Volume 30 Issue 5
May  2022
Turn off MathJax
Article Contents
LI H T, LI L, YAN Z Z, GAO C S, HAN L N, ZHANG X Y. Changes in and influencing factors of crop coefficient of winter wheat during the past 40 years on the Taihang Piedmont Plain[J]. Chinese Journal of Eco-Agriculture, 2022, 30(5): 747−760 doi: 10.13930/j.cnki.cjea.210342
Citation: LI H T, LI L, YAN Z Z, GAO C S, HAN L N, ZHANG X Y. Changes in and influencing factors of crop coefficient of winter wheat during the past 40 years on the Taihang Piedmont Plain[J]. Chinese Journal of Eco-Agriculture, 2022, 30(5): 747−760 doi: 10.13930/j.cnki.cjea.210342

Changes in and influencing factors of crop coefficient of winter wheat during the past 40 years on the Taihang Piedmont Plain

doi: 10.13930/j.cnki.cjea.210342
Funds:  This study was supported by the National Key Research and Development Project of China (2017YFE0130500), Hebei Innovation Group Project (D2021503001), and the Project of State Grid Hebei Electric Power Co., Ltd. (SGHEYX00SCJS2100077).
More Information
  • Corresponding author: E-mail: xyzhang@sjziam.ac.cn
  • Received Date: 2021-06-02
  • Accepted Date: 2021-07-29
  • Available Online: 2021-08-27
  • Publish Date: 2022-05-18
  • The crop coefficient (Kc) is defined as actual evapotranspiration (ET) under sufficient water supply divided by the reference crop ET (ET0), which can be calculated using meteorological factors. The Kc is used as a basic parameter to calculate the crop water requirements. The accurate determination of Kc plays an important role in optimizing irrigation management. The Kc changes with crop growth and environmental conditions. The purpose of this study was to assess how Kc varied with crop production and weather conditions by using a long-term field experiment of field management measures of winter wheat. The actual ET of winter wheat under sufficient irrigation and ET0 derived from daily meteorological parameters at Luancheng Agro-ecosystem Experimental Station of the Chinese Academy of Sciences from 1980 to 2020 were used to calculate the seasonal Kc. Additionally, the dominant factors affecting the Kc of winter wheat under the current production conditions were identified from experimental data of three recent years (2017–2020). The results showed that for winter wheat with sufficient water supply from 1980 to 2020, the average ET and ET0 were 434.7 mm and 550.8 mm, respectively. The ET0 was relatively stable, and the ET increased by 17.6%. The average Kc was 0.80 during the past four decades, with an average value of 0.76 in 1980–1990, 0.80 in 1991–2000, 0.81 in 2001–2010, and 0.84 in 2011–2020, indicating a continuously increasing trend. In the past four decades, the yield of winter wheat had increased by 42.4%, and Kc had increased by 11.6%. The increase in ET was the main reason for the increase in Kc. The ET during the past four decades increased with increasing crop production, and with a relatively stable ET0, the Kc increased. Therefore, the Kc varied with changes in crop grain production, which was related to biomass production and canopy size. Under the current growing conditions, leaf area index and biomass were important factors that affected Kc. When the leaf area index reached a certain level, Kc was mainly affected by the atmospheric evaporation potential determined by the saturated water vapor pressure difference and atmospheric temperature. The Kc during the recent three years was 0.79 for 2017–2018, 0.86 for 2018–2019, and 0.79 for 2019–2020. The average ET was 442.3 mm during the three years, and the average Kc at different growing stages of winter wheat were 0.70 from sowing to winter dormancy, 0.42 during winter dormancy, 0.76 from recovery to jointing, 1.18 from jointing to heading, 1.39 during heading to grain-fill, and 0.96 during maturity. Thus, the water requirements for winter wheat after winter dormancy increased sharply and reached the highest values during the heading to earlier grain-filling stages. The results from this study indicate that Kc varies with changes in the crop growing conditions and should not be taken as a constant value. Kc developed during three recent seasons in this study could be used to determine the crop water requirements for irrigation scheduling under the current growing conditions.
  • loading
  • [1]
    JOVANOVIC N, PEREIRA L S, PAREDES P, et al. A review of strategies, methods and technologies to reduce non-beneficial consumptive water use on farms considering the FAO56 methods[J]. Agricultural Water Management, 2020, 239: 106−267
    [2]
    ZHANG X Y, WANG Y Z, SUN H Y, et al. Optimizing the yield of winter wheat by regulating water consumption during vegetative and reproductive stages under limited water supply[J]. Irrigation Science, 2013, 31(5): 1103−1112 doi: 10.1007/s00271-012-0391-8
    [3]
    LIU C M, ZHANG X Y, ZHANG Y Q. Determination of daily evaporation and evapotranspiration of winter wheat and maize by large-scale weighing lysimeter and micro-lysimeter[J]. Agricultural and Forest Meteorology, 2002, 111(2): 109−120 doi: 10.1016/S0168-1923(02)00015-1
    [4]
    LI J M, INANAGA S, LI Z H, et al. Optimizing irrigation scheduling for winter wheat in the North China Plain[J]. Agricultural Water Management, 2005, 76(1): 8−23 doi: 10.1016/j.agwat.2005.01.006
    [5]
    左余宝, 田昌玉, 唐继伟, 等. 鲁北地区主要作物不同生育期需水量和作物系数的试验研究[J]. 中国农业气象, 2009, 30(1): 70−73, 78 doi: 10.3969/j.issn.1000-6362.2009.01.015

    ZUO Y B, TIAN C Y, TANG J W, et al. Studies on ETc and Kc of main crops in northern Shandong Province[J]. Chinese Journal of Agrometeorology, 2009, 30(1): 70−73, 78 doi: 10.3969/j.issn.1000-6362.2009.01.015
    [6]
    ALLEN R G, PEREIRA L S, RAES D, et al. Crop evapotranspiration-Guidelines for computing crop water requirements-FAO Irrigation and drainage paper 56[EB/OL]. 1998
    [7]
    孙景生, 刘祖贵, 张寄阳, 等. 风沙区春小麦作物系数试验研究[J]. 农业工程学报, 2002, 18(6): 55−58 doi: 10.3321/j.issn:1002-6819.2002.06.014

    SUN J S, LIU Z G, ZHANG J Y, et al. Crop coefficients of spring wheat in windy dust area[J]. Transactions of the Chinese Society of Agricultural Engineering, 2002, 18(6): 55−58 doi: 10.3321/j.issn:1002-6819.2002.06.014
    [8]
    PEREIRA L S, ALLEN R G, SMITH M, et al. Crop evapotranspiration estimation with FAO56: Past and future[J]. Agricultural Water Management, 2015, 147: 4−20 doi: 10.1016/j.agwat.2014.07.031
    [9]
    封志明, 杨艳昭, 丁晓强, 等. 甘肃地区参考作物蒸散量时空变化研究[J]. 农业工程学报, 2004, 20(1): 99−103 doi: 10.3321/j.issn:1002-6819.2004.01.024

    FENG Z M, YANG Y Z, DING X Q, et al. Temporal-spatial changing characteristics of reference crop evapotranspiration in Gansu Province[J]. Transactions of the Chinese Society of Agricultural Engineering, 2004, 20(1): 99−103 doi: 10.3321/j.issn:1002-6819.2004.01.024
    [10]
    张瑜, 张立元, Zhang Huihui, 等. 玉米作物系数无人机遥感协同地面水分监测估算方法研究[J]. 农业工程学报, 2019, 35(1): 83−89 doi: 10.11975/j.issn.1002-6819.2019.01.010

    ZHANG Y, ZHANG L Y, ZHANG H H, et al. Crop coefficient estimation method of maize by UAV remote sensing and soil moisture monitoring[J]. Transactions of the Chinese Society of Agricultural Engineering, 2019, 35(1): 83−89 doi: 10.11975/j.issn.1002-6819.2019.01.010
    [11]
    王振龙, 范月, 吕海深, 等. 基于气象-生理的夏玉米作物系数及蒸散估算[J]. 农业工程学报, 2020, 36(11): 141−148 doi: 10.11975/j.issn.1002-6819.2020.11.016

    WANG Z L, FAN Y, LYU H S, et al. Estimation of summer maize crop coefficient and evapotranspiration based on meteorology-physiology[J]. Transactions of the Chinese Society of Agricultural Engineering, 2020, 36(11): 141−148 doi: 10.11975/j.issn.1002-6819.2020.11.016
    [12]
    时学双, 曹红霞, 李天军. 基于Penman-Monteith公式的关中地区作物系数研究[J]. 灌溉排水学报, 2009, 28(2): 26−29

    SHI X S, CAO H X, LI T J. Crop coefficient on the Penman-Monteith formulae in Guanzhong Shaanxi[J]. Journal of Irrigation and Drainage, 2009, 28(2): 26−29
    [13]
    FRERE M, POPOV G F. Agrometeorological Crop Monitoring and Forecasting[M]. Rome: FAO Plant Production and Protection Paper 17, 1979: 21–29
    [14]
    陈玉民. 关于作物系数的研究及新进展[J]. 灌溉排水, 1987, 6(2): 1−7

    CHEN Y M. A study on the crop coefficients and its new development[J]. Irrigation and Drainage, 1987, 6(2): 1−7
    [15]
    曹永强, 李晓瑞, 朱明明. 河北省主要作物系数时空分布特征[J]. 水利水电科技进展, 2019, 39(2): 37−45 doi: 10.3880/j.issn.1006-7647.2019.02.008

    CAO Y Q, LI X R, ZHU M M. Spatial and temporal distribution characteristics of main crop coefficients in Hebei Province[J]. Advances in Science and Technology of Water Resources, 2019, 39(2): 37−45 doi: 10.3880/j.issn.1006-7647.2019.02.008
    [16]
    李波, 景竹然, 魏新光, 等. 东北地区春玉米作物系数时空分布特征研究[J]. 农业机械学报, 2020, 51(4): 279−290 doi: 10.6041/j.issn.1000-1298.2020.04.032

    LI B, JING Z R, WEI X G, et al. Spatial and temporal distribution characteristics of spring maize coefficients in northeast China[J]. Transactions of the Chinese Society for Agricultural Machinery, 2020, 51(4): 279−290 doi: 10.6041/j.issn.1000-1298.2020.04.032
    [17]
    花佳程, 朱永华, 王振龙, 等. 淮北平原冬小麦作物系数的变化规律研究[J]. 灌溉排水学报, 2021, 40(2): 118−124

    HUA J C, ZHU Y H, WANG Z L, et al. Spatiotemporal variation of crop coefficient of winter wheat in Huaibei plain[J]. Journal of Irrigation and Drainage, 2021, 40(2): 118−124
    [18]
    环海军, 姚丹丹, 刘岩, 等. 鲁中地区作物系数确定及土壤水分预报模型研究[J]. 山东农业科学, 2017, 49(6): 143−147

    HUAN H J, YAO D D, LIU Y, et al. Research on crop coefficient determination and soil moisture forecast models in the middle area of Shandong Province[J]. Shandong Agricultural Sciences, 2017, 49(6): 143−147
    [19]
    宋妮, 孙景生, 王景雷, 等. 基于Penman修正式和Penman-Monteith公式的作物系数差异分析[J]. 农业工程学报, 2013, 29(19): 88−97 doi: 10.3969/j.issn.1002-6819.2013.19.011

    SONG N, SUN J S, WANG J L, et al. Analysis of difference in crop coefficients based on modified Penman and Penman-Monteith equations[J]. Transactions of the Chinese Society of Agricultural Engineering, 2013, 29(19): 88−97 doi: 10.3969/j.issn.1002-6819.2013.19.011
    [20]
    ZHANG X Y, CHEN S Y, SUN H Y, et al. Changes in evapotranspiration over irrigated winter wheat and maize in North China Plain over three decades[J]. Agricultural Water Management, 2011, 98(6): 1097−1104 doi: 10.1016/j.agwat.2011.02.003
    [21]
    何振嘉, 吴萌. 黄土高原区涌泉根灌枣树作物系数与耗水规律研究[J]. 灌溉排水学报, 2018, 37(S2): 5−9

    HE Z J, WU M. Crop coefficient and water consumption rule of jujube trees in bubbled-root irrigation of Loess Plateau Region[J]. Journal of Irrigation and Drainage, 2018, 37(S2): 5−9
    [22]
    王淑芬, 张喜英, 裴冬. 不同供水条件对冬小麦根系分布、产量及水分利用效率的影响[J]. 农业工程学报, 2006, 22(2): 27−32 doi: 10.3321/j.issn:1002-6819.2006.02.007

    WANG S F, ZHANG X Y, PEI D. Impacts of different water supplied conditions on root distribution, yield and water utilization efficiency of winter wheat[J]. Transactions of the Chinese Society of Agricultural Engineering, 2006, 22(2): 27−32 doi: 10.3321/j.issn:1002-6819.2006.02.007
    [23]
    王鹏涛, 延军平, 蒋冲, 等. 华北平原参考作物蒸散量时空变化及其影响因素分析[J]. 生态学报, 2014, 34(19): 5589−5599

    WANG P T, YAN J P, JIANG C, et al. Spatial and temporal variations of reference crop evapotranspiration and its influencing factors in the North China Plain[J]. Acta Ecologica Sinica, 2014, 34(19): 5589−5599
    [24]
    MCCUEN R H. A sensitivity and error analysis cf procedures used for estimating evaporation[J]. Journal of the American Water Resources Association, 1974, 10(3): 486−497 doi: 10.1111/j.1752-1688.1974.tb00590.x
    [25]
    ALLEN R G, JENSEN M E, WRIGHT J L, et al. Operational estimates of reference evapotranspiration[J]. Agronomy Journal, 1989, 81(4): 650−662 doi: 10.2134/agronj1989.00021962008100040019x
    [26]
    周瑶, 张鑫, 徐静. 青海省东部农业区参考作物蒸散量的变化及对气象因子的敏感性分析[J]. 自然资源学报, 2013, 28(5): 765−775 doi: 10.11849/zrzyxb.2013.05.006

    ZHOU Y, ZHANG X, XU J. Changes of reference crop evapotranspiration and sensitivity analysis of meteorological factors in eastern plateau agricultural region of Qinghai Province[J]. Journal of Natural Resources, 2013, 28(5): 765−775 doi: 10.11849/zrzyxb.2013.05.006
    [27]
    YIN Y H, WU S H, DAI E F. Determining factors in potential evapotranspiration changes over China in the period 1971—2008[J]. Chinese Science Bulletin, 2010, 55(29): 3329−3337 doi: 10.1007/s11434-010-3289-y
    [28]
    ZHANG X Y, CHEN S Y, SUN H Y, et al. Dry matter, harvest index, grain yield and water use efficiency as affected by water supply in winter wheat[J]. Irrigation Science, 2008, 27(1): 1−10 doi: 10.1007/s00271-008-0131-2
    [29]
    KENDY E, GERARD-MARCHANT P, WALTER M T, et al. A soil-water-balance approach to quantify groundwater recharge from irrigated cropland in the North China Plain[J]. Hydrological Processes, 2003, 17(10): 2023−2029
    [30]
    张喜英, 张橹, 刘昌明. 太行山前平原土壤水分特征曲线拟合参数的确定[J]. 华北农学报, 2001(2): 75−82 doi: 10.3321/j.issn:1000-7091.2001.02.015

    ZHANG X Y, ZHANG L, LIU C M. Determination of fitting parameters of soil moisture characteristic curve in Taihang Piedmont Plain[J]. Acta Agriculturae Boreali-sinica, 2001(2): 75−82 doi: 10.3321/j.issn:1000-7091.2001.02.015
    [31]
    ZHANG X Y, CHEN S Y, LIU M Y, et al. Improved water use efficiency associated with cultivars and agronomic management in the North China plain[J]. Agronomy Journal, 2005, 97(3): 783−790 doi: 10.2134/agronj2004.0194
    [32]
    韩淑敏, 程一松, 胡春胜. 太行山山前平原作物系数与降水年型关系探讨[J]. 干旱地区农业研究, 2005, 23(5): 152−158 doi: 10.3321/j.issn:1000-7601.2005.05.030

    HAN S M, CHENG Y S, HU C S. Relationship between crop coefficient and precipitation pattern in the piedmont of Mt. Taihang[J]. Agricultural Research in the Arid Areas, 2005, 23(5): 152−158 doi: 10.3321/j.issn:1000-7601.2005.05.030
    [33]
    周陈, 李许滨, 徐德彬, 等. 土壤肥力及冬小麦产量与生物有机肥的效应研究[J]. 安徽农业科学, 2008, 36(3): 1130−1132 doi: 10.3969/j.issn.0517-6611.2008.03.123

    ZHOU C, LI X B, XU D B, et al. Study on the effect of biological organic fertilizer on soil fertility and winter wheat yield[J]. Journal of Anhui Agricultural Sciences, 2008, 36(3): 1130−1132 doi: 10.3969/j.issn.0517-6611.2008.03.123
    [34]
    ZHOU Y, ZHU H Z, CAI S B, et al. Genetic improvement of grain yield and associated traits in the Southern China winter wheat region: 1949 to 2000[J]. Euphytica, 2007, 157(3): 465−473 doi: 10.1007/s10681-007-9376-8
    [35]
    FAN M S, ZHANG X Y, YUAN L X, et al. Current status and future perspectives to increase nutrient- and water-use efficiency in food production systems in China[M]//Improving Water and Nutrient-Use Efficiency in Food Production Systems. Hoboken, NJ, USA: John Wiley & Sons, Inc, 2013: 263–273
    [36]
    王艳哲. 提高冬小麦水分利用效率的根层水氮调控机制[D]. 北京: 中国科学院大学, 2013: 110−112

    WANG Y Z. Regulating water and N supply in the root zone to improve water use efficiency of winter wheat[D]. Beijing: University of Chinese Academy of Sciences, 2013: 110−112
    [37]
    KANG S Z, GU B J, DU T S, et al. Crop coefficient and ratio of transpiration to evapotranspiration of winter wheat and maize in a semi-humid region[J]. Agricultural Water Management, 2003, 59(3): 239−254 doi: 10.1016/S0378-3774(02)00150-6
    [38]
    雷志栋, 罗毅, 杨诗秀, 等. 利用常规气象资料模拟计算作物系数的探讨[J]. 农业工程学报, 1999, 15(3): 119−122 doi: 10.3321/j.issn:1002-6819.1999.03.024

    LEI Z D, LUO Y, YANG S X, et al. Calculation of crop coefficient with meteorological data[J]. Transactions of the Chinese Society of Agricultural Engineering, 1999, 15(3): 119−122 doi: 10.3321/j.issn:1002-6819.1999.03.024
    [39]
    刘海军, 康跃虎. 冬小麦拔节抽穗期作物系数的研究[J]. 农业工程学报, 2006, 22(10): 52−56 doi: 10.3321/j.issn:1002-6819.2006.10.011

    LIU H J, KANG Y H. Calculation of crop coefficient of winter wheat at elongation-heading stages[J]. Transactions of the Chinese Society of Agricultural Engineering, 2006, 22(10): 52−56 doi: 10.3321/j.issn:1002-6819.2006.10.011
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(10)  / Tables(3)

    Article Metrics

    Article views (1565) PDF downloads(65) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return