留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

蚯蚓粘液-秸秆炭共同作用对生活污泥堆肥中重金属的影响

郇辉辉 储昭霞 王兴明 范廷玉 董众兵 甄泉 张佳妹 代碧波

郇辉辉, 储昭霞, 王兴明, 范廷玉, 董众兵, 甄泉, 张佳妹, 代碧波. 蚯蚓粘液-秸秆炭共同作用对生活污泥堆肥中重金属的影响[J]. 中国生态农业学报 (中英文), 2022, 30(0): 1−10 doi: 10.12357/cjea.20220253
引用本文: 郇辉辉, 储昭霞, 王兴明, 范廷玉, 董众兵, 甄泉, 张佳妹, 代碧波. 蚯蚓粘液-秸秆炭共同作用对生活污泥堆肥中重金属的影响[J]. 中国生态农业学报 (中英文), 2022, 30(0): 1−10 doi: 10.12357/cjea.20220253
HUAN H H, CHU Z X, WANG X M, FAN T Y, DONG Z B, ZHEN Q, ZHANG J M, DAI B B. Effects of earthworm mucus and straw charcoal on heavy metals during domestic sludge co-composting[J]. Chinese Journal of Eco-Agriculture, 2022, 30(0): 1−10 doi: 10.12357/cjea.20220253
Citation: HUAN H H, CHU Z X, WANG X M, FAN T Y, DONG Z B, ZHEN Q, ZHANG J M, DAI B B. Effects of earthworm mucus and straw charcoal on heavy metals during domestic sludge co-composting[J]. Chinese Journal of Eco-Agriculture, 2022, 30(0): 1−10 doi: 10.12357/cjea.20220253

蚯蚓粘液-秸秆炭共同作用对生活污泥堆肥中重金属的影响

doi: 10.12357/cjea.20220253
基金项目: 国家自然科学基金项目(51878004, 51978001, 42102204, 32001159)、国家重点研发计划“固废资源化”重点专项(2020YFC1908601)、金属矿山安全与健康国家重点实验室开放基金项目(2020-JSKSSYS-02)、安徽高校协同创新项目(GXXT-2020-075)、安徽省重点研究与开发计划项目(202104a06020027)、安徽省高潜水位矿区水土资源综合利用与生态保护工程实验室开放课题(2022-WSREPMA-04)、安徽高校自然科学研究重点项目(KJ2019A0332)、安徽理工大学芜湖研究院研发专项(ALW2020YF08)、安徽省高校优秀人才重点支持计划项目(gxyqZD2021129)资助
详细信息
    作者简介:

    郇辉辉, 主要研究方向为固废(污泥)资源化。E-mail: huanhuihui97@163.com

    通讯作者:

    储昭霞, 主要研究方向为重金属污染与生态修复和固废(污泥)资源化。E-mail: 841243878@qq.com

  • 中图分类号: X705

Effects of earthworm mucus and straw charcoal on heavy metals during domestic sludge co-composting

Funds: This study was supported by the National Natural Science Foundation of China (51878004, 51978001, 42102204, 32001159), the Key Project of National Key Research and Development Project of China (2020YFC1908601), the Open Fund of State Key Laboratory of Safety and Health in Metal Mines, China (2020-JSKSSYS-02), the Collaborative Innovation of the Anhui Higher Education Institutions of China (GXXT-2020-075), the Research and Development Program of Anhui, China (202104a06020027), the Opening Foundation of Anhui Province Engineering Laboratory of Water and Soil Resources Comprehensive Utilization and Ecological Protection in High Groundwater Mining Area (2022-WSREPMA-04), the Natural Science of the Higher Education Institutions of Anhui Province, China (KJ2019A0332), the Research and Development Project of Wuhu Research Institute, Anhui University of Science and Technology, China (ALW2020YF08), the Excellent Talent support of the Anhui Higher Education Institutions of China (gxyqZD2021129)
More Information
  • 摘要: 生活污泥中富含的重金属限制其资源化利用, 为钝化重金属活性, 降低污泥毒害效果和提高其利用价值, 以40 mL蚯蚓粘液和2%、4%、6%、8%秸秆炭为添加剂对2 kg污泥进行堆肥, 研究粘液、粘液协同秸秆炭添加对污泥堆肥后重金属变化的影响。结果显示, 与对照组污泥堆肥相比, 粘液堆肥污泥后pH升高1.42%, 总氮、总磷含量降低7.87%、14.18% (P<0.05); 而粘液协同秸秆炭堆肥污泥后, 污泥逐渐呈碱性, 电导率提升5.71%~9.58% (P<0.05), 有机质含量升高7.71%~24.60% (P<0.05), 丰富了堆体中可溶性离子和有机物含量, 但总氮、总钾含量分别降低19.10%~30.95%、7.87%~14.31%。在添加粘液对污泥堆肥后, 重金属总量均表现出下降趋势, Ni、Zn、Pb的较活泼形态向难以降解的残渣态转化, 使残渣态所占比例较CK处理分别升高61.81%、120.19%、72.51%; 当添加粘液和秸秆炭对污泥堆肥后, 重金属总量继续表现出下降趋势, 碳酸盐结合态Ni和Pb、铁锰结合态Pb、可交换态Zn逐步向稳定的残渣态转化, 而有机结合态Cu却向可交换态和残渣态转化, 钝化了堆肥污泥中Ni、Zn、Pb, 活化了Cu。最后根据分析得出结论, 粘液协同秸秆炭改变污泥中pH来影响重金属Ni、Zn、Pb、Cu有效态, 粘液+8%秸秆炭处理对污泥重金属的影响较为理想。
  • 图  1  粘液和秸秆炭添加与污泥堆肥重金属含量的关系

    CK: 单独污泥堆肥; S0: 污泥+粘液堆肥; S1: 污泥+粘液+2%秸秆炭堆肥; S2: 污泥+粘液+4%秸秆炭堆肥; S3: 污泥+粘液+6%秸秆炭堆肥; S4: 污泥+粘液+8%秸秆炭堆肥。CK: sludge composting; S0: sludge + mucus composting; S1: sludge + mucus + 2% straw charcoal composting; S2: sludge + mucus + 4% straw charcoal composting; S3: sludge + mucus + 6% straw charcoal composting; S4: sludge + mucus + 8% straw charcoal composting.

    Figure  1.  Relationship between applying earthworm mucus and straw charcoal and heavy metal contents of sludge compost

    图  2  蚯蚓粘液-秸秆炭共同作用对污泥堆肥后重金属有效态分布的影响

    CK: 单独污泥堆肥; S0: 污泥+粘液堆肥; S1: 污泥+粘液+2% 秸秆炭堆肥; S2: 污泥+粘液+4% 秸秆炭堆肥; S3: 污泥+粘液+6% 秸秆炭堆肥; S4: 污泥+粘液+8% 秸秆炭堆肥。F1: 可交换态; F2: 碳酸盐结合态; F3: 铁锰结合态; F4: 有机态; F5: 残渣态。

    Figure  2.  Effects of applying earthworm mucus and straw charcoal on distribution of available forms of heavy metals during sludge composting

    CK: sludge composting; S0: sludge + mucus composting; S1: sludge + mucus + 2% straw charcoal composting; S2: sludge + mucus + 4% straw charcoal composting; S3: sludge + mucus + 6% straw charcoal composting; S4: sludge + mucus + 8% straw charcoal composting. F1: exchange form; F2: carbonate binging form; F3: iron-manganese binding form; F4: organic form; F5: residual.

    表  1  供试材料的基本理化性质

    Table  1.   Basic physiochemical properties of the testes raw materials

    性质 Property污泥 Sludge蚯蚓粘液 Earthworm mucus秸秆炭 Straw charcoal
    电导率 Electrical conductivity (ms∙cm−1)1.11±0.030.05±0.000.86±0.05
    pH6.70±0.026.89±0.208.87±0.09
    含水率 Moisture content (%)76.67±0.058.42±0.02
    有机质 Organic matter (%)16.65±0.890.37±0.0317.61±0.63
    总氮 Total nitrogen (g∙kg−1)27.82±0.820.15±0.010.63±0.05
    总磷 Total phosphorus (g∙kg−1)8.88±0.320.007±0.002.82±0.10
    总钾 Total potassium (g∙kg−1)13.24±1.550.023±0.0015.90±0.70
    总锌 Zn (mg∙kg−1)737.00±44.5579.50±2.12
    总铅 Pb (mg∙kg−1)14.73±2.09
    总铜 Cu (mg∙kg−1)60.43±5.2772.90±1.7819.37±0.66
    总镍 Ni (mg∙kg−1)32.40±5.062.45±0.07
    总镉 Cd (mg∙kg−1)1.62±0.110.05±0.00
      “—”为未检验出。“—” means not detected.
    下载: 导出CSV

    表  2  蚯蚓粘液-秸秆炭共同作用对污泥堆肥理化性质和营养物质的影响

    Table  2.   Effects of applying earthworm mucus and straw charcoal on the selected physical and chemical properties and nutrients of sludge compost

    处理
    Treatment
    pH电导率
    Electrical conductivity
    (mS∙cm−1)
    有机质
    Organic matter
    (%)
    总氮
    Total nitrogen
    总磷
    Total phosphorus
    总钾
    Total potassium
    (g∙kg−1)
    CK6.92±0.04e1.34±0.01d15.65±0.50d32.31±0.31a21.37±0.31a15.14±0.16a
    S07.02±0.06d1.38±0.03d15.45±0.15d29.77±0.70b18.34±0.12b15.31±0.32a
    S17.25±0.02c1.46±0.02c16.85±0.30c25.56±0.32c23.05±1.80a13.95±0.96a
    S27.30±0.04c1.51±0.02bc17.53±0.28b26.14±0.26c22.81±0.50a12.98±2.53a
    S37.47±0.08b1.54±0.08ab17.22±0.27bc21.64±0.65d17.57±1.90b13.66±1.40a
    S47.61±0.05a1.60±0.01a19.50±0.26a22.31±0.60d17.13±1.15b13.32±1.65a
      CK: 单独污泥堆肥; S0: 污泥+粘液堆肥; S1: 污泥+粘液+2%秸秆炭堆肥; S2: 污泥+粘液+4%秸秆炭堆肥; S3: 污泥+粘液+6%秸秆炭堆肥; S4: 污泥+粘液+8%秸秆炭堆肥; 不同字母表示不同处理间差异显著(P<0.05)。CK: sludge composting; S0: sludge + mucus composting; S1: sludge + mucus + 2% straw charcoal composting; S2: sludge + mucus + 4% straw charcoal composting; S3: sludge + mucus + 6% straw charcoal composting; S4: sludge + mucus + 8% straw charcoal composting. Different letters show significant differences among different treatments (P<0.05).
    下载: 导出CSV

    表  3  蚯蚓粘液-秸秆炭共同作用的污泥堆肥后重金属含量

    Table  3.   Effect of applying earthworm mucus and straw charcoal on heavy metal contents of of sludge compost

    处理 Treatment镉 Cd铅 Pb铜 Cu镍 Ni锌 Zn
    mg∙kg−1 
    CK1.95±0.02a18.00±0.05a65.85±3.90a82.78±4.15a858.00±39.09a
    S01.88±0.08a17.08±4.25a61.22±4.79ab73.73±6.38b786.00±0.30a
    S11.65±0.05b11.78±1.48b59.67±0.98ab44.40±1.98c783.00±7.50a
    S21.53±0.08b8.83±1.45bc61.68±1.78ab41.91±0.44cd676.50±18.00b
    S31.15±0.15c6.37±1.70c61.75±0.43ab35.05±1.33de645.00±7.50bc
    S41.23±0.23c5.88±1.48c61.85±1.95ab33.45±5.96e585.00±29.25c
    GB 4284—2018(A)<3<300<500<100<1200
    欧盟 European Union20~40750~12001000~1750300~4002500~4000
      CK: 单独污泥堆肥; S0: 污泥+粘液堆肥; S1: 污泥+粘液+2%秸秆炭堆肥; S2: 污泥+粘液+4%秸秆炭堆肥; S3: 污泥+粘液+6%秸秆炭堆肥; S4: 污泥+粘液+8%秸秆炭堆肥; 不同字母表示不同处理组间差异显著(P<0.05)。CK: sludge composting; S0: sludge + mucus composting; S1: sludge + mucus + 2% straw charcoal composting; S2: sludge + mucus + 4% straw charcoal composting; S3: sludge + mucus + 6% straw charcoal composting; S4: sludge + mucus + 8% straw charcoal composting. Different letters show significant differences among different treatments (P<0.05).
    下载: 导出CSV

    表  4  蚯蚓粘液-秸秆炭共同作用对污泥堆肥后重金属有效态含量的影响

    Table  4.   Effects of applying earthworm mucus and straw charcoal on contents of available heavy metals of sludge compost

    mg∙kg-1
    处理
    Treatment
    有效态镉
    Available Cd
    有效态铅
    Available Pb
    有效态铜
    Available Cu
    有效态镍
    Available Ni
    有效态锌
    Available Zn
    CK0.39±0.05a7.43±0.00a3.10±0.24d5.17±0.10a8.41±0.10a
    S00.28±0.01d6.60±0.29a3.05±0.47d4.58±0.09ab8.29±0.14a
    S10.24±0.04d5.56±0.82b4.70±0.10c4.63±0.68ab7.67±0.45b
    S20.34±0.03bc5.21±0.31bc5.19±0.30bc4.17±0.37bc6.74±0.31c
    S30.36±0.01ab4.85±0.54bc5.69±0.29ab4.14±0.18bc5.79±0.31d
    S40.29±0.02cd4.31±0.54c5.88±0.10a3.72±0.59c6.03±0.46d
      CK: 单独污泥堆肥; S0: 污泥+粘液堆肥; S1: 污泥+粘液+2%秸秆炭堆肥; S2: 污泥+粘液+4%秸秆炭堆肥; S3: 污泥+粘液+6%秸秆炭堆肥; S4: 污泥+粘液+8%秸秆炭堆肥; 不同字母表示不同处理组间差异显著(P<0.05)。CK: sludge composting; S0: sludge + mucus composting; S1: sludge + mucus + 2% straw charcoal composting; S2: sludge + mucus + 4% straw charcoal composting; S3: sludge + mucus + 6% straw charcoal composting; S4: sludge + mucus + 8% straw charcoal composting. Different letters show significant differences among different treatments (P<0.05).
    下载: 导出CSV

    表  5  污泥堆肥中重金属有效态含量与理化性质的相关关系

    Table  5.   Correlationships between contents of available forms of heavy metals with physical and chemical properties of sludge compost

    重金属
    Heavy metals
    理化性质 Physicochemical property
    pH电导率
    Electrical conductivity
    有机质
    Organic matter
    总氮
    Total nitrogen
    总磷
    Total phosporus
    总钾
    Total potassium
    镍 Ni−0.776**−0.734**−0.666**0.727**0.551*0.238
    铅 Pb−0.906**−0.872**−0.820**0.903**0.3370.465
    锌 Zn−0.906**−0.854**−0.796**0.905**0.4310.388
    镉 Cd−0.229−0.202−0.1940.2710.049−0.044
    铜 Cu0.944**0.932**0.866**−0.937**−0.239−0.565*
      **和*分别表示相关性在 P<0.01和P<0.05 显著水平。** and * indicate significant correlations at P<0.01 and P<0.05 levels, respectively.
    下载: 导出CSV

    表  6  污泥堆肥中重金属有效态含量与理化性质的回归方程

    Table  6.   Regression equations between contents of available forms of heavy metals with physical and chemical properties of sludge compost

    重金属 Heavy metal逐步回归方程 Stepwise regression analysis拟合指数 R2显著性 P
    锌 Zny=35.939−3.965xpH0.81<0.01
    镍 Niy=17.474−1.801xpH0.58<0.01
    铜 Cuy=−32.766+4.901xpH+0.089xTP0.92<0.01
    铅 Pby=36.106−4.194xpH0.81<0.01
    镉 Cd
      “—”为未检验出。“—” means not detected.
    下载: 导出CSV
  • [1] 胡子健. 《中国城乡建设统计年鉴—2020》编委会和编辑工作人员[M]. 北京: 中国统计出版社, 2021

    HU Z J. China Urban-Rural Construction Statistical Yearbook−2020 Editorial Board and Editorial Staff[M]. Beijing: China Statistics Press, 2021
    [2] NGUYEN M K, LIN C, HOANG H G, et al. Evaluate the role of biochar during the organic waste composting process: a critical review[J]. Chemosphere, 2022, 299: 134488 doi: 10.1016/j.chemosphere.2022.134488
    [3] LI Y S, SUN B, DENG T Y, et al. Safety and efficiency of sewage sludge and garden waste compost as a soil amendment based on the field application in woodland[J]. Ecotoxicology and Environmental Safety, 2021, 222: 112497 doi: 10.1016/j.ecoenv.2021.112497
    [4] 李雪怡, 梁远, 方小锋, 等. 北京市污泥处理处置现状总结分析[J]. 中国给水排水, 2021, 37(22): 38−42 doi: 10.19853/j.zgjsps.1000-4602.2021.22.006

    LI X Y, LIANG Y, FANG X F, et al. Summarization and analysis of sludge treatment and disposal in Beijing[J]. China Water & Wastewater, 2021, 37(22): 38−42 doi: 10.19853/j.zgjsps.1000-4602.2021.22.006
    [5] 黄俊熙, 严兴, 雷芳, 等. 添加辅料对污泥堆肥产品的生物肥效的影响[J]. 环境工程, 2021, 39(3): 142−147 doi: 10.13205/j.hjgc.202103020

    HUANG J X, YAN X, LEI F, et al. Improvement of biological fertilizer efficiency of sludge compost products by adding auxiliary materials[J]. Environmental Engineering, 2021, 39(3): 142−147 doi: 10.13205/j.hjgc.202103020
    [6] 舒增年, 黄健. 蒙脱石对污泥好氧堆肥过程中重金属钝化效果[J]. 矿物学报, 2017, 37(S1): 53−60

    SHU Z N, HUANG J. Passivating effect of montmorillonite on heavy metals during sewage sludge composting[J]. Acta Mineralogica Sinica, 2017, 37(S1): 53−60
    [7] WANG L M, ZHANG Y M, LIAN J J, et al. Impact of fly ash and phosphatic rock on metal stabilization and bioavailability during sewage sludge vermicomposting[J]. Bioresource Technology, 2013, 136: 281−287 doi: 10.1016/j.biortech.2013.03.039
    [8] KEILUWEIT M, NICO P S, JOHNSON M G, et al. Dynamic molecular structure of plant biomass-derived black carbon (biochar)[J]. Environmental Science & Technology, 2010, 44(4): 1247−1253
    [9] LIU L, YE Q Y, WU Q, et al. Effect of biochar addition on sludge aerobic composting and greenbelt utilization[J]. Environmental Technology & Innovation, 2021, 21: 101279
    [10] MALINOWSKI M, WOLNY-KOŁADKA K, VAVERKOVÁ M D. Effect of biochar addition on the OFMSW composting process under real conditions[J]. Waste Management, 2019, 84: 364−372 doi: 10.1016/j.wasman.2018.12.011
    [11] GUHRA T, STOLZE K, SCHWEIZER S, et al. Earthworm mucus contributes to the formation of organo-mineral associations in soil[J]. Soil Biology and Biochemistry, 2020, 145: 107785 doi: 10.1016/j.soilbio.2020.107785
    [12] PAN X L, SONG W J, ZHANG D Y. Earthworms (Eiseniafoetida Savigny) mucus as complexing ligand for imidacloprid[J]. Biology and Fertility of Soils, 2010, 46(8): 845−850 doi: 10.1007/s00374-010-0494-4
    [13] PLAVŠIN I, VELKI M, EČIMOVIĆ S, et al. Inhibitory effect of earthworm coelomic fluid on growth of the plant parasitic fungus Fusarium oxysporum[J]. European Journal of Soil Biology, 2017, 78: 1−6 doi: 10.1016/j.ejsobi.2016.11.004
    [14] HUANG K, XIA H. Role of earthworms’ mucus in vermicomposting system: biodegradation tests based on humification and microbial activity[J]. Science of the Total Environment, 2018, 610/611: 703−708 doi: 10.1016/j.scitotenv.2017.08.104
    [15] SIZMUR T, WATTS M J, BROWN G D, et al. Impact of gut passage and mucus secretion by the earthworm Lumbricus terrestris on mobility and speciation of arsenic in contaminated soil[J]. Journal of Hazardous Materials, 2011, 197: 169−175 doi: 10.1016/j.jhazmat.2011.09.071
    [16] ZHANG S J, HU F, LI H X, et al. Influence of earthworm mucus and amino acids on tomato seedling growth and cadmium accumulation[J]. Environmental Pollution, 2009, 157(10): 2737−2742 doi: 10.1016/j.envpol.2009.04.027
    [17] ALLEGRETTA I, PORFIDO C, PANZARINO O, et al. Determination of as concentration in earthworm coelomic fluid extracts by total-reflection X-ray fluorescence spectrometry[J]. Spectrochimica Acta Part B:Atomic Spectroscopy, 2017, 130: 21−25 doi: 10.1016/j.sab.2017.02.003
    [18] 陈玉香, 赵婷婷, 姚月, 等. 蚯蚓黏液促进玉米秸秆分解及其机理分析[J]. 农业工程学报, 2019, 35(15): 234−240 doi: 10.11975/j.issn.1002-6819.2019.15.029

    CHEN Y X, ZHAO T T, YAO Y, et al. Earthworm mucus improving decomposition of maize stover and its mechanism[J]. Transactions of the Chinese Society of Agricultural Engineering, 2019, 35(15): 234−240 doi: 10.11975/j.issn.1002-6819.2019.15.029
    [19] 程焱, 余亚伟, 张成, 等. 污泥堆肥及其利用过程汞的变化特征[J]. 环境化学, 2021, 40(7): 2226−2233 doi: 10.7524/j.issn.0254-6108.2020031201

    CHENG Y, YU Y W, ZHANG C, et al. Variation characteristics of mercury during municipal sludge composting and its land use[J]. Environmental Chemistry, 2021, 40(7): 2226−2233 doi: 10.7524/j.issn.0254-6108.2020031201
    [20] 郇辉辉, 王兴明, 储昭霞, 等. 蚯蚓黏液联合竹炭堆肥对污泥中重金属的影响[J]. 农业环境科学学报, 2022, 41(5): 1077−1085 doi: 10.11654/jaes.2021-1378

    HUAN H H, WANG X M, CHU Z X, et al. Effects of earthworm mucus combined with bamboo charcoal on heavy metals in sludge[J]. Journal of Agro-Environment Science, 2022, 41(5): 1077−1085 doi: 10.11654/jaes.2021-1378
    [21] 周鑫, 王兴明, 储昭霞, 等. 蚯蚓-稻壳炭联合堆肥对工业污泥中重金属的影响研究[J]. 生态环境学报, 2020, 29(2): 378−387

    ZHOU X, WANG X M, CHU Z X, et al. Effects of earthworm and rice husk charcoal composting on heavy metals in industrial sludge[J]. Ecology and Environmental Sciences, 2020, 29(2): 378−387
    [22] ZAINUDIN M H, MUSTAPHA N A, MAEDA T, et al. Biochar enhanced the nitrifying and denitrifying bacterial communities during the composting of poultry manure and rice straw[J]. Waste Management (New York, N Y), 2020, 106: 240−249 doi: 10.1016/j.wasman.2020.03.029
    [23] WEI Y Q, WANG J, CHANG R X, et al. Composting with biochar or woody peat addition reduces phosphorus bioavailability[J]. The Science of the Total Environment, 2021, 764: 142841 doi: 10.1016/j.scitotenv.2020.142841
    [24] 张贺飞, 徐燕, 曾正中, 等. 国外城市污泥处理处置方式研究及对我国的启示[J]. 环境工程, 2010, 28(S1): 434−438 doi: 10.13205/j.hjgc.2010.s1.101

    ZHANG H F, XU Y, ZENG Z Z, et al. Municipal sludge treatment way overseas and its enlightenment to China[J]. Environmental Engineering, 2010, 28(S1): 434−438 doi: 10.13205/j.hjgc.2010.s1.101
    [25] 王兴明, 王运敏, 储昭霞, 等. 煤矸石对铜尾矿中重金属(Zn, Pb, Cd, Cr和Cu)形态及生物有效性的影响[J]. 煤炭学报, 2017, 42(10): 2688−2697

    WANG X M, WANG Y M, CHU Z X, et al. Effects of coal gangue addition on the chemical fraction and bioavailability of heavy metals (Zn, Pb, Cd, Cr and Cu) in copper mine tailings[J]. Journal of China Coal Society, 2017, 42(10): 2688−2697
    [26] LI H B, DONG X L, DA SILVA E B, et al. Mechanisms of metal sorption by biochars: biochar characteristics and modifications[J]. Chemosphere, 2017, 178: 466−478
    [27] ZHAO S, FENG C H, WANG D X, et al. Salinity increases the mobility of Cd, Cu, Mn, and Pb in the sediments of Yangtze Estuary: relative role of sediments’ properties and metal speciation[J]. Chemosphere, 2013, 91(7): 977−984 doi: 10.1016/j.chemosphere.2013.02.001
    [28] ZHOU H B, MENG H B, ZHAO L X, et al. Effect of biochar and humic acid on the copper, lead, and cadmium passivation during composting[J]. Bioresource Technology, 2018, 258: 279−286 doi: 10.1016/j.biortech.2018.02.086
    [29] KULIKOWSKA D. Kinetics of organic matter removal and humification progress during sewage sludge composting[J]. Waste Management, 2016, 49: 196−203 doi: 10.1016/j.wasman.2016.01.005
    [30] 史志明, 马丽丽, 胡飞龙, 等. 蚯蚓黏液对黑麦草幼苗生长及其对菲吸收的影响[J]. 土壤, 2013, 45(6): 1091−1096 doi: 10.13758/j.cnki.tr.2013.06.020

    SHI Z M, MA L L, HU F L, et al. Influence of earthworm mucus on ryegrass seedling growth and phenanthrene uptake[J]. Soils, 2013, 45(6): 1091−1096 doi: 10.13758/j.cnki.tr.2013.06.020
    [31] AHMAD M, LEE S S, DOU X M, et al. Effects of pyrolysis temperature on soybean stover- and peanut shell-derived biochar properties and TCE adsorption in water[J]. Bioresource Technology, 2012, 118: 536−544 doi: 10.1016/j.biortech.2012.05.042
    [32] DUAN Y M, YANG J F, GUO Y R, et al. Pollution control in biochar-driven clean composting: emphasize on heavy metal passivation and gaseous emissions mitigation[J]. Journal of Hazardous Materials, 2021, 420: 126635 doi: 10.1016/j.jhazmat.2021.126635
    [33] GUO X X, LIU H T, ZHANG J. The role of biochar in organic waste composting and soil improvement: a review[J]. Waste Management (New York, N Y), 2020, 102: 884−899 doi: 10.1016/j.wasman.2019.12.003
    [34] HUA L, WU W X, LIU Y X, et al. Reduction of nitrogen loss and Cu and Zn mobility during sludge composting with bamboo charcoal amendment[J]. Environmental Science and Pollution Research, 2009, 16(1): 1−9 doi: 10.1007/s11356-008-0041-0
    [35] ZHANG J N, LÜ F, SHAO L M, et al. The use of biochar-amended composting to improve the humification and degradation of sewage sludge[J]. Bioresource Technology, 2014, 168: 252−258 doi: 10.1016/j.biortech.2014.02.080
    [36] GHORBANI M, AMIRAHMADI E. Effect of rice husk biochar (RHB) on some of chemical properties of an acidic soil and the absorption of some nutrients[J]. Journal of Applied Sciences and Environmental Management, 2018, 22(3): 313
    [37] LIANG J, YANG Z X, TANG L, et al. Changes in heavy metal mobility and availability from contaminated wetland soil remediated with combined biochar-compost[J]. Chemosphere, 2017, 181: 281−288 doi: 10.1016/j.chemosphere.2017.04.081
    [38] WANG Q, WANG Z, AWASTHI M K, et al. Evaluation of medical stone amendment for the reduction of nitrogen loss and bioavailability of heavy metals during pig manure composting[J]. Bioresource Technology, 2016, 220: 297−304 doi: 10.1016/j.biortech.2016.08.081
    [39] GIGLIOTTI G, PROIETTI P, SAID-PULLICINO D, et al. Co-composting of olive husks with high moisture contents: organic matter dynamics and compost quality[J]. International Biodeterioration & Biodegradation, 2012, 67: 8−14
    [40] DIAS B O, SILVA C A, HIGASHIKAWA F S, et al. Use of biochar as bulking agent for the composting of poultry manure: effect on organic matter degradation and humification[J]. Bioresource Technology, 2010, 101(4): 1239−1246
    [41] HSU J H, LO S L. Chemical and spectroscopic analysis of organic matter transformations during composting of pig manure[J]. Environmental Pollution, 1999, 104(2): 189−196 doi: 10.1016/S0269-7491(98)00193-6
    [42] AMERY F, DEGRYSE F, DEGELING W, et al. The copper-mobilizing-potential of dissolved organic matter in soils varies 10-fold depending on soil incubation and extraction procedures[J]. Environmental Science & Technology, 2007, 41(7): 2277−2281
    [43] XUE Y W, GAO B, YAO Y, et al. Hydrogen peroxide modification enhances the ability of biochar (hydrochar) produced from hydrothermal carbonization of peanut hull to remove aqueous heavy metals: batch and column tests[J]. Chemical Engineering Journal, 2012, 200/201/202: 673−680
    [44] YUAN J H, XU R K, ZHANG H. The forms of alkalis in the biochar produced from crop residues at different temperatures[J]. Bioresource Technology, 2011, 102(3): 3488−3497 doi: 10.1016/j.biortech.2010.11.018
    [45] ZHENG G D, GAO D, CHEN T B, et al. Stabilization of nickel and chromium in sewage sludge during aerobic composting[J]. Journal of Hazardous Materials, 2007, 142(1/2): 216−221
    [46] MARTı́NEZ C E, MOTTO H L. Solubility of lead, zinc and copper added to mineral soils[J]. Environmental Pollution, 2000, 107(1): 153−158 doi: 10.1016/S0269-7491(99)00111-6
  • 加载中
图(2) / 表(6)
计量
  • 文章访问数:  93
  • HTML全文浏览量:  12
  • PDF下载量:  15
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-04-06
  • 录用日期:  2022-08-31
  • 网络出版日期:  2022-09-27

目录

    /

    返回文章
    返回