留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Drivers of evapotranspiration increase in the Baiyangdian Catchment

Christine Mushimiyimana LIU Linlin YANG Yonghui LI Huilong WANG Linna SHENG Zhuping Auguste Cesar Itangishaka

ChristineMushimiyimana, 刘林林, 杨永辉, 李会龙, 王林娜, 盛祝平, AugusteCesar Itangishaka. 白洋淀流域蒸散发增加的驱动因素[J]. 中国生态农业学报(中英文). doi: 10.12357/cjea.20220121
引用本文: ChristineMushimiyimana, 刘林林, 杨永辉, 李会龙, 王林娜, 盛祝平, AugusteCesar Itangishaka. 白洋淀流域蒸散发增加的驱动因素[J]. 中国生态农业学报(中英文). doi: 10.12357/cjea.20220121
Christine M, LIU L L, YANG Y H, LI H L, WANG L N, SHENG Z P, Auguste C I. Drivers of evapotranspiration increase in the Baiyangdian Catchment[J]. Chinese Journal of Eco-Agriculture, 2022, 30(0): 1−10 doi: 10.12357/cjea.20220121
Citation: Christine M, LIU L L, YANG Y H, LI H L, WANG L N, SHENG Z P, Auguste C I. Drivers of evapotranspiration increase in the Baiyangdian Catchment[J]. Chinese Journal of Eco-Agriculture, 2022, 30(0): 1−10 doi: 10.12357/cjea.20220121

白洋淀流域蒸散发增加的驱动因素

doi: 10.12357/cjea.20220121
详细信息
  • 中图分类号: P426.2

Drivers of evapotranspiration increase in the Baiyangdian Catchment

Funds: This study was financially supported by the Project from the Ministry of Science & Technology of China (2018YFE0110100) and the National Natural Science Foundation of China (Grant No. 42171046).
More Information
  • 摘要: 白洋淀流域位于雄安新区上游, 山区植被和下垫面变化、平原区农业灌溉加大了区域蒸散发, 造成山区产流减少和平原区地下水超采, 研究区域蒸散发(ET)时空格局的演变趋势, 甄别蒸散发变化受植被、作物种植结构、城市化等的影响, 对深入揭示白洋淀流域水资源枯竭的成因, 建设绿色雄安“未来之城”具有重要意义。本研究基于500 m空间分辨率的PML_V2遥感蒸散产品, 从像元尺度分析了2002—2018年研究区ET的变化趋势和显著性, 揭示山区和平原区ET受植被变化、冬小麦压采、城市化等的影响。结果表明, 1)研究时段内白洋淀流域ET和植被总初级生产力(GPP)及归一化植被指数(NDVI)均呈增加趋势, 平均增长量为2.4 mm∙a−1、9.8 g∙cm−2∙a−1和0.0021∙a−1。2)降雨和植被恢复带来的GPP、NDVI增长是山区ET增加的主要因素, ET与GPP和NDVI的趋势变化在空间分布上具有很好的相似性, 研究时段内山区ET增加56.5 mm。3)平原区ET受快速城市化和小麦种植面积减少造成的ET减少和农田ET增加3个因素影响, 因为城市化和小麦压减带来的正作用无法抵消农田ET增加的负面影响, 平原区ET总体增长6.4 mm。就整个流域而言, 减少山区植被和灌溉农田带来的ET增加对维持区域水资源可持续利用和绿色发展至关重要。
  • Figure  1.  Location of the Baiyangdian Catchment. a) Map of elevation with meteorological stations; b) Map of land use types in 2020. The map is separated into the mountain region (Region Ⅰ) and plain region (Region ⅠI) by the elevation of 100 m asl.

    Figure  2.  Spatial distribution of annual average evapotranspiration (ET, (a), Gross Primary Production (GPP, b), and Normalized Difference Vegetation Index (NDVI, c) for the period of 2002—2018 in the Bayangdian Catchment

    Figure  3.  Variation and trend in annual evapotranspiration (ET) and precipitation (P) in mountain areas (Ⅰ), plain areas (Ⅱ), and the whole catchment (BYD).

    Figure  4.  Trend and significance of Gross Primary Production (GPP) (a) and Normalized Difference Vegetation Index (NDVI, b) in mountainous areas (Ⅰ), plain areas (Ⅱ), and the whole catchment (BYD) from 2002—2018.

    Figure  5.  Temporal trends in evapotranspiration (ET, a), Gross Primary Production (GPP, b), and Normalized Difference Vegetation Index (NDVI, c) in Baiyangdian Catchment for the period 2002—2018.

    Figure  6.  Temporal trends in monthly evapotranspiration (ET,, a), Gross Primary Production (GPP, b), and Normalized Difference Vegetation Index (NDVI, c) in the mountain region (Ⅰ), plain region (Ⅱ), and the whole catchment (BYD) for the period 2002—2018.

    Figure  7.  Correspondence of evapotranspiration (ET) changes (ET2014—2018 minus ET2002—2006) and Normalized Difference Vegetation Index (NDVI) changes (NDVI2014—2018 minus NDVI2002—2006) in pixels of the mountainous region (Region Ⅰ, a), urban (b) and cropland (c) in the plain region (Region Ⅱ)

    Figure  8.  Spatial distributions of evapotranspiration (ET trend) for summer maize season from June to September (a) and winter wheat growing season from October to May (b) in the plain region for the period 2002—2018.

  • AI Z P, WANG Q X, YANG Y H, et al Variation of gross primary production, evapotranspiration and water use efficiency for global croplands Agricultural and Forest Meteorology, 287: 2020 287 107935
    ALLEN R G, PEREIRA L S, HOWELL T A, et al Evapotranspiration information reporting: I. Factors governing measurement accuracy Agricultural Water Management 2011 98 6 899 920
    ANDERSON M C, ALLEN R G, MORSE A, et al Use of Landsat thermal imagery in monitoring evapotranspiration and managing water resources Remote Sensing of Environment 2012 122 50 65 10.1016/j.rse.2011.08.025 doi: 10.1016/j.rse.2011.08.025
    BAI Z. 2017. Spatial and temporal changes of agricultural irrigation requirements in the upper reaches of Baiyangdian Lake and its impact on runoff of the mountainous areas[D]. Beijing: University of Chinese Academy of Sciences, 1–118
    CHEN C, PARK T, WANG X, et al China and India lead in greening of the world through land-use management Nature Sustainability 2019 2 2 122 129
    CHI G Y, SU X S, LYU H, et al Prediction and evaluation of groundwater level changes in an over-exploited area of the Baiyangdian Lake Basin, China under the combined influence of climate change and ecological water recharge Environmental Research 2022 Pt A 113104
    FENG X, FU B, PIAO S, et al Revegetation in China’s Loess Plateau is approaching sustainable water resource limits Nature Climate Change 2016 6 11 1019 1022
    FISHER J B, MELTON F, MIDDLETON E, et al The future of evapotranspiration: Global requirements for ecosystem functioning, carbon and climate feedbacks, agricultural management, and water resources Water Resources Research 2017 53 4 2618 2626
    GAN R, ZHANG Y Q, SHI H, et al Use of satellite leaf area index estimating evapotranspiration and gross assimilation for Australian ecosystems Ecohydrology 2018 11 5 e1974
    GAO Y C, WANG J F, FENG Z M Variation trend and response relationship of temperature, precipitation and runoff in Baiyangdian Lake Basin Chinese Journal of Eco-Agriculture 2017 25 4 467 77
    GRAFTON R Q, WILLIAMS J, PERRY C J, et al The paradox of irrigation efficiency Science 2018 361 6404 748 750
    HU S S, LIU C M, ZHENG H X, et al Assessing the impacts of climate variability and human activities on streamflow in the water source area of Baiyangdian Lake Journal of Geographical Sciences 2012 22 5 895 905
    HU S S, ZHAO F, ZHANG G Y Change of rainfall-runoff and its causes in the upper Tang watershed in recent 40 years South-to-North Water Transfers and Water Science & Technology 2009 7 5 73 75
    JIANG Z Y, YANG Z G, ZHANG S Y, et al Revealing the spatio-temporal variability of evapotranspiration and its components based on an improved Shuttleworth-Wallace model in the Yellow River Basin Journal of Environmental Management 2020 262 110310
    JUNG M, REICHSTEIN M, CIAIS P, et al Recent decline in the global land evapotranspiration trend due to limited moisture supply Nature 2010 467 7318 951 954
    KENDALL G M. 1975. Rank Correlation Measures[M]. London: Charles Griffin
    LEUNING R, ZHANG Y Q, RAJAUD A, et al A simple surface conductance model to estimate regional evaporation using MODIS leaf area index and the Penman-Monteith equation Water Resources Research 2008 44 10 W10419
    LI C C, ZHANG Y Q, SHEN Y J, et al LUCC-driven changes in gross primary production and actual evapotranspiration in Northern China Journal of Geophysical Research: Atmospheres 2020 125 6 10.1029/2019JD031705 doi: 10.1029/2019JD031705
    LI C C, ZHANG Y Q, SHEN Y J, et al Decadal water storage decrease driven by vegetation changes in the Yellow River Basin Science Bulletin 2020 65 22 1859 1861
    LI G, ZHANG F M, JING Y S, et al Response of evapotranspiration to changes in land use and land cover and climate in China during 2001−2013 The Science of the Total Environment 2017 596/597 256 265
    LI H D, WANG A Z, YUAN F H, et al Evapotranspiration dynamics over a temperate meadow ecosystem in eastern Inner Mongolia, China Environmental Earth Sciences 2016 75 11 1 11
    MANN H B Nonparametric tests against trend Econometrica 1945 13 3 245
    MOIWO J P, YANG Y H, LI H L, et al Impact of water resource exploitation on the hydrology and water storage in Baiyangdian Lake Hydrological Processes 2010 24 21 3026 3039 10.1002/hyp.7716 doi: 10.1002/hyp.7716
    MUELLER B, SENEVIRATNE S I, JIMENEZ C, et al Evaluation of global observations-based evapotranspiration datasets and IPCC AR4 simulations Geophysical Research Letters 2011 6 38 L06402
    OKI T, KANAE S Global hydrological cycles and world water resources Science 2006 313 5790 1068 1072
    PASCOLINI-CAMPBELL M, REAGER J T, CHANDANPURKAR H A, et al A 10 per cent increase in global land evapotranspiration from 2003 to 2019 Nature 2021 593 7860 543 547
    RODELL M, BEAUDOING H K, L’ECUYER T S, et al The observed state of the water cycle in the early twenty-first century Journal of Climate 2015 28 21 8289 8318
    SHERWOOD S, FU Q A drier future? Science 2014 343 6172 737 739 10.1126/science.1247620 doi: 10.1126/science.1247620
    SOHU NEWS. 2019. The 5th anniversary of the water opening of the middle route of the South-to-North Water Diversion Project[N/OL]. Baoding Evening News, (2019-12-12). https://www.sohu.com/a/359943235_439193
    SUN C, REN L Assessment of surface water resources and evapotranspiration in the Haihe River Basin of China using SWAT model Hydrological Processes 2013 27 8 1200 1222
    SUN J M, YU X X, WANG H N, et al Effects of forest structure on hydrological processes in China Journal of Hydrology 2018 561 187 199
    TRENBERTH K E, SMITH L, QIAN T T, et al Estimates of the global water budget and its annual cycle using observational and model data Journal of Hydrometeorology 2007 8 4 758 769
    VÖRÖSMARTY C J, MCINTYRE P B, GESSNER M O, et al Global threats to human water security and river biodiversity Nature 2010 467 7315 555 561
    WANG K, LI H, L, WU A, et al An analysis of the evolution of Baiyangdian wetlands in Hebei Province with artificial recharge Acta Geoscientica Sinica 2018 39 5 549 558
    WANG K. 2020. Groundwater resources and wetland sustainability in Xiong’an City[D]. Beijing: Chinese Geology University (Beijing)
    WEGEHENKEL M, JOCHHEIM H, KERSEBAUM K C The application of simple methods using remote sensing data for the regional validation of a semidistributed hydrological catchment model Physics and Chemistry of the Earth, Parts A/B/C 2005 30 8/9/10 575 587
    YANG Y M, YANG Y H, LIU D L, et al Regional water balance based on remotely sensed evapotranspiration and irrigation: An assessment of the Haihe Plain, China Remote Sensing 2014 6 3 2514 2533
    YANG Y T, LONG D, SHANG S H Remote estimation of terrestrial evapotranspiration without using meteorological data Geophysical Research Letters 2013 40 12 3026 3030
    YANG Y, RODERICK M. L, YANG D, et al Streamflow stationarity in a changing world Environmental Research Letters 2021 16 6 10.1088/1748-9326/ac08c1 doi: 10.1088/1748-9326/ac08c1
    ZENG Z Z, PENG L Q, PIAO S L Response of terrestrial evapotranspiration to earth’s greening Current Opinion in Environmental Sustainability 2018 33 9 25
    ZHANG Y Q, KONG D D, GAN R, et al Coupled estimation of 500 m and 8-day resolution global evapotranspiration and gross primary production in 2002-2017 Remote Sensing of Environment 2019 222 165 182
    ZHANG Y Q, LEUNING R, HUTLEY L B, et al Using long-term water balances to parameterize surface conductances and calculate evaporation at 0.05° spatial resolution Water Resources Research 2010 46 6 W05512
    ZHOU G, WEI X, CHEN X, et al Global pattern for the effect of climate and land cover on water yield Nature Communications 2015 6 5918
  • 加载中
图(8)
计量
  • 文章访问数:  103
  • HTML全文浏览量:  45
  • PDF下载量:  16
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-02-22
  • 录用日期:  2022-09-02
  • 网络出版日期:  2022-09-03

目录

    /

    返回文章
    返回