留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于NPP VIIRS数据和SEBS模型的河南省冬小麦蒸散量估算与时空特征

李颖 陈怀亮 梁辰 苏伟 贺添

李颖, 陈怀亮, 梁辰, 苏伟, 贺添. 基于NPP VIIRS数据和SEBS模型的河南省冬小麦蒸散量估算与时空特征[J]. 中国生态农业学报 (中英文), 2023, 31(4): 587−597 doi: 10.12357/cjea.20220422
引用本文: 李颖, 陈怀亮, 梁辰, 苏伟, 贺添. 基于NPP VIIRS数据和SEBS模型的河南省冬小麦蒸散量估算与时空特征[J]. 中国生态农业学报 (中英文), 2023, 31(4): 587−597 doi: 10.12357/cjea.20220422
LI Y, CHEN H L, LIANG C, SU W, HE T. Estimation and spatio-temporal characteristics of winter wheat evapotranspiration in Henan Province based on NPP VIIRS data and SEBS model[J]. Chinese Journal of Eco-Agriculture, 2023, 31(4): 587−597 doi: 10.12357/cjea.20220422
Citation: LI Y, CHEN H L, LIANG C, SU W, HE T. Estimation and spatio-temporal characteristics of winter wheat evapotranspiration in Henan Province based on NPP VIIRS data and SEBS model[J]. Chinese Journal of Eco-Agriculture, 2023, 31(4): 587−597 doi: 10.12357/cjea.20220422

基于NPP VIIRS数据和SEBS模型的河南省冬小麦蒸散量估算与时空特征

doi: 10.12357/cjea.20220422
基金项目: 国家自然科学基金项目(41805090)资助
详细信息
    作者简介:

    李颖, 主要从事遥感技术及其应用研究。E-mail: walnutclip@163.com

    通讯作者:

    陈怀亮, 主要从事遥感应用及农业气象研究。E-mail: H.chen@vip.163.com

  • 中图分类号: P49

Estimation and spatio-temporal characteristics of winter wheat evapotranspiration in Henan Province based on NPP VIIRS data and SEBS model

Funds: This research was supported by the National Natural Science Foundation of China (41805090).
More Information
  • 摘要: 农田蒸散量 (evapotranspiration, ET)是农田水热交换过程的关键变量, 准确估算农田ET对了解农田土壤水分变化动态, 监测预测作物旱情, 指导科学灌溉等具有重要作用。将Suomi NPP (National Polar-orbiting Partnership)卫星的新型遥感数据源可见光红外成像辐射仪(visible infrared imaging radiometer suite, VIIRS)数据用于ET反演, 基于地表能量平衡理论, 将NPP VIIRS反演的地表温度、地表反照率等参数和优化计算的VIIRS NDVI (normalized difference vegetation index)数据, 与SRTM DEM数据和气象观测数据输入地表能量平衡系统(surface energy balance system, SEBS)模型, 估算了2016—2018年河南省冬小麦关键生育时期——返青期至灌浆期的农田ET (VIIRS ET)。分别对比了VIIRS ET与彭曼公式(Penman-Monteith, P-M)计算的P-M ET、大型土壤蒸渗仪实测Real ET和MODIS (moderate-resolution imaging spectroradiometer)数据估算ET (MODIS ET)的结果, 并进行了ET时空变化特征分析。结果表明, VIIRS ET与Real ET的RMSE为0.203 mm∙d−1, 且VIIRS ET与P-M ET和MODIS ET均具有较高的一致性。该方法可为利用NPP VIIRS数据和SEBS模型估算ET提供方法、技术上的支持。研究区冬小麦关键生育时期ET的时间特征表现为自返青期后逐日上升, 抽穗期达到最大值, 灌浆期开始下降的趋势, 与冬小麦生长发育规律具有较好的一致性。综合空间特征来看, 在关键生育时期河南省冬小麦ET均呈现中部和东南部较高, 向西北部和西南部逐渐降低的趋势, 与灌溉条件具有较强的对应性。河南省冬小麦ET时空特征可为河南省农业水资源管理、分配和高效利用等提供重要依据。
  • 图  1  研究区与农业气象观测站位置分布图

    Figure  1.  Study area and location distribution of agrometeorological observation stations

    图  2  2018年以8 d为间隔的研究区冬小麦关键生育时期(返青期至灌浆期)日蒸散量空间分布图

    Figure  2.  Spatial distribution of daily evapotranspiration in 2018 at interval of 8 days during winter wheat key growth period (from regeneration to filling) in the study area

    图  3  可见光红外成像辐射仪数据估算日蒸散量(VIIRS ET)与中分辨率成像光谱仪数据估算日蒸散量(MODIS ET)对比图

    Figure  3.  Comparison between daily evapotranspiration estimated by visible infrared imaging radiometer suite data (VIIRS ET) and by MODIS data (MODIS ET)

    表  1  2018年代表性站点冬小麦返青期(3月8日)、拔节期(3月24日)和抽穗期(4月17日)可见光红外成像辐射仪数据估算蒸散(VIIRS ET)与彭曼公式估算蒸散(P-M ET)对比

    Table  1.   Comparison between ET estimated by visible infrared imaging radiometer suite data (VIIRS ET) and Penman-Monteith formula (P-M ET) at regeneration stage (March 8th), jointing stage (March 24th) and heading stage (April 17th) in 2018 at representative stations

    站点
    Station
    返青期(3月8日)
    Regeneration stage (March 8th)
    拔节期(3月24日)
    Jointing stage (March 24th)
    抽穗期(4月17日)
    Heading stage (April 17th)
    VIIRS ET
    (mm∙d−1)
    P-M ET
    (mm∙d−1)
    绝对偏差
    Absolute deviation
    (mm∙d−1)
    相对偏差
    Relative deviation
    (%)
    VIIRS ET
    (mm∙d−1)
    P-M ET
    (mm∙d−1)
    绝对偏差
    Absolute deviation
    (mm∙d−1)
    相对偏差
    Relative deviation
    (%)
    VIIRS ET
    (mm∙d−1)
    P-M ET
    (mm∙d−1)
    绝对偏差
    Absolute deviation
    (mm∙d−1)
    相对偏差
    Relative deviation
    (%)
    民权 Minquan0.9670.8020.16520.62.3382.4930.1556.24.2494.8690.62012.7
    新蔡 Xincai0.9490.8680.0818.12.1552.2160.0612.83.4324.0800.64815.9
    许昌 Xuchang1.2091.0330.17617.02.4712.4830.0120.53.4834.0940.61114.9
    登封 Dengfeng1.0881.0120.0767.52.8702.8570.0130.53.5104.5711.06123.2
    伊川 Yichuan1.4751.2310.24419.82.3742.5190.1455.84.3695.0330.66413.2
    孟州 Mengzhou1.1340.9300.20421.92.3852.3960.0110.53.7744.6350.86118.6
    濮阳 Puyang1.3301.2350.0957.72.5102.5180.0080.33.4923.9450.45311.5
    长垣 Changyuan1.0471.0320.0151.42.3202.2790.0411.83.9044.6880.78416.7
    武陟 Wuzhi0.9740.9160.0586.32.0272.1520.1255.84.1784.9620.78415.8
    平均 Average1.1301.0060.12412.32.3832.4350.0632.73.8204.5400.72115.8
    下载: 导出CSV

    表  2  2018年冬小麦返青期(3月8日)至灌浆期(5月19日)可见光红外成像辐射仪数据估算蒸散(VIIRS ET)与大型称重式蒸渗仪实测蒸散(Real ET)对比

    Table  2.   Comparison of between daily evapotranspiration estimated by visible infrared imaging radiometer suite data (VIIRS ET) and macro-weighting lysmeter measured ET (Real ET) from winter wheat regeneration stage (March 8th ) to filling stage (May 19th) in 2018

    日期(月-日) Data (month-day)Real ET (mm∙d−1)VIIRS ET (mm∙d−1)绝对偏差 Absolute deviation (mm∙d−1)相对偏差 Relative deviation (%)
    03-082.061.890.178.25
    03-162.232.160.073.14
    03-243.523.220.308.52
    04-012.813.050.248.54
    04-092.662.840.186.77
    04-173.733.300.4311.53
    04-253.072.740.3310.75
    05-034.294.320.030.70
    05-112.162.020.146.48
    05-192.242.180.062.68
    平均 Average2.882.770.206.74
    下载: 导出CSV

    表  3  2016年至2018年河南省冬小麦关键生育时期麦区平均日蒸散量

    Table  3.   Average daily evapotranspiration in key growth periods of winter wheat in Henan Province from 2016 to 2018

    年份
    Year
    返青期
    (3月8日)
    Regeneration stage
    (March 8th)
    拔节期
    (3月24日)
    Jointing stage
    (March 24th)
    抽穗期
    4月17日)
    Heading stage
    (April 17th)
    灌浆期
    (5月11日)
    Filling stage
    (May 11th)
    mm∙d−1 
    20161.2191.6553.6232.983
    20171.4511.9333.8733.830
    20181.1302.7493.5763.410
    下载: 导出CSV
  • [1] 郑珍, 王子凯, 蔡焕杰. 基于SIMDual_Kc模型估算非充分灌水条件下冬小麦蒸散量[J]. 排灌机械工程学报, 2020, 38(2): 212−216

    ZHENG Z, WANG Z K, CAI H J. Estimation of evapotranspiration of winter wheat under deficient irrigation based on SIMDual_Kc model[J]. Journal of Drainage and Irrigation Machinery Engineering, 2020, 38(2): 212−216
    [2] FONG B N, REBA M L, TEAGUE T G, et al. Eddy covariance measurements of carbon dioxide and water fluxes in US mid-south cotton production[J]. Agriculture, Ecosystems & Environment, 2020, 292: 106813
    [3] 李杰, 陈锐, 吴杨焕, 等. 北疆地区滴灌冬小麦农田蒸散特征[J]. 干旱地区农业研究, 2016, 34(1): 31−37, 80 doi: 10.7606/j.issn.1000-7601.2016.01.05

    LI J, CHEN R, WU Y H, et al. Evapotranspiration in a drip-irrigated winter wheat field in Northern Xinjiang[J]. Agricultural Research in the Arid Areas, 2016, 34(1): 31−37, 80 doi: 10.7606/j.issn.1000-7601.2016.01.05
    [4] 王妍, 张晓龙, 石嘉丽, 等. 中国冬小麦主产区气候变化及其对小麦产量影响研究[J]. 中国生态农业学报(中英文), 2022, 30(5): 723−734 doi: 10.12357/cjea.20210702

    WANG Y, ZHANG X L, SHI J L, et al. Climate change and its effect on winter wheat yield in the main winter wheat production areas of China[J]. Chinese Journal of Eco-Agriculture, 2022, 30(5): 723−734 doi: 10.12357/cjea.20210702
    [5] 胡程达, 方文松, 王红振, 等. 河南省冬小麦农田蒸散和作物系数[J]. 生态学杂志, 2020, 39(9): 3004−3010

    HU C D, FANG W S, WANG H Z, et al. Evapotranspiration and crop coefficient of winter wheat cropland in Henan Province[J]. Chinese Journal of Ecology, 2020, 39(9): 3004−3010
    [6] 宋璐璐, 尹云鹤, 吴绍洪. 蒸散发测定方法研究进展[J]. 地理科学进展, 2012, 31(9): 1186−1195 doi: 10.11820/dlkxjz.2012.09.010

    SONG L L, YIN Y H, WU S H. Advancements of the metrics of evapotranspiration[J]. Progress in Geography, 2012, 31(9): 1186−1195 doi: 10.11820/dlkxjz.2012.09.010
    [7] LI Z L, TANG R L, WAN Z M, et al. A review of current methodologies for regional evapotranspiration estimation from remotely sensed data[J]. Sensors, 2009, 9(5): 3801−3853 doi: 10.3390/s90503801
    [8] 郑超磊, 胡光成, 陈琪婷, 等. 遥感土壤水分对蒸散发估算的影响[J]. 遥感学报, 2021, 25(4): 990−999

    ZHENG C L, HU G C, CHEN Q T, et al. Impact of remote sensing soil moisture on the evapotranspiration estimation[J]. National Remote Sensing Bulletin, 2021, 25(4): 990−999
    [9] TANG R L, LI Z L, TANG B H. An application of the Ts-VI triangle method with enhanced edges determination for evapotranspiration estimation from MODIS data in arid and semi-arid regions: implementation and validation[J]. Remote Sensing of Environment, 2010, 114(3): 540−551 doi: 10.1016/j.rse.2009.10.012
    [10] 矫京均, 辛晓洲, 余珊珊, 等. HJ-1卫星数据估算地表能量平衡[J]. 遥感学报, 2014, 18(5): 1048−1058 doi: 10.11834/jrs.20143322

    JIAO J J, XIN X Z, YU S S, et al. Estimation of surface energy balance from HJ-1 satellite data[J]. Journal of Remote Sensing, 2014, 18(5): 1048−1058 doi: 10.11834/jrs.20143322
    [11] 张振宇, 李小玉, 孙浩. 地表反照率不同计算方法对干旱区流域蒸散反演结果的影响−以新疆三工河流域为例[J]. 生态学报, 2019, 39(8): 2911−2921

    ZHANG Z Y, LI X Y, SUN H. Influence of different surface albedo calculation methods on the simulation of evapotranspiration from the Sangong River Basin in the arid region of Xinjiang[J]. Acta Ecologica Sinica, 2019, 39(8): 2911−2921
    [12] SU Z. The Surface Energy Balance System (SEBS) for estimation of turbulent heat fluxes[J]. Hydrology and Earth System Sciences, 2002, 6(1): 85−100 doi: 10.5194/hess-6-85-2002
    [13] MA W Q, HAFEEZ M, ISHIKAWA H, et al. Evaluation of SEBS for estimation of actual evapotranspiration using ASTER satellite data for irrigation areas of Australia[J]. Theoretical and Applied Climatology, 2013, 112(3/4): 609−616
    [14] 张亚丽, 王万同. 遥感估算伊洛河流域地表蒸散的空间尺度转换[J]. 测绘学报, 2013, 42(6): 906−912

    ZHANG Y L, WANG W T. Spatial scaling transformation of evapotranspiration based on remote sensing in Yiluo River basin[J]. Acta Geodaetica et Cartographica Sinica, 2013, 42(6): 906−912
    [15] WU X J, ZHOU J, WANG H J, et al. Evaluation of irrigation water use efficiency using remote sensing in the middle reach of the Heihe River, in the semi-arid Northwestern China[J]. Hydrological Processes, 2015, 29(9): 2243−2257 doi: 10.1002/hyp.10365
    [16] 张圆, 郑江华, 刘志辉, 等. 基于Landsat8遥感影像和SEBS模型的呼图壁县蒸散量时空格局分析[J]. 生态科学, 2016, 35(2): 26−32

    ZHANG Y, ZHENG J H, LIU Z H, et al. Spatial and temporal distribution of evapotranspiration in the Hutubi County based on Landsat8 data and SEBS model[J]. Ecological Science, 2016, 35(2): 26−32
    [17] MOHAMMADIAN M, ARFANIA R, SAHOUR H. Evaluation of SEBS algorithm for estimation of daily evapotranspiration using Landsat-8 dataset in a semi-arid region of central Iran[J]. Open Journal of Geology, 2017, 7(3): 335−347 doi: 10.4236/ojg.2017.73023
    [18] 郑倩倩, 代鹏超, 张金燕, 等. 基于SEBS模型的精河流域蒸散发研究[J]. 干旱区研究, 2020, 37(6): 1378−1387

    ZHENG Q Q, DAI P C, ZHANG J Y, et al. Evapotranspiration in the Jinghe River Basin based on the surface energy balance system[J]. Arid Zone Research, 2020, 37(6): 1378−1387
    [19] 赵笑然, 石汉青, 杨平吕, 等. NPP卫星VIIRS微光资料反演夜间PM2.5质量浓度[J]. 遥感学报, 2017, 21(2): 291−299

    ZHAO X R, SHI H Q, YANG P L, et al. Inversion algorithm of PM2.5 air quality based on nighttime light data from NPP-VIIRS[J]. Journal of Remote Sensing, 2017, 21(2): 291−299
    [20] 丁梦娇, 丘仲锋, 张海龙, 等. 基于NPP-VIIRS卫星数据的渤黄海浊度反演算法研究[J]. 光学学报, 2019, 39(6): 17−25

    DING M J, QIU Z F, ZHANG H L, et al. Inversion algorithm for turbidity of Bohai and Yellow Seas based on NPP-VIIRS satellite data[J]. Acta Optica Sinica, 2019, 39(6): 17−25
    [21] 孙皓, 李传华, 姚晓军. 基于NPP-VIIRS数据的喜马拉雅山北坡典型湖泊湖冰提取分析[J]. 冰川冻土, 2021, 43(1): 70−79

    SUN H, LI C H, YAO X J. Extraction and analysis of lake ice in typical lakes on the northern slopes of the Himalayas based on NPP-VIIRS data[J]. Journal of Glaciology and Geocryology, 2021, 43(1): 70−79
    [22] LI F, WANG Q L, HU W J, et al. Rapid assessment of disaster damage and economic resilience in relation to the flooding in Zhengzhou, China in 2021[J]. Remote Sensing Letters, 2022, 13(7): 651−662 doi: 10.1080/2150704X.2022.2068987
    [23] WANG M J, WANG Y J, TENG F, et al. Estimation and analysis of PM2.5 concentrations with NPP-VIIRS nighttime light images: a case study in the Chang-Zhu-Tan urban agglomeration of China[J]. International Journal of Environmental Research and Public Health, 2022, 19(7): 4306 doi: 10.3390/ijerph19074306
    [24] 苏城林, 苏林, 陈良富, 等. NPP VIIRS数据反演气溶胶光学厚度[J]. 遥感学报, 2015, 19(6): 977−982

    SU C L, SU L, CHEN L F, et al. Retrieval of aerosol optical depth using NPP VIIRS data[J]. Journal of Remote Sensing, 2015, 19(6): 977−982
    [25] 张宇. 基于SEBS模型的河南省麦区蒸散发估算[D]. 郑州: 郑州大学, 2019

    ZHANG Y. Estimation of evapotranspiration in wheat area of Henan Province based on SEBS model[D]. Zhengzhou: Zhengzhou University, 2019
    [26] PEREIRA L S, ALLEN R G, SMITH M, et al. Crop evapotranspiration estimation with FAO56: Past and future[J]. Agricultural Water Management, 2015, 147: 4−20 doi: 10.1016/j.agwat.2014.07.031
    [27] 王欢, 张超, 郧文聚, 等. 基于多时相GF1-WFV和GF3-FSⅡ极化特征的湿地分类[J]. 农业机械学报, 2020, 51(3): 209−215 doi: 10.6041/j.issn.1000-1298.2020.03.024

    WANG H, ZHANG C, YUN W J, et al. Wetland classification based on multi-temporal GF1-WFV and GF3-FSⅡ polarization features[J]. Transactions of the Chinese Society for Agricultural Machinery, 2020, 51(3): 209−215 doi: 10.6041/j.issn.1000-1298.2020.03.024
    [28] 何真, 胡洁, 蔡志文, 等. 协同多时相国产GF-1和GF-6卫星影像的艾草遥感识别[J]. 农业工程学报, 2022, 38(1): 186−195 doi: 10.11975/j.issn.1002-6819.2022.01.021

    HE Z, HU J, CAI Z W, et al. Remote sensing identification forArtemisia argyi integrating multi-temporal GF-1 and GF-6 images[J]. Transactions of the Chinese Society of Agricultural Engineering, 2022, 38(1): 186−195 doi: 10.11975/j.issn.1002-6819.2022.01.021
    [29] 李颖, 李耀辉, 王金鑫, 等. SVM和ANN在多光谱遥感影像分类中的比较研究[J]. 海洋测绘, 2016, 36(5): 19−22 doi: 10.3969/j.issn.1671-3044.2016.05.005

    LI Y, LI Y H, WANG J X, et al. A comparative study of SVM and ANN in multispectral image classification[J]. Hydrographic Surveying and Charting, 2016, 36(5): 19−22 doi: 10.3969/j.issn.1671-3044.2016.05.005
    [30] 王蕊, 张继权, 曹永强, 等. 基于SEBS模型估算辽西北地区蒸散发及时空特征[J]. 水土保持研究, 2017, 24(6): 382−387

    WANG R, ZHANG J Q, CAO Y Q, et al. Estimation of evapotranspiration and analysis of temporal-space characteristic in northwest of Liaoning Province based on SEBS model[J]. Research of Soil and Water Conservation, 2017, 24(6): 382−387
    [31] 何磊, 王瑶, 别强, 等. 基于SEBS-METRIC方法的黑河流域中游地区农田蒸散[J]. 兰州大学学报(自然科学版), 2013, 49(4): 504−510

    HE L, WANG Y, BIE Q, et al. Estimation of field evapotranspiration in the middle reaches of Heihe River Basin based on SEBS-METRIC method[J]. Journal of Lanzhou University (Natural Sciences), 2013, 49(4): 504−510
    [32] 李颖, 李耀辉, 王金鑫. 夏玉米生长过程曲线重建研究−以鹤壁市为例[J]. 气象与环境科学, 2016, 39(4): 7−13

    LI Y, LI Y H, WANG J X. Research on summer corn growth curve reconstruction: a case study in Hebi[J]. Meteorological and Environmental Sciences, 2016, 39(4): 7−13
    [33] DJAMAN K, IRMAK S, KABENGE I, et al. Evaluation of FAO-56 Penman-Monteith model with limited data and the Valiantzas models for estimating grass-reference evapotranspiration in Sahelian conditions[J]. Journal of Irrigation and Drainage Engineering, 2016, 142(11). DOI: 10.1061/(ASCE)IR.1943-4774.0001070
    [34] 韩淑敏, 程一松, 胡春胜. 太行山山前平原作物系数与降水年型关系探讨[J]. 干旱地区农业研究, 2005, 23(5): 152−158 doi: 10.3321/j.issn:1000-7601.2005.05.030

    HAN S M, CHENG Y S, HU C S. Relationship between crop coefficient and precipitation pattern in the piedmont of Mt. Taihang[J]. Agricultural Research in the Arid Areas, 2005, 23(5): 152−158 doi: 10.3321/j.issn:1000-7601.2005.05.030
    [35] 何延波, 王石立. 遥感数据支持下不同地表覆盖的区域蒸散[J]. 应用生态学报, 2007, 18(2): 288−296 doi: 10.3321/j.issn:1001-9332.2007.02.010

    HE Y B, WANG S L. Regional evapotranspiration of different land covers based on remote sensing[J]. Chinese Journal of Applied Ecology, 2007, 18(2): 288−296 doi: 10.3321/j.issn:1001-9332.2007.02.010
    [36] 曾丽红, 宋开山, 张柏, 等. 松嫩平原不同地表覆盖蒸散特征的遥感研究[J]. 农业工程学报, 2010, 26(9): 233−242, 388 doi: 10.3969/j.issn.1002-6819.2010.09.039

    ZENG L H, SONG K S, ZHANG B, et al. Analysis of evapotranspiration characteristics for different land covers over Songnen Plain based on remote sensing[J]. Transactions of the Chinese Society of Agricultural Engineering, 2010, 26(9): 233−242, 388 doi: 10.3969/j.issn.1002-6819.2010.09.039
    [37] 褚荣浩, 李萌, 谢鹏飞, 等. 安徽省近20年地表蒸散和干旱变化特征及其影响因素分析[J]. 生态环境学报, 2021, 30(6): 1229−1239

    CHU R H, LI M, XIE P F, et al. Characteristics and influencing factors of surface evapotranspiration and drought in Anhui Province during recent 20 years[J]. Ecology and Environmental Sciences, 2021, 30(6): 1229−1239
    [38] 赵红, 赵玉金, 李峰, 等. FY-3/VIRR卫星遥感数据反演省级区域蒸散量[J]. 农业工程学报, 2014, 30(13): 111−118, 294 doi: 10.3969/j.issn.1002-6819.2014.13.014

    ZHAO H, ZHAO Y J, LI F, et al. Modelling evapotranspiration in provincial regions based on FY-3/VIRR remote sensing data[J]. Transactions of the Chinese Society of Agricultural Engineering, 2014, 30(13): 111−118, 294 doi: 10.3969/j.issn.1002-6819.2014.13.014
    [39] 姚瑶, 唐婉莹, 袁宏伟, 等. 基于称重式蒸渗仪的淮北平原冬小麦蒸散估算模型的本地化[J]. 麦类作物学报, 2020, 40(6): 737−745 doi: 10.7606/j.issn.1009-1041.2020.06.12

    YAO Y, TANG W Y, YUAN H W, et al. Calibration of evapotranspiration for winter wheat based on the value of weighing lysimeter measurements in Huaibei Plain[J]. Journal of Triticeae Crops, 2020, 40(6): 737−745 doi: 10.7606/j.issn.1009-1041.2020.06.12
    [40] 赵焕, 徐宗学, 赵捷. 基于CWSI及干旱稀遇程度的农业干旱指数构建及应用[J]. 农业工程学报, 2017, 33(9): 116−125, 316 doi: 10.11975/j.issn.1002-6819.2017.09.015

    ZHAO H, XU Z X, ZHAO J. Development and application of agricultural drought index based on CWSI and drought event rarity[J]. Transactions of the Chinese Society of Agricultural Engineering, 2017, 33(9): 116−125, 316 doi: 10.11975/j.issn.1002-6819.2017.09.015
    [41] 张志高, 邵亚军, 郭超凡, 等. 基于MOD16的河南省地表蒸散量时空变化特征[J]. 西南师范大学学报(自然科学版), 2021, 46(9): 128−135

    ZHANG Z G, SHAO Y J, GUO C F, et al. On spatial-temporal variation charaateristics of evapotranspiration in Henan Province based on MOD16 data[J]. Journal of Southwest China Normal University (Natural Science Edition), 2021, 46(9): 128−135
    [42] 蒋博武, 孟丹, 郭晓彤, 等. 基于Landsat-8 遥感数据的冬小麦种植区地表蒸散量时空分布研究[J]. 灌溉排水学报, 2022, 41(7): 140−146

    JIANG B W, MENG D, GUO X T, et al. Calculating spatiotemporal distribution of evapotranspiration of winter wheat using the Landsat-8 imageries[J]. Journal of Irrigation and Drainage, 2022, 41(7): 140−146
  • 加载中
图(3) / 表(3)
计量
  • 文章访问数:  157
  • HTML全文浏览量:  78
  • PDF下载量:  40
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-06-02
  • 录用日期:  2022-08-31
  • 修回日期:  2022-08-31
  • 网络出版日期:  2022-09-06
  • 刊出日期:  2023-04-10

目录

    /

    返回文章
    返回