留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

小麦||红花间作系统下根际微生物群落结构及功能分析

王香生 连延浩 郭辉 任永哲 辛泽毓 林同保 王志强

王香生, 连延浩, 郭辉, 任永哲, 辛泽毓, 林同保, 王志强. 小麦||红花间作系统下根际微生物群落结构及功能分析[J]. 中国生态农业学报 (中英文), 2022, 30(0): 1−14 doi: 10.12357/cjea.20220354
引用本文: 王香生, 连延浩, 郭辉, 任永哲, 辛泽毓, 林同保, 王志强. 小麦||红花间作系统下根际微生物群落结构及功能分析[J]. 中国生态农业学报 (中英文), 2022, 30(0): 1−14 doi: 10.12357/cjea.20220354
WANG X S, LIAN Y H, GUO H, REN Y Z, XIN Z Y, LIN T B, WANG Z Q. Effects of wheat/safflower intercropping on rhizosphere microbial community function and structure[J]. Chinese Journal of Eco-Agriculture, 2022, 30(0): 1−14 doi: 10.12357/cjea.20220354
Citation: WANG X S, LIAN Y H, GUO H, REN Y Z, XIN Z Y, LIN T B, WANG Z Q. Effects of wheat/safflower intercropping on rhizosphere microbial community function and structure[J]. Chinese Journal of Eco-Agriculture, 2022, 30(0): 1−14 doi: 10.12357/cjea.20220354

小麦||红花间作系统下根际微生物群落结构及功能分析

doi: 10.12357/cjea.20220354
基金项目: 河南省自然科学基金(222300420454)和河南省科技攻关(202102110025)资助
详细信息
    作者简介:

    王香生, 主要从事农田生态研究。E-mail: wxs7991@163.com

    通讯作者:

    王志强, 主要从事农田生态研究。E-mail: wangcrops@sina.com

  • 中图分类号: S512.1; S567.219

Effects of wheat/safflower intercropping on rhizosphere microbial community function and structure

Funds: This study was supported by the Natural Science Foundation of Henan Province (222300420454), the Scientific and Technological Project of Henan Province (202102110025).
More Information
  • 摘要: 研究小麦||红花间作系统作物根际土壤微生物群落结构及功能变化, 对后期构建合理的小麦||红花种植模式和地区适宜性评价具有重要意义。本研究在田间设置小麦红花间作(2∶1)模式, 以小麦单作、红花单作为对照, 基于Illumina Miseq高通量测序平台研究了小麦||红花根际土壤细菌和真菌群落结构特征和功能变化, 在成熟期, 分别测定小麦红花产量。结果表明: 小麦||红花土地当量比为1.01, 间作优势并不明显; 小麦、红花根际微生物多样性指数分析结果表明, 间作提高了小麦根际细菌多样性和真菌的丰富度, 但显著降低了小麦根际细菌的丰富度和真菌多样性;间作显著提高了红花根际细菌的多样性, 但降低了红花根际真菌的多样性及细菌和真菌的丰富度。主坐标分析(PCoA)和群落均衡性分析结果表明, 间作显著改变了红花根际微生物群落结构(P<0.05)。小麦红花根际优势细菌门为变形菌门、酸杆菌门和拟杆菌门, 在单作小麦、间作小麦、单作红花和间作红花中平均相对丰度总占比分别为65.94%、70.57%、71.39%、70.07%, 优势真菌为子囊菌门、担子菌门, 平均相对丰度总占比分别为75.99%、68.17%、93.23%、69.88%。间作显著提高了红花根际酸杆菌门、Rokubacteria、以及真菌的被孢霉门的相对丰度(P<0.05), 对小麦各菌门并未造成显著影响。功能预测结果表明, 间作显著提高了红花根际好养氨氧化、硝化作用、发酵、硝酸盐还原等养分循环过程(P<0.05), 结合相关性分析结果发现MND1与这些过程显著正相关(P<0.05), 且其相对丰度在红花根际表现为间作显著高于单作(P<0.05)。此外, 间作显著提高了红花根际丛枝菌根功能基因的相对丰度, 同时降低了植物病原菌类功能基因的相对丰度(P<0.05); 在属水平, 间作显著提高了红花根际被孢霉属、Wickerhamomyces等有益菌属的相对丰度, 显著降低了镰刀菌属、链格孢属致病真菌属的相对丰度(P<0.05)。共线网络分析结果表明, 间作可一定程度上提高小麦根际微生物网络的复杂性, 降低红花根际微生物网络的复杂性;此外, 镰刀菌属位于红花根际微生物网络的中心, 间作可通过影响红花根际微生物间的相互作用明显降低镰刀菌属的数量。综上, 小麦||红花间作体系中, 处于竞争劣势的红花可通过改善根际微生物群落组成, 提高根际养分循环过程, 进而缓解在养分等资源竞争上的不利地位; 此外, 间作可显著降低红花根际致病类病原菌的相对丰度, 对减少红花病害的发生及土壤中致病菌总量均具有重要意义。
  • 图  1  小麦红花间作根际土壤细菌(a)和真菌(b)OTU韦恩图分析

    W: 单作单作; WRW: 间作小麦; R: 单作红花; WRR: 间作|红花。W: monocultured wheat; WRW: intercropped wheat; R: monocultured safflower; WRW: intercropped safflower.

    Figure  1.  OTUVenn diagram analysis of rhizosphere soil bacteria (a) and fungui (b) of wheat and safflower intercropping system

    图  2  小麦红花间作根际土壤微生物群落均衡性分析

    细菌和真菌操作分类单元(OTUs)的比率;W: 单作单作; WRW: 间作小麦; R: 单作红花; WRR: 间作|红花。A: ratio of bacterial and fungal operational taxonomic units (OTUs); W: monocultured wheat; WRW: intercropped wheat; R: monocultured safflower; WRW: intercropped safflower.

    Figure  2.  Equilibrium analysis of rhizosphere soil microbial community of wheat and safflower intercropping system

    图  3  小麦红花间作根际土壤细菌(A)和真菌(B)群落PCoA分析

    W: 单作单作; WRW: 间作小麦; R: 单作红花; WRR: 间作|红花。处理后面的数字表示样点的重复序号。W: monocultured wheat; WRW: intercropped wheat; R: monocultured safflower; WRW: intercropped safflower. The marked number represents the number of repeats of the treatment.

    Figure  3.  PCoA analysis of bacteria (A) and fungi (B) communities in rhizosphere soil of wheat and safflower intercropping system

    图  4  小麦红花间作根际土壤细菌(A)和真菌(B)的门水平丰富度

    Proteobacteria: 变形菌门; Acidobacteria: 酸杆菌门; Bacteroidetes: 拟杆菌门; Gemmatimonadetes: 芽单胞菌门; Actinobacteria: 放线菌门; Chloroflexi: 绿弯菌门; Firmicutes: 厚壁菌门; Verrucomicrobia: 疣微菌门; Nitrospirae: 硝化螺旋菌门; Other: 其他; Ascomycota: 子囊菌门; Basidiomycota: 担子菌门; Mortierellomycota: 被孢霉门; Other: 其他; Unclassified: 未分类. W: 单作单作; WRW: 间作小麦; R: 单作红花; WRR: 间作|红花。W: monocultured wheat; WRW: intercropped wheat; R: monocultured safflower; WRW: intercropped safflower.

    Figure  4.  Abundance of bacteria (A) and fungal (B) at phylum level in rhizosphere soil of wheat and safflower intercropping system

    图  5  小麦红花间作根际土壤细菌(A)和真菌(B)属的丰富度

    Sphingomonas: 鞘脂单胞菌属; Massilia: 马赛菌属; Adhaeribacter: 土黏结杆菌; Nitrospira: 硝化螺菌属; Mortierella: 被孢霉属; Fusarium: 镰刀菌属; Alternaria: 链格孢属; Cladosporium: 枝孢霉属; Funneliformis: 管柄囊霉属; Acremonium: 顶孢霉属; Aspergillus: 曲霉属。W: 单作单作; WRW: 间作小麦; R: 单作红花; WRR: 间作|红花。不同小写字母表不同处理间差异显著(P<0.05)。W: monocultured wheat; WRW: intercropped wheat; R: monocultured safflower; WRW: intercropped safflower. Different lowercase letters indicate significant different among treatments (P<0.05).

    Figure  5.  Abundance of the bacteria (A) and fungal (B) genus in the rhizosphere soil of wheat and safflower intercropping system

    图  6  小麦红花间作根际土壤细菌(A, C)真菌(B, D)多样性及功能与产量及优势菌属相对丰度的相关性

    *: P<0.05; **: P<0.01: ***: P<0.001.

    Figure  6.  Pearson correlations of diversity, function and yield of bacteria (A, C) and fungi (B, D) with relative abundance of dominant genera in the rhizosphere soil of wheat and safflower intercropping system

    图  7  小麦红花间作根际土壤微生物群落共线网络分析

    Ascomycota: 子囊菌门; Proteobacteria: 变形菌门; Bacteroidetes: 拟杆菌门; Acidobacteria: 酸杆菌门; Basidiomycota: 担子菌门; Unclassified: 未分类; Mortierellomycota: 被孢霉门; Glomeromycota: 球囊菌门; Fibrobacteres: 纤维杆菌门; Gemmatimonadetes: 芽单胞菌门; Olpidiomycota: 油壶菌门; Firmicutes: 厚壁菌门; Actinobacteria: 放线菌门; Actinobacteria: 放线菌门; Nitrospirae: 硝化螺旋菌门; Tenericutes: 软壁菌门; Spirochaetes: 软壁菌门

    Figure  7.  Co-occurrence network analysis of soil microbial communities in the rhizosphere soil of wheat and safflower intercropping system

    (A): W, (B):WRW, (C):R, (D):WRR. 红线表明正相关, 蓝线表示负相关, 节点大小与连接数成正比。(A): W, (B): WRW, (C): R, (D): WRR. The red line indicates a positive correlation, and the blue line indicates a negative correlation. The node size is proportional to the number of connections.

    表  1  小麦红花间作体系的产量及土地当量比

    Table  1.   Yield and land equivalent ratio of wheat and safflower intercropping system

    种植模式
    Planting pattern
    产量 Yield (kg∙hm–2)偏土地当量比 Partial land equivalent ratio土地当量比
    Land equivalent ratio
    小麦
    Wheat
    红花
    Safflower
    小麦
    Wheat
    红花
    Safflower
    单作 Monoculture6574.07±462.53a 419.25±35.90b
    间作 Intercropping4934.44±152.07b1826.24±54.54a0.780.231.01
      同列数据后不同小写字母表示处理间差异显著(P<0.05). Values followed by different letters in a column are significantly different (P<0.05).
    下载: 导出CSV

    表  2  小麦红花间作土壤根际细菌和真菌的多样性指数

    Table  2.   Diversity indexes of bacteria and fungi communities in rhizosphere soil of wheat and safflower intercropping system

    微生物
    microorganism
    处理
    Treatment
    ACE指数
    ACE index
    Chao1指数
    Chao1 index
    香农指数
    Shannon index
    覆盖率
    Coverage (%)
    细菌
    Bacteria
    单作小麦 Monocultured wheat2129.97±14.25a2148.91±16.95a9.61±0.15a99.83
    间作小麦 Intercropped wheat2086.15±10.42b2092.80±8.72b9.66±0.04a99.89
    单作红花 Monocultured safflower2074.00±4.13a2086.89±10.42a9.70±0.01b99.89
    间作红花 Intercropped safflower2070.49±22.17a2081.60±26.05a9.76±0.02a99.89
    真菌
    Fungus
    单作小麦 Monocultured wheat403.11±66.59a343.25±63.33a6.69±0.03a99.96
    间作小麦 Intercropped wheat516.84±55.74a357.20±59.44a6.17±0.09b99.92
    单作红花 Monocultured safflower603.03±12.23a466.93±5.68a7.05±0.12a99.93
    间作红花 Intercropped safflower449.07±81.04a367.84±18.16b6.67±0.46a99.92
      同列数据后不同小写字母表示处理间差异显著(P<0.05). Values followed by different letters in a column are significantly different (P<0.05).
    下载: 导出CSV

    表  3  小麦红花间作根际细菌FARPROTAX功能预测

    Table  3.   Bacterial FARPROTAX function prediction in the rhizosphere soil of wheat and safflower intercropping system

    功能
    Function
    单作小麦
    Monocultured wheat
    间作小麦
    Intercropping wheat
    单作红花
    Monocultured safflower
    间作红花
    Intercropped safflower
    % 
    好养氨氧化 Aerobic_ammonia_oxidation4.25±0.11bc3.85±0.07c4.27±0.24b4.91±0.23a
    好养亚硝酸盐氧化 Aerobic_nitrite_oxidation1.82±0.10a1.77±0.02a2.03±0.16a2.04±0.29a
    硝化作用 Nitrification6.07±0.01bc5.62±0.08c6.29±0.37b6.95±0.48a
    几丁质溶解 Chitinolysis1.11±0.04ab0.92±0.23b1.25±0.16a1.05±0.14ab
    发酵 Fermentation4.81±0.37b6.49±1.30ab6.03±0.40b8.28±1.22a
    好氧化能异氧Aerobic_chemoheterotrophy28.70±0.41a27.09±1.26ab26.41±0.70b22.16±1.00c
    硝酸盐还原 Nitrate_reduction2.83±0.07b3.20±0.48ab3.11±0.26b3.91±0.46a
    尿素溶解 Ureolysis4.43±0.39a4.90±0.66a3.34±0.35b2.97±0.11b
    化能异氧 Chemoheterotrophy34.03±0.12a33.85±0.36a33.44±0.39a31.24±0.50b
      同行数据后不同小写字母表示处理间差异显著(P<0.05). Values followed by different letters in a line are significantly different (P<0.05).
    下载: 导出CSV

    表  4  小麦红花间作根际土壤真菌FUNGuild功能预测

    Table  4.   Fungi FUNGuild function prediction in the rhizosphere soil of wheat and safflower intercropping system

    功能群
    Function group
    单作小麦
    Monocultured wheat
    间作小麦
    Intercropping wheat
    单作红花
    Monocultured safflower
    间作红花
    Intercropped safflower
    动物病原菌 Animal pathogen9.30±2.53a5.82±4.07a5.98±0.63a6.40±3.84a
    丛枝菌根 Arbuscular mycorrhizal6.41±2.93a5.10±3.04ab2.20±0.67c6.53±2.70b
    粪便腐生生物 Dung saprotroph6.63±0.79a11.81±4.98a6.87±1.40a5.98±3.22a
    外生菌根 Ectomycorrhizal0.93±0.65a2.30±0.75a1.09±0.27a4.54±4.05a
    内生真菌 Endophyte2.05±1.60ab1.56±2.20ab4.17±0.22a0.91±0.93b
    寄生真菌 Fungal parasite11.01±3.42a6.49±2.84ab8.75±0.54a2.83±1.45b
    植物病原菌 Plant pathogen10.88±1.77b10.43±3.72b24.63±1.24a15.05±9.00ab
    植物腐生生物 Plant saprotroph2.98±0.89b7.46±4.54ab11.13±0.67a5.98±2.12b
    土壤腐生生物 Soil saprotroph1.73±0.84a0.01±0.01b0.84±0.52b0.98±0.94b
    木质腐生生物Wood saprotroph4.54±1.52a6.22±0.30a2.91±0.54a4.92±2.72a
      同行数据后不同小写字母表示处理间差异显著(P<0.05). Values followed by different letters in a line are significantly different (P<0.05).
    下载: 导出CSV

    表  5  小麦红花间作根际土壤微生物群落共线网络拓扑性质

    Table  5.   Co-occurrence network topological properties of soil microbial communities

    网络指标
    Network indicator
    单作小麦
    Monocultured wheat
    间作小麦
    Intercropping wheat
    单作红花
    Monocultured safflower
    间作红花
    Intercropped safflower
    节点数 Nodes100100100100
    边数 Edges1554156216801642
    正相关边数占比
    Positive correlation edge proportion (%)
    55.0250.3860.6551.31
    负相关边占比
    Negative correlation edge proportion (%)
    44.9849.6239.3548.69
    图密度 Graph density0.3140.3290.3460.332
    模块化 Modularity0.5990.6580.3390.332
    下载: 导出CSV
  • [1] 陈红瑜, 崔刚. 河南统计年鉴-2021: 12-11农作物播种面积[EB/OL]. 河南省统计局; 2021; http://tjj.henan.gov.cn/tjfw/tjcbw/tjnj/

    CHEN H Y, CUI G. Henan 2021 Statistical Yearbook: 12-11 Sown Area of Farm Crops[EB/OL]. Henan Provincial Bureau of Statistics; 2021; http://tjj.henan.gov.cn/tjfw/tjcbw/tjnj/
    [2] LI L, LI S M, SUN J H, et al. Diversity enhances agricultural productivity via rhizosphere phosphorus facilitation on phosphorus-deficient soils[J]. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104(27): 11192−11196 doi: 10.1073/pnas.0704591104
    [3] 肖焱波, 李隆, 张福锁. 小麦/蚕豆间作体系中的种间相互作用及氮转移研究[J]. 中国农业科学, 2005, 38(5): 965−973 doi: 10.3321/j.issn:0578-1752.2005.05.016

    XIAO Y B, LI L, ZHANG F S. The interspecific nitrogen facilitation and the subsequent nitrogen transfer between the intercropped wheat and fababean[J]. Scientia Agricultura Sinica, 2005, 38(5): 965−973 doi: 10.3321/j.issn:0578-1752.2005.05.016
    [4] 褚贵新, 沈其荣, 张娟, 肖龙云, 峁泽圣. 用15N富积标记和稀释法研究旱作水稻/花生间作系统中氮素固定和转移[J]. 植物营养与肥料学报, 2003, 9(4): 385−389 doi: 10.3321/j.issn:1008-505X.2003.04.001

    CHU G X, SHEN Q R, ZHANG J, et al. Comparision of two methods used to study the biological nitrogen fixation and nitrogen transfer from peanut to rice in aerobic soil of intercropping system[J]. Plant Nutrition and Fertilizing Science, 2003, 9(4): 385−389 doi: 10.3321/j.issn:1008-505X.2003.04.001
    [5] BÜNEMANN E K, BOSSIO D A, SMITHSON P C, et al. Microbial community composition and substrate use in a highly weathered soil as affected by crop rotation and P fertilization[J]. Soil Biology and Biochemistry, 2004, 36(6): 889−901 doi: 10.1016/j.soilbio.2004.02.002
    [6] 柴强, 黄鹏, 黄高宝. 间作对根际土壤微生物和酶活性的影响研究[J]. 草业学报, 2005, 14(5): 105−110 doi: 10.3321/j.issn:1004-5759.2005.05.019

    CHAI Q, HUANG P, HUANG G B. Effect of intercropping on soil microbial and enzyme activity in the rhizosphere[J]. Acta Pratacultural Science, 2005, 14(5): 105−110 doi: 10.3321/j.issn:1004-5759.2005.05.019
    [7] ZHANG X L, TENG Z Y, ZHANG H H, et al. Nitrogen application and intercropping change microbial community diversity and physicochemical characteristics in mulberry and alfalfa rhizosphere soil[J]. Journal of Forestry Research, 2021, 32(5): 2121−2133 doi: 10.1007/s11676-020-01271-y
    [8] LI S, WU F Z. Diversity and co-occurrence patterns of soil bacterial and fungal communities in seven intercropping systems[J]. Frontiers in Microbiology, 2018, 9: 1521 doi: 10.3389/fmicb.2018.01521
    [9] MÜLLER D B, VOGEL C, BAI Y, et al. The plant microbiota: systems-level insights and perspectives[J]. Annual Review of Genetics, 2016, 50: 211−234 doi: 10.1146/annurev-genet-120215-034952
    [10] 肖苗苗, 张红娟, 赵芳, 等. 小麦/玉米轮作田根际微生物多样性分析[J]. 微生物学通报, 2021, 48(12): 4612−4623 doi: 10.13344/j.microbiol.china.210360

    XIAO M M, ZHANG H J, ZHAO F, et al. Diversity analysis of rhizosphere microbial in wheat/maize rotation field[J]. Microbiology China, 2021, 48(12): 4612−4623 doi: 10.13344/j.microbiol.china.210360
    [11] SUN L, GAO J S, HUANG T, et al. Parental material and cultivation determine soil bacterial community structure and fertility[J]. FEMS Microbiology Ecology, 2014, 91(1): 1−10
    [12] LENNON J T, JONES S E. Microbial seed banks: the ecological and evolutionary implications of dormancy[J]. Nature Reviews Microbiology, 2011, 9(2): 119−130 doi: 10.1038/nrmicro2504
    [13] BERENDSEN R L, PIETERSE C M J, BAKKER P A H M. The rhizosphere microbiome and plant health[J]. Trends in Plant Science, 2012, 17(8): 478−486 doi: 10.1016/j.tplants.2012.04.001
    [14] 李芳, 郝志鹏, 陈保冬. 菌根植物适应低磷胁迫的分子机制[J]. 植物营养与肥料学报, 2019, 25(11): 1989−1997 doi: 10.11674/zwyf.18490

    LI F, HAO Z P, CHEN B D. Molecular mechanism for the adaption of arbuscular mycorrhizal symbiosis to phosphorus deficiency[J]. Journal of Plant Nutrition and Fertilizers, 2019, 25(11): 1989−1997 doi: 10.11674/zwyf.18490
    [15] 周贤玉, 唐艺玲, 王志国, 等. 减量施氮与间作模式对甜玉米AMF侵染和大豆结瘤及作物氮磷吸收的影响[J]. 中国生态农业学报, 2017, 25(8): 1139−1146 doi: 10.13930/j.cnki.cjea.170050

    ZHOU X Y, TANG Y L, WANG Z G, et al. Effects of reduced nitrogen application and intercropping on sweet corn AMF colonization, soybean nodulation and nitrogen and phosphorus absorption[J]. Chinese Journal of Eco-Agriculture, 2017, 25(8): 1139−1146 doi: 10.13930/j.cnki.cjea.170050
    [16] BAINARD L D, KOCH A M, GORDON A M, et al. Temporal and compositional differences of arbuscular mycorrhizal fungal communities in conventional monocropping and tree-based intercropping systems[J]. Soil Biology and Biochemistry, 2012, 45: 172−180 doi: 10.1016/j.soilbio.2011.10.008
    [17] 邹庆道, 陈捷, 张子君. 玉米镰孢菌穗、茎腐病侵染循环的相互关系[J]. 植物保护学报, 2003, 30(4): 435−436 doi: 10.3321/j.issn:0577-7518.2003.04.018

    ZOU Q D, CHEN J, ZHANG Z J. Mutual relationship of infection cycles between ear rot and stalk rot caused by Fusarium spp[J]. Journal of Plant Protection, 2003, 30(4): 435−436 doi: 10.3321/j.issn:0577-7518.2003.04.018
    [18] 代真林, 汪娅婷, 姚秀英, 等. 玉米大豆间作模式对玉米根际土壤微生物群落特征、玉米产量及病害的影响[J]. 云南农业大学学报(自然科学), 2020, 35(5): 756−764

    DAI Z L, WANG Y T, YAO X Y, et al. Effects of maize/soybean intercropping on the microbial community characteristics of maize rhizosphere soil, maize yield and diseases[J]. Journal of Yunnan Agricultural University (Natural Science), 2020, 35(5): 756−764
    [19] 罗娅婷, 崔现亮, 郑毅, 等. 不同品种小麦与蚕豆间作对蚕豆根际镰刀菌生长的影响[J]. 云南农业大学学报(自然科学), 2014, 29(3): 397−403

    LUO Y T, CUI X L, ZHENG Y, et al. Effects of intercropping between different wheat cultivars and Faba bean on the growth of rhizosphere Fusarium spp[J]. Journal of Yunnan Agricultural University (Natural Science), 2014, 29(3): 397−403
    [20] 郑亚强, 张立敏, 杨进成, 等. 甘蔗间作玉米对甘蔗根际微生物代谢功能多样性的影响[J]. 中国生态农业学报, 2016, 24(5): 618−627 doi: 10.13930/j.cnki.cjea.151149

    ZHENG Y Q, ZHANG L M, YANG J C, et al. Effects of sugarcane and maize intercropping on sugarcane rhizosphere microbe metabolic function diversity[J]. Chinese Journal of Eco-Agriculture, 2016, 24(5): 618−627 doi: 10.13930/j.cnki.cjea.151149
    [21] 肖占文. 河西走廊平川灌区红花高产栽培技术[J]. 特种经济动植物, 2003, 6(8): 30−31 doi: 10.3969/j.issn.1001-4713.2003.08.030

    XIAO Z W. High yield cultivation technique of safflower in Pingchuan irrigation area of Hexi Corridor[J]. Special Economic Animal and Plant, 2003, 6(8): 30−31 doi: 10.3969/j.issn.1001-4713.2003.08.030
    [22] 田硕, 胡栋, 马佳, 等. 有机耕作对冬小麦品质及根际微生物群落结构和多样性的影响[J]. 河北农业大学学报, 2021, 44(6): 1−8 doi: 10.13320/j.cnki.jauh.2021.0094

    TIAN S, HU D, MA J, et al. The effects of organic cultivation on winter wheat quality and microbial community structure and diversity in rhizosphere[J]. Journal of Hebei Agricultural University, 2021, 44(6): 1−8 doi: 10.13320/j.cnki.jauh.2021.0094
    [23] 杨美玲, 张霞, 王绍明, 等. 基于高通量测序的裕民红花根际土壤细菌群落特征分析[J]. 微生物学通报, 2018, 45(11): 2429−2438 doi: 10.13344/j.microbiol.china.171038

    YANG M L, ZHANG X, WANG S M, et al. High throughput sequencing analysis of bacterial communities in Yumin safflower[J]. Microbiology China, 2018, 45(11): 2429−2438 doi: 10.13344/j.microbiol.china.171038
    [24] 兰家萍, 赵详, 刘鸯, 等. 2种灌溉方式下新疆栽培红花根区微生物群落功能多样性分析[J]. 江苏农业科学, 2019, 47(10): 301−304,311 doi: 10.15889/j.issn.1002-1302.2019.10.066

    LAN J P, ZHAO X, LIU Y, et al. Analysis of functional diversity of microbial community in root zone of cultivated safflower in Xinjiang area under two irrigation modes[J]. Jiangsu Agricultural Sciences, 2019, 47(10): 301−304,311 doi: 10.15889/j.issn.1002-1302.2019.10.066
    [25] 孙乐妮, 吴兵兵, 徐志豪, 等. 两种镉积累型小麦根际微生物群落结构及功能多样性[J]. 生态学报, 2022, 42(8): 3366−3376

    SUN L N, WU B B, XU Z H, et al. Rhizosphere microbial community structure and functional diversity in two Cd-accumulating wheat cultivars[J]. Acta Ecologica Sinica, 2022, 42(8): 3366−3376
    [26] LIU Y, YANG H C, LIU Q, et al. Effect of two different sugarcane cultivars on rhizosphere bacterial communities of sugarcane and soybean upon intercropping[J]. Frontiers in Microbiology, 2021, 11: 596472 doi: 10.3389/fmicb.2020.596472
    [27] MEAD R, WILLEY R W. The concept of a ‘land equivalent ratio’ and advantages in yields from intercropping[J]. Experimental Agriculture, 1980, 16(3): 217−228 doi: 10.1017/S0014479700010978
    [28] ZHANG S B, JIN Y X, ZENG Z Y, et al. Subchronic exposure of mice to cadmium perturbs their hepatic energy metabolism and gut microbiome[J]. Chemical Research in Toxicology, 2015, 28(10): 2000−2009 doi: 10.1021/acs.chemrestox.5b00237
    [29] PIVATO B, SEMBLAT A, GUÉGAN T, et al. Rhizosphere bacterial networks, but not diversity, are impacted by pea-wheat intercropping[J]. Frontiers in Microbiology, 2021, 12: 674556 doi: 10.3389/fmicb.2021.674556
    [30] WANG J, DU X Q, ZHANG Y T, et al. Effect of substrate on identification of microbial communities in poultry carcass composting and microorganisms associated with poultry carcass decomposition[J]. Agric Food Chem, 2016, 64(36): 6838−6347 doi: 10.1021/acs.jafc.6b02442
    [31] EDGAR R C. UPARSE: highly accurate OTU sequences from microbial amplicon reads[J]. Nature Methods, 2013, 10(10): 996−998 doi: 10.1038/nmeth.2604
    [32] BROOKER R W, BENNETT A E, CONG W F, et al. Improving intercropping: a synthesis of research in agronomy, plant physiology and ecology[J]. New Phytologist, 2015, 206(1): 107−117 doi: 10.1111/nph.13132
    [33] CAO X N, LIU S C, WANG J J, et al. Soil bacterial diversity changes in different broomcorn millet intercropping systems[J]. Journal of Basic Microbiology, 2017, 57(12): 989−997 doi: 10.1002/jobm.201700133
    [34] BOUDREAU M A. Diseases in intercropping systems[J]. Annual Review of Phytopathology, 2013, 51: 499−519 doi: 10.1146/annurev-phyto-082712-102246
    [35] CONG W F, HOFFLAND E, LI L, et al. Intercropping enhances soil carbon and nitrogen[J]. Global Change Biology, 2015, 21(4): 1715−1726 doi: 10.1111/gcb.12738
    [36] 郝文雅, 冉炜, 沈其荣, 等. 西瓜、水稻根分泌物及酚酸类物质对西瓜专化型尖孢镰刀菌的影响[J]. 中国农业科学, 2010, 43(12): 2443−2452 doi: 10.3864/j.issn.0578-1752.2010.12.007

    HAO W Y, RAN W, SHEN Q R, et al. Effects of root exudates from watermelon, rice plants and phenolic acids on Fusarium oxysporum f. sp. niveum[J]. Scientia Agricultura Sinica, 2010, 43(12): 2443−2452 doi: 10.3864/j.issn.0578-1752.2010.12.007
    [37] 田春杰, 陈家宽, 钟扬. 微生物系统发育多样性及其保护生物学意义[J]. 应用生态学报, 2003, 14(4): 609−612 doi: 10.3321/j.issn:1001-9332.2003.04.030

    TIAN C J, CHEN J K, ZHONG Y. Phylogenetic diversity of microbes and its perspectives in conservation biology[J]. Chinese Journal of Applied Ecology, 2003, 14(4): 609−612 doi: 10.3321/j.issn:1001-9332.2003.04.030
    [38] 吴加香, 刘涛, 寸梦壵, 等. 黄草乌间作玉米对其根际微生物群落多样性的影响[J]. 分子植物育种, 2022(46): 1−15

    WU J X, LIU T, CUN M Z, et al. Effects of intercropping maize with Aconitum Vilmorinianum Kom. on rhizosphere microbial community diversty[J]. Molecular Plant Breeding, 2022(46): 1−15
    [39] 董艳, 赵骞, 吕家兴, 等. 间作小麦和接种AM真菌协同提高蚕豆抗枯萎病能力和根际微生物碳代谢活性[J]. 植物营养与肥料学报, 2019, 25(10): 1646−1656 doi: 10.11674/zwyf.18400

    DONG Y, ZHAO Q, LÜ J X, et al. Synergistic effects of intercropping with wheat and inoculation with arbuscular mycorrhizal fungi on improvement of anti-Fusarium wilt and rhizosphere microbial carbon metabolic activity of Faba bean[J]. Journal of Plant Nutrition and Fertilizers, 2019, 25(10): 1646−1656 doi: 10.11674/zwyf.18400
    [40] WANG D M, MARSCHNER P, SOLAIMAN Z, et al. Belowground interactions between intercropped wheat and Brassicas in acidic and alkaline soils[J]. Soil Biology and Biochemistry, 2007, 39(4): 961−971 doi: 10.1016/j.soilbio.2006.11.008
    [41] 李巧玲, 肖忠, 任明波, 等. 间作不同作物对栀子根际土壤微生态的影响[J]. 微生物学通报, 2021, 48(10): 3588−3602 doi: 10.13344/j.microbiol.china.201158

    LI Q L, XIAO Z, REN M B, et al. Effect of Gardenia jasminoides Ellis with different intercropping crops on soil microecology[J]. Microbiology China, 2021, 48(10): 3588−3602 doi: 10.13344/j.microbiol.china.201158
    [42] BROECKLING C D, BROZ A K, BERGELSON J, et al. Root exudates regulate soil fungal community composition and diversity[J]. Applied and Environmental Microbiology, 2008, 74(3): 738−744 doi: 10.1128/AEM.02188-07
    [43] 章家恩, 高爱霞, 徐华勤, 等. 玉米/花生间作对土壤微生物和土壤养分状况的影响[J]. 应用生态学报, 2009, 20(7): 1597−1602 doi: 10.13287/j.1001-9332.2009.0253

    ZHANG J E, GAO A X, XU H Q, et al. Effects of maize/peanut intercropping on rhizosphere soil microbes and nutrient contents[J]. Chinese Journal of Applied Ecology, 2009, 20(7): 1597−1602 doi: 10.13287/j.1001-9332.2009.0253
    [44] HARMAN G E, HOWELL C R, VITERBO A, et al. Trichoderma species—opportunistic, avirulent plant symbionts[J]. Nature Reviews Microbiology, 2004, 2(1): 43−56 doi: 10.1038/nrmicro797
    [45] ALLESINA S, TANG S. Stability criteria for complex ecosystems[J]. Nature, 2012, 483(7388): 205−208 doi: 10.1038/nature10832
  • 加载中
图(7) / 表(5)
计量
  • 文章访问数:  93
  • HTML全文浏览量:  87
  • PDF下载量:  15
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-05-08
  • 录用日期:  2022-09-07
  • 修回日期:  2022-09-07
  • 网络出版日期:  2022-11-07

目录

    /

    返回文章
    返回