocation of N accumulated at heading stage (NTGNHD), translocation percentage of N accumulated at heading stage (TPNHD), contribution percentage of pre-anthesis N accumulation translocation to grain N accumulation (CPNTGNHD), N use efficiency for biomass production (NUEBP), N use efficiency for grain production (NUEGP) and N harvest index under HDN−15% and HDN−30% were higher than those under LDNck. Consequently, HDN−15% and HDN−30% had lower N requirements to produce 100 kg of grain (NRPG) than LDNck by 6.8%−8.4% and 9.0%−9.9%, respectively. HDN−15% enhanced the agronomic efficiency of applied N (AEN) by 36.7%−37.4%, partial factor productivity of applied N (PFPN) by 22.8%−23.5% and recovery efficiency of applied N (REN) by 5.6%−12.0% over LDNck. The HDN−30% produced higher AEN, PFPN and REN than LDNck by 55.5%−60.4%, 46.3%−48.2% and 17.0%−20.0%, respectively. The rational combination of plant density and N rate can improve panicle number per unit area, grain filling, TDMHD, TPDMHD, NTGNHD, TPNHD and harvest index, which further increasing the grain yield and NUE. The optimum combination is plant density of 21.0×104 hills∙hm−2 plus N rate of 126−153 kg∙hm−2 in high temperature with high humidity condition.
  • loading
  • [1]
    邹应斌, 周上游, 唐起源. 中国超级杂交水稻超高产栽培研究的现状与展望[J]. 中国农业科技导报, 2003, 5(1): 31−35 doi: 10.3969/j.issn.1008-0864.2003.01.007

    ZOU Y B, ZHOU S Y, TANG Q Y. Status and outlook of high yielding cultivation researches on China super hybrid rice[J]. Review of China Agricultural Science and Technology, 2003, 5(1): 31−35 doi: 10.3969/j.issn.1008-0864.2003.01.007
    [2]
    朱德峰, 林贤青, 曹卫星. 超高产水稻品种的根系分布特点[J]. 南京农业大学学报, 2000, 23(4): 5−8

    ZHU D F, LIN X Q, CAO W X. Characteristics of root distribution of super high yielding rice varieties[J]. Journal of Nanjing Agricultural University, 2000, 23(4): 5−8
    [3]
    袁小乐, 潘晓华, 石庆华, 等. 超级早、晚稻的养分吸收和根系分布特性研究[J]. 植物营养与肥料学报, 2010, 16(1): 27−32 doi: 10.11674/zwyf.2010.0105

    YUAN X Y, PAN X H, SHI Q H, et al. Characteristics of nutrient uptake and root system distribution in super early and super late rice[J]. Plant Nutrition and Fertilizer Science, 2010, 16(1): 27−32 doi: 10.11674/zwyf.2010.0105
    [4]
    朱铁忠, 柯健, 姚波, 等. 沿江双季北缘区机插早稻的超高产群体特征[J]. 中国农业科学, 2021, 54(7): 1553−1564 doi: 10.3864/j.issn.0578-1752.2021.07.018

    ZHU T Z, KE J, YAO B, et al. Super-high yield characteristics of mechanically transplanting double-cropping early rice in the northern margin area of Yangtze River[J]. Scientia Agricultura Sinica, 2021, 54(7): 1553−1564 doi: 10.3864/j.issn.0578-1752.2021.07.018
    [5]
    JIANG P, XIE X B, HUANG M, et al. Potential yield increase of hybrid rice at five locations in Southern China[J]. Rice, 2016, 9(1): 1−14 doi: 10.1186/s12284-015-0073-2
    [6]
    邹应斌. 长江流域双季稻栽培技术发展[J]. 中国农业科学, 2011, 44(2): 254−262 doi: 10.3864/j.issn.0578-1752.2011.02.004

    ZOU Y B. Development of cultivation technology for double cropping rice along the Changjiang River valley[J]. Scientia Agricultura Sinica, 2011, 44(2): 254−262 doi: 10.3864/j.issn.0578-1752.2011.02.004
    [7]
    PENG S B, TANG Q Y, ZOU Y B. Current status and challenges of rice production in China[J]. Plant Production Science, 2009, 12(1): 3−8 doi: 10.1626/pps.12.3
    [8]
    朱兆良. 我国土壤供氮和化肥氮去向研究的进展[J]. 土壤, 1985, 17(1): 2−9

    ZHU Z L. Research in soil supply nitrogen and fate of fertilizer nitrogen Chinese[J]. Soils, 1985, 17(1): 2−9
    [9]
    WANG G H, DOBERMANN A, WITT C, et al. Performance of site-specific nutrient management for irrigated rice in southeast China[J]. Agronomy Journal, 2001, 93(4): 869−878 doi: 10.2134/agronj2001.934869x
    [10]
    HUANG M, YANG C L, JI Q M, et al. Tillering responses of rice to plant density and nitrogen rate in a subtropical environment of Southern China[J]. Field Crops Research, 2013, 149: 187−192 doi: 10.1016/j.fcr.2013.04.029
    [11]
    AO H J, XIE X B, HUANG M, et al. Decreasing hill density combined with increasing nitrogen rate led to yield decline in hybrid rice under low-light conditions[J]. Scientific Reports, 2019, 9: 15786 doi: 10.1038/s41598-019-52376-2
    [12]
    朱兆良, 金继运. 保障我国粮食安全的肥料问题[J]. 植物营养与肥料学报, 2013, 19(2): 259−273 doi: 10.11674/zwyf.2013.0201

    ZHU Z L, JIN J Y. Fertilizer use and food security in China[J]. Plant Nutrition and Fertilizer Science, 2013, 19(2): 259−273 doi: 10.11674/zwyf.2013.0201
    [13]
    PENG S B, BURESH R J, HUANG J L, et al. Improving nitrogen fertilization in rice by sitespecific N management. A review[J]. Agronomy for Sustainable Development, 2010, 30(3): 649−656 doi: 10.1051/agro/2010002
    [14]
    WU W, NIE L X, LIAO Y C, et al. Toward yield improvement of early-season rice: Other options under double rice-cropping system in central China[J]. European Journal of Agronomy, 2013, 45: 75−86 doi: 10.1016/j.eja.2012.10.009
    [15]
    谢小兵, 王玉梅, 黄敏, 等. 单本密植机插对杂交稻生长和产量的影响[J]. 作物学报, 2016, 42(6): 924−931 doi: 10.3724/SP.J.1006.2016.00924

    XIE X B, WANG Y M, HUANG M, et al. Effect of mechanized transplanting with high hill density and single seedling per hill on growth and grain yield in hybrid rice[J]. Acta Agronomica Sinica, 2016, 42(6): 924−931 doi: 10.3724/SP.J.1006.2016.00924
    [16]
    HUANG M, CHEN J N, CAO F B, et al. Increased hill density can compensate for yield loss from reduced nitrogen input in machine-transplanted double-cropped rice[J]. Field Crops Research, 2018, 221: 333−338 doi: 10.1016/j.fcr.2017.06.028
    [17]
    马金玉, 梁宏, 罗勇, 等. 中国近50年太阳直接辐射和散射辐射变化趋势特征[J]. 物理学报, 2011, 60(6): 069601 doi: 10.7498/aps.60.069601

    MA J Y, LIANG H, LUO Y, et al. Variation trend of direct and diffuse radiation in China over recent 50 years[J]. Acta Physica Sinica, 2011, 60(6): 069601 doi: 10.7498/aps.60.069601
    [18]
    周开达. 四川水稻超高产育种的发展趋势[J]. 西南农业学报, 1998, 11(S2): 1

    ZHOU K D. Trends of super high yield breeding in rice (Oryza sativa L.) in Sichuan Province[J]. Southwest China Journal of Agricultural Sciences, 1998, 11(S2): 1
    [19]
    周开达, 马玉清, 刘太清, 等. 杂交水稻亚种间重穗型组合选育−杂交水稻超高产育种的理论与实践[J]. 四川农业大学学报, 1995, 13(4): 403−407

    ZHOU K D, MA Y Q, LIU T Q, et al. The breeding of subspecific heavy ear hybrid rice—exploration about super-high yield breeding of hybrid rice[J]. Journal of Sichuan Agricultural University, 1995, 13(4): 403−407
    [20]
    徐富贤, 熊洪, 朱永川, 等. 川东南冬水田杂交中稻进一步高产的栽培策略[J]. 作物学报, 2007, 33(6): 1004−1009 doi: 10.3321/j.issn:0496-3490.2007.06.023

    XU F X, XIONG H, ZHU Y C, et al. Cultivation strategy of hybrid mid-season rice for further high yield in winter water-logged field in the southeast of Sichuan Province[J]. Acta Agronomica Sinica, 2007, 33(6): 1004−1009 doi: 10.3321/j.issn:0496-3490.2007.06.023
    [21]
    陈佳娜, 曹放波, 谢小兵, 等. 机插条件下低氮密植栽培对“早晚兼用”双季稻产量和氮素吸收利用的影响[J]. 作物学报, 2016, 42(8): 1176−1187 doi: 10.3724/SP.J.1006.2016.01176

    CHEN J N, CAO F B, XIE X B, et al. Effect of low nitrogen rate combined with high plant density on yield and nitrogen use efficiency of machine-transplanted early-late season double cropping rice[J]. Acta Agronomica Sinica, 2016, 42(8): 1176−1187 doi: 10.3724/SP.J.1006.2016.01176
    [22]
    周建霞, 张玉屏, 朱德峰, 等. 空气湿度和土壤水分对高温诱导水稻颖花不育的影响[J]. 江西农业学报, 2017, 29(2): 24−27

    ZHOU J X, ZHANG Y P, ZHU D F, et al. Effects of air humidity and soil moisture on rice spikelet sterility induced by high temperature[J]. Acta Agriculturae Jiangxi, 2017, 29(2): 24−27
    [23]
    蒋鹏, 熊洪, 张林, 等. 不同生态条件下施氮量和移栽密度对杂交稻旌优127产量及稻米品质的影响[J]. 核农学报, 2017, 31(10): 2007−2015 doi: 10.11869/j.issn.100-8551.2017.10.2007

    JIANG P, XIONG H, ZHANG L, et al. Effects of nitrogen fertilization and planting density on grain yield and quality of Jingyou127 and rice quality under different ecological conditions[J]. Journal of Nuclear Agricultural Sciences, 2017, 31(10): 2007−2015 doi: 10.11869/j.issn.100-8551.2017.10.2007
    [24]
    马均, 朱庆森, 马文波, 等. 重穗型水稻光合作用、物质积累与运转的研究[J]. 中国农业科学, 2003, 36(4): 375−381 doi: 10.3321/j.issn:0578-1752.2003.04.004

    MA J, ZHU Q S, MA W B, et al. Studies on the photosynthetic characteristics and accumulation and transformation of assimilation product in heavy panicle type of rice[J]. Scientia Agricultura Sinica, 2003, 36(4): 375−381 doi: 10.3321/j.issn:0578-1752.2003.04.004
    [25]
    YANG J C, PENG S B, ZHANG Z J, et al. Grain and dry matter yields and partitioning of assimilates in Japonica/indica hybrid rice[J]. Crop Science, 2002, 42(3): 766 doi: 10.2135/cropsci2002.0766
    [26]
    谢小兵, 蒋鹏, 黄敏, 等. 基于黄金分割法的双季稻合理密植研究[J]. 核农学报, 2016, 30(12): 2467−2476 doi: 10.11869/j.issn.100-8551.2016.12.2467

    XIE X B, JIANG P, HUANG M, et al. Study on rational close planting based on golden section method for double cropping rice[J]. Journal of Nuclear Agricultural Sciences, 2016, 30(12): 2467−2476 doi: 10.11869/j.issn.100-8551.2016.12.2467
    [27]
    徐新朋, 周卫, 梁国庆, 等. 氮肥用量和密度对双季稻产量及氮肥利用率的影响[J]. 植物营养与肥料学报, 2015, 21(3): 763−772 doi: 10.11674/zwyf.2015.0324

    XU X P, ZHOU W, LIANG G Q, et al. Effects of nitrogen and density interactions on grain yield and nitrogen use efficiency of double-rice systems[J]. Journal of Plant Nutrition and Fertilizer, 2015, 21(3): 763−772 doi: 10.11674/zwyf.2015.0324
    [28]
    黄巧义, 唐拴虎, 张发宝, 等. 减氮配施控释尿素对水稻产量和氮肥利用的影响[J]. 中国生态农业学报, 2017, 25(6): 829−838

    HUANG Q Y, TANG S H, ZHANG F B, et al. Effect of combined application of controlled-release urea and conventional urea under reduced N rate on yield and N utilization efficiency of rice[J]. Chinese Journal of Eco-Agriculture, 2017, 25(6): 829−838
    [29]
    肖小平, 李超, 唐海明, 等. 秸秆还田下减氮增密对双季稻田土壤氮素库容及氮素利用率的影响[J]. 中国生态农业学报(中英文), 2019, 27(3): 422−430

    XIAO X P, LI C, TANG H M, et al. Soil nitrogen storage and recovery efficiency in double paddy fields under reduced nitrogen dose and increased crop density[J]. Chinese Journal of Eco-Agriculture, 2019, 27(3): 422−430
    [30]
    CHEN Y T, PENG J, WANG J, et al. Crop management based on multi-split topdressing enhances grain yield and nitrogen use efficiency in irrigated rice in China[J]. Field Crops Research, 2015, 184: 50−57 doi: 10.1016/j.fcr.2015.09.006
    [31]
    PENG S B, BURESH R J, HUANG J L, et al. Strategies for overcoming low agronomic nitrogen use efficiency in irrigated rice systems in China[J]. Field Crops Research, 2006, 96(1): 37−47 doi: 10.1016/j.fcr.2005.05.004
    [32]
    JIANG L G, DAI T B, JIANG D, et al. Characterizing physiological N-use efficiency as influenced by nitrogen management in three rice cultivars[J]. Field Crops Research, 2004, 88(2/3): 239−250
    [33]
    QIAO J, YANG L Z, YAN T M, et al. Nitrogen fertilizer reduction in rice production for two consecutive years in the Taihu Lake area[J]. Agriculture, Ecosystems & Environment, 2012, 146(1): 103−112
    [34]
    敖和军, 王淑红, 邹应斌, 等. 不同施肥水平下超级杂交稻对氮、磷、钾的吸收累积[J]. 中国农业科学, 2008, 41(10): 3123−3132 doi: 10.3864/j.issn.0578-1752.2008.10.028

    AO H J, WANG S H, ZOU Y B, et al. Characteristics of nutrient uptake and utilization of super hybrid rice under different fertilizer application rates[J]. Scientia Agricultura Sinica, 2008, 41(10): 3123−3132 doi: 10.3864/j.issn.0578-1752.2008.10.028
    [35]
    徐富贤, 熊洪, 张林, 等. 西南稻区不同地域和施氮水平对杂交中稻氮、磷、钾吸收累积的影响[J]. 作物学报, 2011, 37(5): 882−894 doi: 10.3724/SP.J.1006.2011.00882

    XU F X, XIONG H, ZHANG L, et al. Characteristics of nutrient uptake and utilization of mid-season hybrid rice under different nitrogen application rates in different locations of southwest China[J]. Acta Agronomica Sinica, 2011, 37(5): 882−894 doi: 10.3724/SP.J.1006.2011.00882
    [36]
    蒋鹏, 熊洪, 张林, 等. 不同生态条件下施氮量和移栽密度对杂交稻氮、磷、钾吸收积累的影响[J]. 植物营养与肥料学报, 2017, 23(2): 342−350 doi: 10.11674/zwyf.16280

    JIANG P, XIONG H, ZHANG L, et al. Effects of N rate and planting density on nutrient uptake and utilization of hybrid rice under different ecological conditions[J]. Journal of Plant Nutrition and Fertilizer, 2017, 23(2): 342−350 doi: 10.11674/zwyf.16280
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(1)  / Tables(7)

    Article Metrics

    Article views (318) PDF downloads(47) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return