留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

驯化对谷子-根际微生物互作机制影响的进展与展望

崔文秀 宰小玉 赵美丞 郑春燕 宋春旭 朱峰

崔文秀, 宰小玉, 赵美丞, 郑春燕, 宋春旭, 朱峰. 驯化对谷子-根际微生物互作机制影响的进展与展望[J]. 中国生态农业学报 (中英文), 2023, 31(4): 495−504 doi: 10.12357/cjea.20220398
引用本文: 崔文秀, 宰小玉, 赵美丞, 郑春燕, 宋春旭, 朱峰. 驯化对谷子-根际微生物互作机制影响的进展与展望[J]. 中国生态农业学报 (中英文), 2023, 31(4): 495−504 doi: 10.12357/cjea.20220398
CUI W X, ZAI X Y, ZHAO M C, ZHENG C Y, SONG C X, ZHU F. Impact of domestication on the mechanism of millet and rhizosphere microorganism interactions[J]. Chinese Journal of Eco-Agriculture, 2023, 31(4): 495−504 doi: 10.12357/cjea.20220398
Citation: CUI W X, ZAI X Y, ZHAO M C, ZHENG C Y, SONG C X, ZHU F. Impact of domestication on the mechanism of millet and rhizosphere microorganism interactions[J]. Chinese Journal of Eco-Agriculture, 2023, 31(4): 495−504 doi: 10.12357/cjea.20220398

驯化对谷子-根际微生物互作机制影响的进展与展望

doi: 10.12357/cjea.20220398
基金项目: 河北省重点研发计划项目(E033ST0801)、国家重点研发计划青年科学家项目(2021YFD1900200)、中国科学院战略性先导科技专项(A类) (XDA26040103)和中国科学院“百人计划”项目资助
详细信息
    通讯作者:

    宋春旭, 主要从事植物-微生物互作研究, E-mail: chunxu.song@cau.edu.cn

    朱峰, 主要从事植物介导的地上地下互作机制研究, E-mail: zhufeng@sjziam.ac.cn

  • 中图分类号: S51

Impact of domestication on the mechanism of millet and rhizosphere microorganism interactions

Funds: This study was supported by the Hebei Key Technology R&D Program (E033ST0801), the Young Scientists Project of National Key Research and Development Program (2021YFD1900200), the Strategic Priority Research Program of Chinese Academy of Sciences (XDA26040103), and the 100-Talent Program of Chinese Academy of Sciences.
More Information
  • 摘要: 根际微生物可赋予植物新的抗逆性, 其群落结构及生态功能的变化也体现了作物对环境变化的适应能力。驯化影响作物的遗传多样性、生理性状及其代谢产物, 进而会对根际微生物群落组成与功能产生作用。目前, 对于作物驯化的研究多关注植物遗传多样性与植物表型和生理特性之间的相互关联及影响机制, 微生物在作物驯化过程中的作用及其与植物互作机制的探索还处于起步阶段。为此, 本文首先对驯化过程在禾本科作物根际微生物群落构建中的作用进行了回顾, 针对起源于中国的重要旱作C4模式作物谷子, 系统总结了谷子的驯化过程及其对谷子生长、生理性状和根际微生物的影响, 以及驯化对谷子根际微生物间互作和谷子与微生物互作的作用机制, 以期为恢复农田生态系统中的作物-微生物有益关系提供科学依据。
  • 图  1  驯化过程中谷子遗传和农艺性状变化

    Figure  1.  Changes of the genetic and agronomic traits of foxtail millet (Setaria italica) during domestication

    图  2  谷子驯化对其根际微生物影响的模式图

    Figure  2.  Schematic illustration of the impact of foxtail millet (Setaria italica) domestication on the rhizosphere microbes

  • [1] ZEDER A M. Core questions in domestication research[J]. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112(11): 3191−3198 doi: 10.1073/pnas.1501711112
    [2] PÉREZ-JARAMILLO J E, MENDES R, RAAIJMAKERS J M. Impact of plant domestication on rhizosphere microbiome assembly and functions[J]. Plant Molecular Biology, 2016, 90(6): 635−644 doi: 10.1007/s11103-015-0337-7
    [3] MEYER R S, PURUGGANAN M D. Evolution of crop species: genetics of domestication and diversification[J]. Nature Reviews Genetics, 2013, 14(12): 840−852 doi: 10.1038/nrg3605
    [4] DOEBLEY J F, GAUT B S, SMITH B D. The molecular genetics of crop domestication[J]. Cell, 2006, 127(7): 1309−1321 doi: 10.1016/j.cell.2006.12.006
    [5] ZAMIR D. Improving plant breeding with exotic genetic libraries[J]. Nature Reviews Genetics, 2001, 2(12): 983−989 doi: 10.1038/35103590
    [6] CASAS A, LADIO A H, CLEMENT C R. Editorial: ecology and evolution of plants under domestication in the neotropics[J]. Frontiers in Ecology and Evolution, 2019, 7: 231 doi: 10.3389/fevo.2019.00231
    [7] PURUGGANAN M D. Evolutionary insights into the nature of plant domestication[J]. Current Biology: CB, 2019, 29(14): R705−R714 doi: 10.1016/j.cub.2019.05.053
    [8] CHEN Y H, GOLS R, BENREY B. Crop domestication and its impact on naturally selected trophic interactions[J]. Annual Review of Entomology, 2015, 60: 35−58 doi: 10.1146/annurev-ento-010814-020601
    [9] 常春玲, 马丽娜, 田春杰. 作物驯化对根际微生物组的选择效应[J]. 土壤与作物, 2018, 7(2): 236−241

    CHANG C L, MA L N, TIAN C J. A selecting effect of crop domestication on rhizomicrobiome[J]. Soils and Crops, 2018, 7(2): 236−241
    [10] NAZ A A, ARIFUZZAMAN M, MUZAMMIL S, et al. Wild barley introgression lines revealed novel QTL alleles for root and related shoot traits in the cultivated barley (Hordeum vulgare L.)[J]. BMC Genetics, 2014, 15: 107
    [11] SZOBOSZLAY M, LAMBERS J, CHAPPELL J, et al. Comparison of root system architecture and rhizosphere microbial communities of Balsas teosinte and domesticated corn cultivars[J]. Soil Biology and Biochemistry, 2015, 80: 34−44 doi: 10.1016/j.soilbio.2014.09.001
    [12] RODRIGUEZ R J, HENSON J, VAN VOLKENBURGH E, et al. Stress tolerance in plants via habitat-adapted symbiosis[J]. The ISME Journal, 2008, 2(4): 404−416 doi: 10.1038/ismej.2007.106
    [13] 袁仁文, 刘琳, 张蕊, 等. 植物根际分泌物与土壤微生物互作关系的机制研究进展[J]. 中国农学通报, 2020, 36(2): 26−35

    YUAN R W, LIU L, ZHANG R, et al. The interaction mechanism between plant rhizosphere secretion and soil microbe: a review[J]. Chinese Agricultural Science Bulletin, 2020, 36(2): 26−35
    [14] MEI C S, FLINN B S. The use of beneficial microbial endophytes for plant biomass and stress tolerance improvement[J]. Recent Patents on Biotechnology, 2010, 4(1): 81−95 doi: 10.2174/187220810790069523
    [15] SHENTON M, IWAMOTO C, KURATA N, et al. Effect of wild and cultivated rice genotypes on rhizosphere bacterial community composition[J]. Rice, 2016, 9(1): 42−52
    [16] PÉREZ-JARAMILLO J E, CARRIÓN V J, BOSSE M, et al. Linking rhizosphere microbiome composition of wild and domesticated Phaseolus vulgaris to genotypic and root phenotypic traits[J]. The ISME Journal, 2017, 11(10): 2244−2257 doi: 10.1038/ismej.2017.85
    [17] PÉREZ-JARAMILLO J E, CARRIÓN V J, DE HOLLANDER M, et al. The wild side of plant microbiomes[J]. Microbiome, 2018, 6(1): 143 doi: 10.1186/s40168-018-0519-z
    [18] ZACHOW C, MÜLLER H, TILCHER R, et al. Differences between the rhizosphere microbiome of Beta vulgaris ssp. maritima—ancestor of all beet crops and modern sugar beets[J]. Frontiers in Microbiology, 2014, 5: 415
    [19] KIERS E T, HUTTON M G, DENISON R F. Human selection and the relaxation of legume defences against ineffective rhizobia[J]. Proceedings Biological Sciences, 2007, 274(1629): 3119−3126
    [20] HASSANI M A, ÖZKURT E, FRANZENBURG S, et al. Ecological assembly processes of the bacterial and fungal microbiota of wild and domesticated wheat species[J]. Phytobiomes Journal, 2020, 4(3): 217−224 doi: 10.1094/PBIOMES-01-20-0001-SC
    [21] HANEY C H, AUSUBEL F M. Plant microbiome blueprints[J]. Science, 2015, 349(6250): 788−789 doi: 10.1126/science.aad0092
    [22] 杨俊, 王星, 付丽娜, 等. 水稻条斑病抗感品种根际微生物群落结构和功能分析[J]. 生态科学, 2019, 38(1): 17−25

    YANG J, WANG X, FU L N, et al. Study on rhizosphere microbial community and functional diversity of different resistant rice varieties to rice leaf streak disease[J]. Ecological Science, 2019, 38(1): 17−25
    [23] 孙铭雪, 宋春旭. 驯化对植物微生物组结构和功能影响的研究进展[J]. 土壤学报, 2020, 59(1): 66−78

    SUN M X, SONG C X. Progress of impact of plant domestication on composition and functions of microbiome[J]. Acta Pedologica Sinica, 2020, 59(1): 66−78
    [24] 姜鹏. 三农笔记之二: 饥饿地球与主粮作物[J]. 北京规划建设, 2020(1): 152−157

    JIANG P. Notes on agriculture, countryside and farmers (PartⅡ): hungry Earth and staple crops[J]. Beijing Planning Review, 2020(1): 152−157
    [25] 姜鹏. 三农笔记之一: 耕地保护与粮食自给[J]. 北京规划建设, 2019(6): 170−172

    JIANG P. One of the notes on agriculture, countryside and farmers: cultivated land protection and food self-sufficiency[J]. Beijing Planning Review, 2019(6): 170−172
    [26] 贾冠清, 刁现民. 谷子[Setaria italica (L.) P. Beauv.]作为功能基因组研究模式植物的发展现状及趋势[J]. 生命科学, 2017, 29(3): 292−301

    JIA G Q, DIAO X M. Current status and perspectives of researches on foxtail millet [Setaria italica (L.) P. Beauv.]: a potential model of plant functional genomics studies[J]. Chinese Bulletin of Life Sciences, 2017, 29(3): 292−301
    [27] YANG Z R, ZHANG H S, LI X K, et al. A mini foxtail millet with an Arabidopsis-like life cycle as a C4 model system[J]. Nature Plants, 2020, 6(9): 1167−1178 doi: 10.1038/s41477-020-0747-7
    [28] SIBOUT R. Crop breeding: turning a lawn into a field[J]. Nature Plants, 2017, 3: 17060 doi: 10.1038/nplants.2017.60
    [29] DANILA F R, THAKUR V, CHATTERJEE J, et al. Bundle sheath suberisation is required for C4 photosynthesis in a Setaria viridis mutant[J]. Communications Biology, 2021, 4: 254 doi: 10.1038/s42003-021-01772-4
    [30] MAMIDI S, HEALEY A, HUANG P, et al. A genome resource for green millet Setaria viridis enables discovery of agronomically valuable loci[J]. Nature Biotechnology, 2020, 38(10): 1203−1210 doi: 10.1038/s41587-020-0681-2
    [31] LU H Y, ZHANG J P, LIU K B, et al. Earliest domestication of common millet (Panicum miliaceum) in East Asia extended to 10, 000 years ago[J]. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106(18): 7367−7372 doi: 10.1073/pnas.0900158106
    [32] 何红中. 全球视野下的粟黍起源及传播探索[J]. 中国农史, 2014, 33(2): 16−25

    HE H Z. A study on the origin and spread of foxtail millet and broomcorn millet in view of globalization[J]. Agricultural History of China, 2014, 33(2): 16−25
    [33] DIAO X M, JIA G Q. Origin and domestication of foxtail millet[M]//DOUST A, DIAO X M. Genetics and Genomics of Setaria. Cham: Springer International Publishing, 2016: 61–72
    [34] 刁现民. 基础研究提升传统作物谷子和黍稷的科研创新水平[J]. 中国农业科学, 2016, 49(17): 3261−3263

    DIAO X M. Basic research promoting scientific innovation for traditional Chinese cereals, foxtail millet and common millet[J]. Scientia Agricultura Sinica, 2016, 49(17): 3261−3263
    [35] 王凯玺, 陈国秋, 张海金, 等. 干旱胁迫对不同谷子品种茎秆力学特性的影响[J]. 辽宁农业科学, 2018(1): 17−19

    WANG K X, CHEN G Q, ZHANG H J, et al. Effects of drought stress on the mechanical properties of different millet varieties[J]. Liaoning Agricultural Sciences, 2018(1): 17−19
    [36] 薛盈文, 苗兴芬, 王玉凤. 施氮对谷子光合特性及产量和品质的影响[J]. 黑龙江八一农垦大学学报, 2019, 31(4): 1−7, 39

    XUE Y W, MIAO X F, WANG Y F. Effects of nitrogen application on photosynthetic, yield and quality of foxtail millet[J]. Journal of Heilongjiang Bayi Agricultural University, 2019, 31(4): 1−7, 39
    [37] 徐玖亮, 温馨, 刁现民, 等. 我国主要谷类杂粮的营养价值及保健功能[J]. 粮食与饲料工业, 2021(1): 27−35

    XU J L, WEN X, DIAO X M, et al. Nutrition values and health effects of coarse cerealsin China[J]. Cereal & Feed Industry, 2021(1): 27−35
    [38] 郭芳, 李强. 12个谷子材料在呼和浩特地区饲草产量和成本效益分析[J]. 中国草地学报, 2021, 43(3): 79−84, 118

    GUO F, LI Q. Evaluation of forage yield and cost-benefit of 12 millet cultivars (lines) in Hohhot[J]. Chinese Journal of Grassland, 2021, 43(3): 79−84, 118
    [39] GLÉMIN S, BATAILLON T. A comparative view of the evolution of grasses under domestication[J]. The New Phytologist, 2009, 183(2): 273−290 doi: 10.1111/j.1469-8137.2009.02884.x
    [40] CHANG J J, SUN Y, TIAN L, et al. The structure of rhizosphere fungal communities of wild and domesticated rice: changes in diversity and co-occurrence patterns[J]. Frontiers in Microbiology, 2021, 12: 610823 doi: 10.3389/fmicb.2021.610823
    [41] 罗菲, 汪涯, 曾庆桂, 等. 东乡野生稻根际可培养细菌多样性及其植物促生活性分析[J]. 生物多样性, 2011, 19(4): 476−484 doi: 10.3724/SP.J.1003.2011.09002

    LUO F, WANG Y, ZENG Q G, et al. Diversity and plant growth promoting activities of the cultivable rhizobacteria of Dongxiang wild rice (Oryza rufipogon)[J]. Biodiversity Science, 2011, 19(4): 476−484 doi: 10.3724/SP.J.1003.2011.09002
    [42] SHI S H, CHANG J J, TIAN L, et al. Comparative analysis of the rhizomicrobiome of the wild versus cultivated crop: insights from rice and soybean[J]. Archives of Microbiology, 2019, 201(7): 879−888 doi: 10.1007/s00203-019-01638-8
    [43] XU S Q, TIAN L, CHANG C L, et al. Cultivated rice rhizomicrobiome is more sensitive to environmental shifts than that of wild rice in natural environments[J]. Applied Soil Ecology, 2019, 140: 68−77 doi: 10.1016/j.apsoil.2019.04.006
    [44] SHI S H, TIAN L, FAHAD N, et al. Impact of domestication on the evolution of rhizomicrobiome of rice in response to the presence of Magnaporthe oryzae[J]. Plant Physiology and Biochemistry, 2018, 132: 156−165 doi: 10.1016/j.plaphy.2018.08.023
    [45] SPOR A, ROUCOU A, MOUNIER A, et al. Domestication-driven changes in plant traits associated with changes in the assembly of the rhizosphere microbiota in tetraploid wheat[J]. Scientific Reports, 2020, 10: 12234 doi: 10.1038/s41598-020-69175-9
    [46] ROSSMANN M, PÉREZ-JARAMILLO J E, KAVAMURA V N, et al. Multitrophic interactions in the rhizosphere microbiome of wheat: from bacteria and fungi to protists[J]. FEMS Microbiology Ecology, 2020, 96(4): fiaa032 doi: 10.1093/femsec/fiaa032
    [47] GERMIDA J, SICILIANO S. Taxonomic diversity of bacteria associated with the roots of modern, recent and ancient wheat cultivars[J]. Biology and Fertility of Soils, 2001, 33(5): 410−415 doi: 10.1007/s003740100343
    [48] ABDULLAEVA Y, RATERING S, MANIRAJAN B A, et al. Domestication impacts the wheat-associated microbiota and the rhizosphere colonization by seed- and soil-originated microbiomes, across different fields[J]. Frontiers in Plant Science, 2022, 12: 806915 doi: 10.3389/fpls.2021.806915
    [49] TKACZ A, PINI F, TURNER T R, et al. Agricultural selection of wheat has been shaped by plant-microbe interactions[J]. Frontiers in Microbiology, 2020, 11: 132 doi: 10.3389/fmicb.2020.00132
    [50] BULGARELLI D, GARRIDO-OTER R, MÜNCH P C, et al. Structure and function of the bacterial root microbiota in wild and domesticated barley[J]. Cell Host & Microbe, 2015, 17(3): 392−403
    [51] TERRAZAS R A, BALBIRNIE-CUMMING K, MORRIS J, et al. A footprint of plant eco-geographic adaptation on the composition of the barley rhizosphere bacterial microbiota[J]. Scientific Reports, 2020, 10(1): 12916 doi: 10.1038/s41598-020-69672-x
    [52] BRISSON V L, SCHMIDT J E, NORTHEN T R, et al. Impacts of maize domestication and breeding on rhizosphere microbial community recruitment from a nutrient depleted agricultural soil[J]. Scientific Reports, 2019, 9: 15611 doi: 10.1038/s41598-019-52148-y
    [53] BOUFFAUD M L, KYSELKOVA M, GOUESNARD B, et al. Is diversification history of maize influencing selection of soil bacteria by roots?[J]. Molecular Ecology, 2012, 21(1): 195−206 doi: 10.1111/j.1365-294X.2011.05359.x
    [54] BOUFFAUD M L, POIRIER M A, MULLER D, et al. Root microbiome relates to plant host evolution in maize and other Poaceae[J]. Environmental Microbiology, 2014, 16(9): 2804−2814 doi: 10.1111/1462-2920.12442
    [55] HUANG J, LI Y, LI Y, et al. The rhizospheric microbiome becomes more diverse with maize domestication and genetic improvement[J]. Journal of Integrative Agriculture, 2022, 21(4): 1188−1202 doi: 10.1016/S2095-3119(21)63633-X
    [56] WALTERS W A, JIN Z, YOUNGBLUT N, et al. Large-scale replicated field study of maize rhizosphere identifies heritable microbes[J]. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115(28): 7368−7373 doi: 10.1073/pnas.1800918115
    [57] JOHNSTON-MONJE D, RAIZADA M N. Conservation and diversity of seed associated endophytes in Zea across boundaries of evolution, ethnography and ecology[J]. PLoS One, 2011, 6(6): e20396 doi: 10.1371/journal.pone.0020396
    [58] BRISSON V L, SCHMIDT J E, NORTHEN T R, et al. Impacts of maize domestication and breeding on rhizosphere microbial community recruitment from a nutrient depleted agricultural soil[J]. Scientific Reports, 2019, 9(1): 1–14
    [59] MATUS-ACUÑA V, CABALLERO-FLORES G, MARTÍNEZ-ROMERO E. The influence of maize genotype on the rhizosphere eukaryotic community[J]. FEMS Microbiology Ecology, 2021, 97(6): fiab066 doi: 10.1093/femsec/fiab066
    [60] VAN DEYNZE A, ZAMORA P, DELAUX P M, et al. Nitrogen fixation in a landrace of maize is supported by a mucilage-associated diazotrophic microbiota[J]. PLoS Biology, 2018, 16(8): e2006352 doi: 10.1371/journal.pbio.2006352
    [61] FAVELA A, BOHN M O, KENT A D. Maize germplasm chronosequence shows crop breeding history impacts recruitment of the rhizosphere microbiome[J]. The ISME Journal, 2021, 15(8): 2454−2464 doi: 10.1038/s41396-021-00923-z
    [62] YANG X Y, WAN Z W, PERRY L, et al. Early millet use in Northern China[J]. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109(10): 3726−3730 doi: 10.1073/pnas.1115430109
    [63] JIA G Q, HUANG X H, ZHI H, et al. A haplotype map of genomic variations and genome-wide association studies of agronomic traits in foxtail millet (Setaria italica)[J]. Nature Genetics, 2013, 45(8): 957−961 doi: 10.1038/ng.2673
    [64] ZOHARY D. Unconscious selection and the evolution of domesticated plants[J]. Economic Botany, 2004, 58(1): 5−10 doi: 10.1663/0013-0001(2004)058[0005:USATEO]2.0.CO;2
    [65] ZHANG G Y, LIU X, QUAN Z W, et al. Genome sequence of foxtail millet (Setaria italica) provides insights into grass evolution and biofuel potential[J]. Nature Biotechnology, 2012, 30(6): 549−554 doi: 10.1038/nbt.2195
    [66] DOUST A N, DEVOS K M, GADBERRY M D, et al. Genetic control of branching in foxtail millet[J]. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101(24): 9045−9050 doi: 10.1073/pnas.0402892101
    [67] XU J, LIU Y X, LIU J, et al. The genetic architecture of flowering time and photoperiod sensitivity in maize as revealed by QTL review and meta analysis[J]. Journal of Integrative Plant Biology, 2012, 54(6): 358−373 doi: 10.1111/j.1744-7909.2012.01128.x
    [68] ZHAO M C, TANG S, ZHANG H S, et al. DROOPY LEAF1 controls leaf architecture by orchestrating early brassinosteroid signaling[J]. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117(35): 21766−21774 doi: 10.1073/pnas.2002278117
    [69] LI Y, WU S Z. Traditional maintenance and multiplication of foxtail millet [Setaria italica (L.) P. Beauv.] landraces in China[J]. Euphytica, 1996, 87(1): 33−38 doi: 10.1007/BF00022961
    [70] CHALUVADI S, BENNETZEN J L. Species-associated differences in the below-ground microbiomes of wild and domesticated Setaria[J]. Frontiers in Plant Science, 2018, 9: 1183 doi: 10.3389/fpls.2018.01183
    [71] RODRÍGUEZ C E, MITTER B, ANTONIELLI L, et al. Roots and panicles of the C4 model grasses Setaria viridis (L). and S. pumila host distinct bacterial assemblages with core taxa conserved across host genotypes and sampling sites[J]. Frontiers in Microbiology, 2018, 9: 2708 doi: 10.3389/fmicb.2018.02708
    [72] JIN T, WANG Y Y, HUANG Y Y, et al. Taxonomic structure and functional association of foxtail millet root microbiome[J]. GigaScience, 2017, 6(10): 1−12
    [73] KIM H, LEE K K, JEON J, et al. Domestication of Oryza species eco-evolutionarily shapes bacterial and fungal communities in rice seed[J]. Microbiome, 2020, 8(1): 20 doi: 10.1186/s40168-020-00805-0
    [74] NIU X G, SONG L C, XIAO Y N, et al. Drought-tolerant plant growth-promoting rhizobacteria associated with foxtail millet in a semi-arid agroecosystem and their potential in alleviating drought stress[J]. Frontiers in Microbiology, 2018, 8: 2580 doi: 10.3389/fmicb.2017.02580
    [75] HAN Y S, XU L X, LIU L Q, et al. Illumina sequencing reveals a rhizosphere bacterial community associated with foxtail millet smut disease suppression[J]. Plant and Soil, 2017, 410(1): 411−421
    [76] WANG Y Y, WANG X L, SUN S, et al. GWAS, MWAS and mGWAS provide insights into precision agriculture based on genotype-dependent microbial effects in foxtail millet[J]. Nature Communications, 2022, 13: 5913 doi: 10.1038/s41467-022-33238-4
    [77] PORTER S S, SARCHS I L. Agriculture and the disruption of plant-microbial symbiosis[J]. Trends in Ecology & Evolution, 2020, 35(5): 426−439
    [78] 贾冠清, 孟强, 汤沙, 等. 主要农作物驯化研究进展与展望[J]. 植物遗传资源学报, 2019, 20(6): 1355−1371

    JIA G Q, MENG Q, TANG S, et al. Current advances and future perspectives on crop domestication[J]. Journal of Plant Genetic Resources, 2019, 20(6): 1355−1371
    [79] 吉丽, 石少华, 田磊, 等. 作物驯化对根际微生物组的选择[J]. 土壤与作物, 2019, 8(4): 368−372

    JI L, SHI S H, TIAN L, et al. A discussion on issues related to the recruit of rhizosphere microbes caused by crop domestication[J]. Soils and Crops, 2019, 8(4): 368−372
    [80] ESFAHANI M N, KUSANO M, NGUYEN K H, et al. Adaptation of the symbiotic Mesorhizobium-chickpea relationship to phosphate deficiency relies on reprogramming of whole-plant metabolism[J]. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113(32): 4610−4619
    [81] CORDOVEZ V, DINI-ANDREOTE F, CARRIÓN V J, et al. Ecology and evolution of plant microbiomes[J]. Annual Review of Microbiology, 2019, 73: 69−88 doi: 10.1146/annurev-micro-090817-062524
    [82] LIU H W, BRETTELL L E, QIU Z G, et al. Microbiome-mediated stress resistance in plants[J]. Trends in Plant Science, 2020, 25(8): 733−743 doi: 10.1016/j.tplants.2020.03.014
    [83] XIONG C, ZHU Y G, WANG J T, et al. Host selection shapes crop microbiome assembly and network complexity[J]. The New Phytologist, 2021, 229(2): 1091−1104 doi: 10.1111/nph.16890
  • 加载中
图(2)
计量
  • 文章访问数:  56
  • HTML全文浏览量:  28
  • PDF下载量:  15
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-05-25
  • 录用日期:  2022-11-29
  • 网络出版日期:  2023-01-18

目录

    /

    返回文章
    返回