留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

不同施肥处理对黄泥田团聚体有机碳固持及其组分的影响

王飞 李清华 何春梅 王珂 游燕玲 黄毅斌

王飞, 李清华, 何春梅, 王珂, 游燕玲, 黄毅斌. 不同施肥处理对黄泥田团聚体有机碳固持及其组分的影响[J]. 中国生态农业学报 (中英文), 2023, 31(2): 315−324 doi: 10.12357/cjea.20220307
引用本文: 王飞, 李清华, 何春梅, 王珂, 游燕玲, 黄毅斌. 不同施肥处理对黄泥田团聚体有机碳固持及其组分的影响[J]. 中国生态农业学报 (中英文), 2023, 31(2): 315−324 doi: 10.12357/cjea.20220307
WANG F, LI Q H, HE C M, WANG K, YOU Y L, HUANG Y B. Long-term fertilization effects on soil aggregates organic carbon sequestration and distribution in a yellow-mud paddy soil[J]. Chinese Journal of Eco-Agriculture, 2023, 31(2): 315−324 doi: 10.12357/cjea.20220307
Citation: WANG F, LI Q H, HE C M, WANG K, YOU Y L, HUANG Y B. Long-term fertilization effects on soil aggregates organic carbon sequestration and distribution in a yellow-mud paddy soil[J]. Chinese Journal of Eco-Agriculture, 2023, 31(2): 315−324 doi: 10.12357/cjea.20220307

不同施肥处理对黄泥田团聚体有机碳固持及其组分的影响

doi: 10.12357/cjea.20220307
基金项目: 福建省自然科学基金项目(2021J01479)、闽侯农田生态系统福建省野外科学观测研究站(闽科基[2018]17号)和“5511”协同创新工程(XTCXGC2021009)资助
详细信息
    通讯作者:

    王飞, 主要从事土壤资源评价与持续利用研究。E-mail: fjwangfei@163.com

  • 中图分类号: S152.4

Long-term fertilization effects on soil aggregates organic carbon sequestration and distribution in a yellow-mud paddy soil

Funds: This study was supported by the Fujian Natural Science Foundation (2021J01479), Fujian Field Scientific Observation and Research Station of Minhou Farmland Ecosystem (MKJ [2018] No. 17), “5511” Collaborative Innovation Project (XTCXGC2021009).
More Information
  • 摘要: 本文旨在研究长期不同施肥处理对南方黄泥田团聚体有机碳固持及其组分分配的影响, 为合理培肥及土壤碳库管理提供依据。基于始于1983年的在黄泥田进行的长期定位试验, 选择不施肥(CK)、单施化肥(NPK)、化肥+牛粪(NPKM)与化肥+全量稻秸还田(NPKS) 4个处理, 采集第36年各处理耕层土壤样品并分析各粒级团聚体有机碳固持及其组分变化。结果表明, 黄泥田耕层土壤以大团聚体(>2 mm)和中间团聚体(0.25~2 mm)为主, NPKM与NPKS处理的土壤大团聚体质量比重分别比CK显著增加22.0和15.5个百分点(P<0.05)。与CK相比, NPKM与NPKS处理中大团聚体对有机碳固持贡献率分别提高25.0和19.3个百分点(P<0.05)。施肥处理的大团聚体内轻组有机碳(LF-C)含量较CK显著增加, 其中NPKS处理后大团聚体中LF-C含量较CK增加32.3% (P<0.05)。大团聚体有机碳含量以及该团聚体内的LF-C含量与水稻产量和有机碳投入量都呈极显著正相关(P<0.01)。以上结果表明, 配施牛粪或秸秆还田有利于增加黄泥田大团聚体比例及其有机碳含量, 进而提高有机碳固持贡献率, 尤其是配施牛粪, 而且有机无机肥配施有利于提高大团聚体内轻组有机碳含量与固持贡献, 秸秆还田更为明显, 可为南方黄泥田施肥管理提供依据。
  • 图  1  不同施肥处理对耕层(0~20 cm)土壤团聚体组成的影响

    CK: 不施肥; NPK: 单施化肥; NPKM: 化肥配施牛粪; NPKS: 化肥配施稻秸。不同小写字母表示同一粒径团聚体在不同处理下差异显著(P<0.05)。CK: no fertilizer; NPK: application of chemical fertilizers; NPKM: combined application of chemical fertilizer and cattle manure; NPKS: combined application of chemical fertilizer and straw. Different lowercase letters indicate significant differences for the same size soil aggregates among different treatments at P<0.05.

    Figure  1.  Effect of different fertilizations on the percentage of soil aggregates of 0−20 cm soil layer

    图  2  不同施肥处理对耕层(0~20 cm)土壤团聚体有机碳含量的影响

    CK: 不施肥; NPK: 单施化肥; NPKM: 化肥配施牛粪; NPKS: 化肥配施稻秸。不同小写字母表示同一粒径团聚体在不同处理下差异显著(P<0.05)。CK: no fertilizer; NPK: application of chemical fertilizers; NPKM: combined application of chemical fertilizer and cattle manure; NPKS: combined application of chemical fertilizer and straw. Different lowercase letters mean significant differences for the same aggregate size among treatments at P<0.05.

    Figure  2.  Effect of different fertilizations on the organic carbon content of soil aggregates in 0−20 cm layer

    图  3  不同施肥处理对土壤大团聚体(>2 mm)内有机碳组分含量(A)与质量比例(B)的影响

    CK: 不施肥; NPK: 单施化肥; NPKM: 化肥配施牛粪; NPKS: 化肥配施稻秸。LF-C: 轻组有机碳; CF-C: 粗颗粒有机碳; FF-C: 细颗粒有机碳; mSOC: 矿物结合态有机碳。不同小写字母表示同一有机碳组分不同处理下差异显著(P<0.05)。CK: no fertilizer; NPK: application of chemical fertilizers; NPKM: combined application of chemical fertilizer and cattle manure; NPKS: combined application of chemical fertilizer and straw. LF-C: light fraction organic carbon; CF-C: coarse fraction organic carbon; FF-C: fine fraction organic carbon; mSOC: mineral-associated organic carbon. Different lowercase letters for the same organic carbon fraction mean significant differences among treatments at P<0.05.

    Figure  3.  Effect of different fertilizations on contents (A) and mass proportions (B) of different organic carbon fractions in soil macro-aggregates (>2 mm)

    图  4  不同施肥处理对土壤中间团聚体有机碳组分含量(A)与质量比例(B)的影响

    CK: 不施肥; NPK: 单施化肥; NPKM: 化肥配施牛粪; NPKS: 化肥配施稻秸。LF-C: 轻组有机碳; CF-C: 粗颗粒有机碳; FF-C: 细颗粒有机碳; mSOC: 矿物结合态有机碳。不同小写字母表示同一有机碳组分在不同处理下差异显著(P<0.05)。CK: no fertilizer; NPK: application of chemical fertilizers; NPKM: combined application of chemical fertilizer and cattle manure; NPKS: combined application of chemical fertilizer and straw. LF-C: light fraction organic carbon; CF-C: coarse fraction organic carbon; FF-C: fine fraction organic carbon; mSOC: mineral-associated organic carbon. Different lowercase letters for ghe same organic carbon fraction mean significant differences among treatments at P<0.05.

    Figure  4.  Effect of different fertilizations on contents (A) and mass proportions (B) of different organic carbon fractions in soil medium-aggregates

    图  5  土壤和团聚体有机碳含量与水稻产量和有机碳投入的拟合方程

    A、B表示原土有机碳含量与水稻产量和有机碳投入的拟合方程; C、D表示大团聚体(>2 mm)有机碳含量与水稻产量和有机碳投入的拟合方程; E、F表示大团聚体(>2 mm)中轻组有机碳含量与水稻产量和有机碳投入的拟合方程。LF-C为轻组有机碳。*、**和***分别表示在P<0.05、P<0.01和P<0.001水平显著。A, B are fitting curves of bulk soil organic carbon content with grain yield and organic carbon input; C, D are fitting curves of macro-aggregates (>2 mm) organic carbon content with grain yield and organic carbon input; E, F are fitting curves of macro-aggregates light fraction organic carbon content with grain yield and organic carbon input. LF-C is light fraction organic carbon. *, ** and *** indicate significant correlation at P<0.05, P<0.01 and P<0.001, respectively.

    Figure  5.  Fitting curves between soil organic carbon content with grain yield and organic carbon input

    表  1  不同施肥处理有机碳多年平均投入量

    Table  1.   Multi-year average of organic carbon inputs under different fertilization treatments

    t(C)∙hm−2∙a−1 
    处理
    Treatment
    双季稻年份
    Year of double-cropping rice
    单季稻年份
    Year of single-cropping rice
    CK1.120.91
    NPK2.051.38
    NPKM4.182.55
    NPKS5.013.52
      CK: 不施肥; NPK: 单施化肥; NPKM: 化肥配施牛粪; NPKS: 化肥配施稻秸。CK: no fertilizer; NPK: application of chemical fertilizers; NPKM: combined application of chemical fertilizer and cattle manure; NPKS: combined application of chemical fertilizer and straw.
    下载: 导出CSV

    表  2  不同施肥处理下各粒径团聚体对全土有机碳固持贡献率

    Table  2.   Contribution rates of organic carbon soil aggregates to bulk soil organic carbon under different fertilizations

    处理
    Treatment
    土壤团聚体粒径 Soil aggregate size (mm)
    >20.25~20.053~0.25<0.053
    % 
    CK44.48±2.15b39.09±2.20a10.46±1.36a5.97±0.07a
    NPK47.70±9.17b39.87±7.11a7.61±2.54ab4.83±0.82ab
    NPKM69.53±3.97a22.89±4.12b3.75±0.01c3.82±0.25b
    NPKS63.84±5.14a26.51±2.68b5.32±2.20bc4.34±0.91b
      CK: 不施肥; NPK: 单施化肥; NPKM: 化肥配施牛粪; NPKS: 化肥配施稻秸。同列不同小写字母表示不同处理间差异显著(P<0.05)。CK: no fertilizer; NPK: application of chemical fertilizers; NPKM: combined application of chemical fertilizer and cattle manure; NPKS: combined application of chemical fertilizer and straw. Different lowercase letters in the same column mean significant differences among treatments at P<0.05.
    下载: 导出CSV

    表  3  不同施肥处理下土壤大团聚体(>2 mm)有机碳组分对原土有机碳固持的贡献率

    Table  3.   Contribution rates of organic carbon fractions in soil macro-aggregates to bulk soil organic carbon under different fertilizations

    处理 TreatmentLF-CCF-CFF-CmSOC
    % 
    CK9.30±0.98c2.90±0.73b6.60±2.35b25.68±1.32b
    NPK12.91±1.73b3.98±1.14ab5.04±0.48b25.77±3.11b
    NPKM18.23±2.69a6.62±2.52a10.15±2.46a34.53±5.67a
    NPKS18.67±1.76a5.11±1.85ab7.65±0.12ab32.41±2.30a
      CK: 不施肥; NPK: 单施化肥; NPKM: 化肥配施牛粪; NPKS: 化肥配施稻秸。LF-C: 轻组有机碳; CF-C: 粗颗粒有机碳; FF-C: 细颗粒有机碳; mSOC: 矿物结合态有机碳。同列不同小写字母表示不同处理间差异显著(P<0.05)。CK: no fertilizer; NPK: application of chemical fertilizers; NPKM: combined application of chemical fertilizer and cattle manure; NPKS: combined application of chemical fertilizer and straw. LF-C: light fraction organic carbon; CF-C: coarse fraction organic carbon; FF-C: fine fraction organic carbon; mSOC: mineral-associated organic carbon. Different lowercase letters in the same column mean significant differences among treatments at P<0.05.
    下载: 导出CSV

    表  4  不同施肥处理下中间团聚体内有机碳组分对全土有机碳固持的贡献率

    Table  4.   Contribution rates of organic carbon fractions in soil medium-aggregates to bulk soil organic carbon under different fertilizations

    处理
    Treatment
    LF-CCF-CFF-CmSOC
    % 
    CK7.72±0.25a2.32±0.21a3.96±0.92a25.09±0.54a
    NPK8.04±0.99a2.23±0.61a3.38±1.09ab26.22±0.52a
    NPKM5.06±0.52c1.14±0.27b2.39±0.86ab14.30±0.96c
    NPKS6.32±0.45b1.43±0.17b1.87±0.52b16.89±0.86b
      CK: 不施肥; NPK: 单施化肥; NPKM: 化肥配施牛粪; NPKS: 化肥配施稻秸。LF-C: 轻组有机碳; CF-C: 粗颗粒有机碳; FF-C: 细颗粒有机碳; mSOC: 矿物结合态有机碳。同列不同小写字母表示不同处理间差异显著(P<0.05)。CK: no fertilizer; NPK: application of chemical fertilizers; NPKM: combined application of chemical fertilizer and cattle manure; NPKS: combined application of chemical fertilizer and straw. LF-C: light fraction organic carbon; CF-C: coarse fraction organic carbon; FF-C: fine fraction organic carbon; mSOC: mineral-associated organic carbon. Different lowercase letters in the same column mean significant differences among treatments at P<0.05.
    下载: 导出CSV

    表  5  团聚体有机碳组分含量与水稻产量及有机碳投入的相关性

    Table  5.   Relationship between rice yield, soil organic carbon and organic carbon input


    组分
    Component
    籽粒产量
    Yield of grain (kg∙hm−2)
    稻秸产量
    Yield of straw (kg∙hm−2)
    有机碳投入
    Organic carbon input (kg∙hm−2)
    原土有机碳 Bulk soil organic carbon0.89**0.91**0.78**
    团聚体内有机碳
    Organic carbon in different soil aggregates
    >2 mm0.84**0.84**0.77**
    0.25~2 mm0.64*0.61*0.28
    0.053~0.25 mm0.310.400.18
    <0.053 mm0.450.530.38
    大团聚体内有机碳
    Organic carbon in macro-aggregate
    LF-C0.88**0.87**0.78**
    CF-C0.63*0.71**0.43
    FF-C0.250.260.50
    mSOC0.58*0.58*0.44
    中间团聚体内有机碳
    Organic carbon in medium-aggregate
    LF-C−0.060.17−0.01
    CF-C−0.56*−0.53−0.34
    FF-C0.200.16−0.12
    mSOC0.450.57*0.49
      LF-C: 轻组有机碳; CF-C: 粗颗粒有机碳; FF-C: 细颗粒有机碳; mSOC: 矿物结合态有机碳。*和**表示P<0.05和P<0.01水平显著相关(n=12)。 LF-C: light fraction organic carbon; CF-C: coarse fraction organic carbon; FF-C: fine fraction organic carbon; mSOC: mineral-associated organic carbon. * and ** indicate significant correlation at P<0.05 and P<0.01, respectively (n=12).
    下载: 导出CSV
  • [1] ZHAO J S, CHEN S, HU R G, et al. Aggregate stability and size distribution of red soils under different land uses integrally regulated by soil organic matter, and iron and aluminum oxides[J]. Soil & Tillage Research, 2017, 167: 73−79
    [2] 孟祥天, 蒋瑀霁, 王晓玥, 等. 生物质炭和秸秆长期还田对红壤团聚体和有机碳的影响[J]. 土壤, 2018, 50(2): 326−332

    MENG X T, JIANG Y J, WANG X Y, et al. Effects of long-term application of biochar and straws on red soil aggregate compostion and organic carbon distribution[J]. Soil, 2018, 50(2): 326−332
    [3] 刘哲, 韩霁昌, 孙增慧, 等. 外源新碳对红壤团聚体及有机碳分布和稳定性的影响[J]. 环境科学学报, 2017, 37(6): 2351−2359

    LIU Z, HAN J C, SUN Z H, et al. Effects of fresh carbon on distribution and stability of aggregates and organic carbon in red soil[J]. Acta Scientiae Circumstantiae, 2017, 37(6): 2351−2359
    [4] LAI R, LAI L, LAI S K. Physical management of soils of the tropics: priorities for the 21st century[J]. Soil Science, 2000, 165(3): 191−207 doi: 10.1097/00010694-200003000-00002
    [5] 王丽, 李军, 李娟, 等. 轮耕与施肥对渭北旱作玉米田土壤团聚体和有机碳含量的影响[J]. 应用生态学报, 2014, 25(3): 759−768

    WANG L, LI J, LI J, et al. Effects of tillage rotation and fertilization on soil aggregates and organic carbon content in corn field in Weibei Highland[J]. Chinese Journal of Applied Ecology, 2014, 25(3): 759−768
    [6] 王璐莹, 秦雷, 吕宪国, 等. 铁促进土壤有机碳累积作用研究进展[J]. 土壤学报, 2018, 55(5): 1041−1050

    WANG L Y, QIN L, LYU X G, et al. Progress in researches on effect of iron promoting accumulation of soil organic carbon[J]. Acta Pedologica Sinica, 2018, 55(5): 1041−1050
    [7] HASSINK J, WHITMORE A P. A model of the physical protection of organic matter in soils[J]. Soil science society of America Journal, 1997, 61(1): 131−139 doi: 10.2136/sssaj1997.03615995006100010020x
    [8] CHUNG H, GROVE J H, SIX J. Indications for soil carbon saturation in a temperate agroecosystem[J]. Soil Science Society of America Journal, 2008, 74(4): 1132−1139
    [9] PAUSTIAN K, SIX J, ELLIOTT E T, et al. Management options for reducing CO2 emissions from agricultural soils[J]. Biogeochemistry, 2000, 48(1): 147−163 doi: 10.1023/A:1006271331703
    [10] DOMIZAL H, HODARA J, SLOWINSKA-JURKIEWICZ A, et al. The effect of agricultural use on the structure and physical properties of three soil types[J]. Soil & Tillage Research, 1993, 27(1-4): 365−382
    [11] 邢旭明, 王红梅, 安婷婷, 等. 长期施肥对棕壤团聚体组成及其主要养分赋存的影响[J]. 水土保持学报, 2015, 29(2): 267−273

    XING X M, WANG H M, AN T T, et al. Effects of long-term fertilization on distribution of aggregate size and main nutrient accumulation in brown earth[J]. Journal of Soil and Water Conservation, 2015, 29(2): 267−273
    [12] 李凯, 窦森, 韩晓增, 等. 长期施肥对黑土团聚体中腐殖物质组成的影响[J]. 土壤学报, 2010, 47(3): 579−583

    LI K, DOU S, HAN X Z, et al. Effects of long-term fertilization on composition of humic substances in black soil aggregates[J]. Acta Pedologica Sinica, 2010, 47(3): 579−583
    [13] 福建省土壤普查办公室. 福建土壤[M]. 福州: 福建科学技术出版社, 1991

    Fujian Province Office of General Survey of Soil. Fujian Soil[M]. Fuzhou: Fujian Science & Technology Press, 1991
    [14] SIX J, ELLIOTT E T, PAUSTIAN K, et al. Aggregation and soil organic matter accumulation in cultivated and native grassland soils[J]. Soil Science Society of America Journal, 1998, 62(5): 1367−1377 doi: 10.2136/sssaj1998.03615995006200050032x
    [15] 徐江兵, 李成亮, 何园球, 等. 不同施肥处理对旱地红壤团聚体中有机碳含量及其组分的影响[J]. 土壤学报, 2007, 44(4): 675−682

    XU J B, LI C L, HE Y Q, et al. Effect of fertilization on organic carbon content and fractionation of aggregates in upland red soil[J]. Acta Pedologica Sinica, 2007, 44(4): 675−682
    [16] DENEF K, SIX J. Clay mineralogy determines the importance of biological versus abiotic processes for macroaggregate formation and stabilization[J]. European Journal of Soil Science, 2005, 56: 469−479 doi: 10.1111/j.1365-2389.2004.00682.x
    [17] 李增全, 江长胜, 郝庆菊. 缙云山不同土地利用方式对土壤团聚体微生物量碳氮的影响[J]. 环境科学, 2015, 36(11): 4241−4251

    LI Z Q, JIANG C S, HAO Q J. Effects of land use type on soil microbial biomass carbon and nitrogen in water-stable aggregates in Jinyun Mountain[J]. Environmental Science, 2015, 36(11): 4241−4251
    [18] LI C S, FROLKINF S, HARRISS R. Modeling carbon biogeochemistry in agricultural soils[J]. Global Biogeochemical Cycles, 1994, 8(3): 237−254 doi: 10.1029/94GB00767
    [19] 王飞, 李清华, 林诚, 等. 不同施肥模式对南方黄泥田耕层有机碳固存及生产力的影响[J]. 植物营养与肥料学报, 2015, 21(6): 1447−1454

    WANG F, LI Q H, LIN C, et al. Effect of different fertilization modes on topsoil organic carbon sequestration and productivity in yellow paddy field of southern China[J]. Journal of Plant Nutrition and Fertilizers, 2015, 21(6): 1447−1454
    [20] 周虎, 吕贻忠, 杨志臣, 等. 保护性耕作对华北平原土壤团聚体特征的影响[J]. 中国农业科学, 2007, 40(9): 1973−1979

    ZHOU H, LYU Y Z, YANG Z C, et al. Effects of conservation tillage on soil aggregates in Huabei Plain, China[J]. Scientia Agricultura Sinica, 2007, 40(9): 1973−1979
    [21] 李委涛, 李忠佩, 刘明, 等. 秸秆还田对瘠薄红壤水稻土团聚体内酶活性及养分分布的影响[J]. 中国农业科学, 2016, 49(20): 3886−3895 doi: 10.3864/j.issn.0578-1752.2016.20.003

    LI W T, LI Z P, LIU M, et al. Enzyme activities and soil nutrient status associated with different aggregate fractions of paddy soils fertilized with returning straw for 24 years[J]. Scientia Agricultura Sinica, 2016, 49(20): 3886−3895 doi: 10.3864/j.issn.0578-1752.2016.20.003
    [22] 周萍, 宋国菡, 潘根兴, 等. 南方三种典型水稻土长期试验下有机碳积累机制研究Ⅰ. 团聚体物理保护作用[J]. 土壤学报, 2008, 45(6): 1063−1071 doi: 10.3321/j.issn:0564-3929.2008.06.008

    ZHOU P, SONG G H, PAN G X, et al. Soil organic carbon enhancement in three major types of paddy soils in a long-term agro-ecosystem experiment in south China Ⅰ: chemical binding and protection in micro-aggregate sizes fractions[J]. Acta Pedologica Sinica, 2008, 45(6): 1063−1071 doi: 10.3321/j.issn:0564-3929.2008.06.008
    [23] 陈晓芬, 李忠佩, 刘明, 等. 不同施肥处理对红壤水稻土团聚体有机碳、氮分布和微生物生物量的影响[J]. 中国农业科学, 2013, 46(5): 950−960 doi: 10.3864/j.issn.0578-1752.2013.05.010

    CHEN X F, LI Z P, LIU M, et al. Effects of different fertilizations on organic carbon and nitrogen contents in water-stable aggregates and microbial biomass content in paddy soil of subtropical China[J]. Scientia Agricultura Sinica, 2013, 46(5): 950−960 doi: 10.3864/j.issn.0578-1752.2013.05.010
    [24] SIX J, ELLIOTT E T, PAUSTIAN K. Soil macroaggregate turnover and microaggregate formation: a mechanism for C sequestration under no-tillage agriculture[J]. Soil Biology and Biochemistry, 2000, 32(14): 2099−2103 doi: 10.1016/S0038-0717(00)00179-6
    [25] WANG X, CAMMERAAT E L H, CERLI C, et al. Soil aggregation and the stabilization of organic carbon as affected by erosion and deposition[J]. Soil Biology and Biochemistry, 2014, 72: 55−65 doi: 10.1016/j.soilbio.2014.01.018
    [26] 张志毅, 汤文娟, 熊又升, 等. 改良剂对冷浸田土壤团聚体稳定性的影响[J]. 华中农业大学学报, 2015, 34(4): 37−43

    ZHANG Z Y, TANG W J, XIONG Y S, et al. Effects of amendment on aggregate stability of soil for cold waterlogged paddy field[J]. Journal of Huazhong Agricultural University, 2015, 34(4): 37−43
    [27] 周方亮, 李峰, 黄雅楠, 等. 紫云英添加对土壤团聚体组成及有机碳分布的影响[J]. 土壤, 2020, 52(4): 781−788

    ZHOU F L, LI F, HUANG Y N, et al. Effects of adding Chinese milk vetch on soil aggregates composition and organic carbon distribution[J]. Soils, 2020, 52(4): 781−788
    [28] ELLIOTT E T. Aggregate structure and carbon, nitrogen, and phosphorus in native and cultivated soils[J]. Soil Science Society of America Journal, 1986, 50(3): 627−633 doi: 10.2136/sssaj1986.03615995005000030017x
    [29] JASTROW J D, MILLER R M, BOUTTON T W. Carbon dynamics of aggregate-associated organic matter estimated by carbon-13 natural abundance[J]. Soil Science Society of America Journal, 1996, 60(3): 801−807 doi: 10.2136/sssaj1996.03615995006000030017x
    [30] 刘满强, 胡锋, 陈小云. 土壤有机碳稳定机制研究进展[J]. 生态学报, 2007, 27(6): 2642−2650

    LIU M Q, HU F, CHEN X Y. A review on mechanisms of soil organic carbon stabilization[J]. Acta Ecologica Sinica, 2007, 27(6): 2642−2650
    [31] 章明奎, 郑顺安, 王丽平. 利用方式对砂质土壤有机碳、氮和磷的形态及其在不同大小团聚体中分布的影响[J]. 中国农业科学, 2007, 40(8): 1703−1711

    ZHANG M K, ZHENG S A, WANG L P. Chemical forms and distributions of organic carbon, nitrogen and phosphorus in sandy soil aggregate fractions as affected by land uses[J]. Scientia Agricultura Sinica, 2007, 40(8): 1703−1711
    [32] 王飞, 林诚, 李清华, 等. 长期不同施肥对南方黄泥田水稻子粒品质性状与土壤肥力因子的影响[J]. 植物营养与肥料学报, 2011, 17(2): 283−290

    WANG F, LIN C, LI Q H, et al. Effects of long-term fertilization on rice grain qualities and soil fertility factors in yellow paddy fields of southern China[J]. Plant Nutrition and Fertilizer Science, 2011, 17(2): 283−290
    [33] 左雪枝, 方华舟. 牛粪堆肥中高效菌株的筛选与应用效果[J]. 中国土壤与肥料, 2014(1): 95–100

    ZUO X Z, FANG H Z. Screening of efficient microorganisms and their application in cow dung compost[J]. Soil and Fertilizer Sciences in China, 2014 (1): 95–100
    [34] 佟小刚, 黄绍敏, 徐明岗, 等. 长期不同施肥模式对潮土有机碳组分的影响[J]. 植物营养与肥料学报, 2009, 15(4): 831−836 doi: 10.3321/j.issn:1008-505X.2009.04.014

    TONG X G, HUANG S M, XU M G, et al. Effects of the different long-term fertilizations on fractions of organic carbon in fluvo-aquic soil[J]. Plant Nutrition and Fertilizer Science, 2009, 15(4): 831−836 doi: 10.3321/j.issn:1008-505X.2009.04.014
    [35] 石丽红, 李超, 唐海明, 等. 长期不同施肥措施对双季稻田土壤活性有机碳组分和水解酶活性的影响[J]. 应用生态学报, 2021, 32(3): 921−930 doi: 10.13287/j.1001-9332.202103.023

    SHI L H, LI C, TANG H M, et al. Effects of long-term fertilizer management on soil labile organic carbon fractions and hydrolytic enzyme activity under a double-cropping rice system of southern China[J]. Chinese Journal of Applied Ecology, 2021, 32(3): 921−930 doi: 10.13287/j.1001-9332.202103.023
    [36] 俞巧钢, 杨艳, 邹平, 等. 有机物料对稻田土壤团聚体及有机碳分布的影响[J]. 水土保持学报, 2017, 31(6): 173−178 doi: 10.13870/j.cnki.stbcxb.2017.06.028

    YU Q G, YANG Y, ZOU P, et al. Effect of organic materials application on soil aggregate and soil organic carbon in rice fields[J]. Journal of Soil and Water Conservation, 2017, 31(6): 173−178 doi: 10.13870/j.cnki.stbcxb.2017.06.028
    [37] MAILI S S, KUTCHER H R. Small grains stubble burning and tillage effects on soil organic C and N, and aggregation in northeastern Saskatchewan[J]. Soil & Tillage Research, 2007, 94(2): 353−361
  • 加载中
图(5) / 表(5)
计量
  • 文章访问数:  224
  • HTML全文浏览量:  81
  • PDF下载量:  51
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-04-23
  • 录用日期:  2022-09-26
  • 修回日期:  2022-09-26
  • 网络出版日期:  2022-11-25
  • 刊出日期:  2023-02-10

目录

    /

    返回文章
    返回