留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

施石膏对水稻产量和甲烷排放影响的荟萃分析

孟轶 廖萍 魏海燕 高辉 戴其根 张洪程

孟轶, 廖萍, 魏海燕, 高辉, 戴其根, 张洪程. 施石膏对水稻产量和甲烷排放影响的荟萃分析[J]. 中国生态农业学报 (中英文), 2023, 31(2): 280−289 doi: 10.12357/cjea.20220428
引用本文: 孟轶, 廖萍, 魏海燕, 高辉, 戴其根, 张洪程. 施石膏对水稻产量和甲烷排放影响的荟萃分析[J]. 中国生态农业学报 (中英文), 2023, 31(2): 280−289 doi: 10.12357/cjea.20220428
MENG Y, LIAO P, WEI H Y, GAO H, DAI Q G, ZHANG H C. Effects of gypsum application on grain yield and methane emissions in rice paddies: a global meta-analysis[J]. Chinese Journal of Eco-Agriculture, 2023, 31(2): 280−289 doi: 10.12357/cjea.20220428
Citation: MENG Y, LIAO P, WEI H Y, GAO H, DAI Q G, ZHANG H C. Effects of gypsum application on grain yield and methane emissions in rice paddies: a global meta-analysis[J]. Chinese Journal of Eco-Agriculture, 2023, 31(2): 280−289 doi: 10.12357/cjea.20220428

施石膏对水稻产量和甲烷排放影响的荟萃分析

doi: 10.12357/cjea.20220428
基金项目: 江苏省碳达峰碳中和科技创新专项资金(BE2022304)、江苏省农业科技自主创新项目(CX[20]1012)和江苏高校优势学科建设工程资助
详细信息
    作者简介:

    孟轶, 主要从事稻田温室气体减排与土壤改良研究。E-mail: 1813662383@qq.com

    通讯作者:

    廖萍, 主要从事稻田温室气体减排工作, E-mail: p.liao@yzu.edu.cn

    张洪程, 主要研究作物优质高产栽培理论及其应用, E-mail: hczhang@yzu.edu.cn

  • 中图分类号: S318

Effects of gypsum application on grain yield and methane emissions in rice paddies: a global meta-analysis

Funds: This study was supported by the Carbon Peak, Neutrality Special Funding for Science and Technology Innovation Project of Jiangsu Province (BE2022304), the Jiangsu Agricultural Science and Technology Innovation Fund (CX[20]1012) and the Priority Academic Program Development of Jiangsu Higher Education Institutions.
More Information
  • 摘要: 石膏是一种常见的稻田土壤改良剂, 施石膏对水稻产量和稻田温室气体排放影响的荟萃分析尚鲜见报道。本研究采用Meta分析方法, 探究施石膏对水稻产量和稻田温室气体排放的影响。以不施石膏为对照, 施石膏为处理, 在全球尺度上筛选出了74篇文献, 建立了包含382对水稻产量、39对甲烷(CH4)排放、10对氧化亚氮(N2O)排放、10对综合温室效应(GWP)和10对温室气体排放强度(GHGI)观测值的数据库。针对不同的石膏施用措施(类型和施用量)、基础土壤性状(pH值、有机碳含量和质地)以及稻田管理方式(氮肥施用量、灌溉制度、水稻品种类型和试验类型), 探究施石膏对水稻产量和稻田CH4排放的影响。从总效应来看, 与不施石膏相比, 施石膏显著增加了水稻产量(+58%), 降低了稻田CH4排放(−47%)、GWP(−22%)和GHGI(−31%), 而对N2O排放影响不显著。脱硫石膏对水稻增产和稻田CH4减排的效应显著高于普通石膏和磷石膏。当施用量<2 t·hm−2时, 石膏对水稻产量影响不显著; 当施用量≥2 t·hm−2时, 石膏对水稻的增产效应随石膏施用量的增加而增加。随着土壤pH增加, 施石膏对水稻产量的增幅显著增加。石膏施用量和土壤pH对水稻产量存在显著的互作效应。在土壤pH<8.5条件下, 施石膏对水稻产量影响不显著; 在土壤pH≥8.5条件下, 水稻产量随着石膏施用量的增加而增加。稻田CH4减排效应随石膏施用量的增加而显著增加。综上, 施石膏显著提高了水稻产量, 同时降低了稻田温室气体排放, 本研究结果可为评估施石膏对全球水稻丰产和缓解气候变暖提供数据支撑。
  • 图  1  施石膏对水稻产量、CH4排放、N2O排放、综合温室效应和温室气体排放强度的总效应

    括号内的数字表示观测值数, 误差线表示95%的置信区间, GWP表示全球增温潜势。Number in the parenthese is the number of observations of each category. Error bars indicate 95% confidence intervals. GWP is global warming potential.

    Figure  1.  Overall effects of gypsum application on grain yield, CH4 emissions, N2O emissions, area-scaled global warming potential (GWP), and yield-scaled GWP in rice paddies

    图  2  不同条件下施石膏对水稻产量的影响

    括号内的数字表示观测值数, 误差线表示95%的置信区间。Number in the parenthese is the number of observations of each category. Error bars indicate 95% confidence intervals.

    Figure  2.  Response of rice yield to gypsum application as affected by categorical variables

    图  3  石膏施用量和土壤pH对水稻产量的互作效应

    括号内的数字表示观测值数, 误差线表示95%的置信区间。Number in the parenthese is the number of observations of each category. Error bars indicate 95% confidence intervals.

    Figure  3.  Interactive effect of gypsum rate and soil pH on rice yield

    图  4  不同条件下施石膏对稻田CH4排放的影响

    括号内的数字表示观测值数, 误差线表示95%的置信区间。Number in the parenthese is the number of observations of each category. Error bars indicate 95% confidence intervals.

    Figure  4.  Response of CH4 emissions to gypsum application as affected by categorical variables

    图  5  施石膏对水稻产量(lnR)和施石膏对稻田CH4排放(lnR)影响的相关性(n=28)

    Figure  5.  Relationships between the response of grain yield to gypsum application (lnR) and response of CH4 emissions to gypsum application (lnR) in rice paddies (n=28)

  • [1] IPCC. Climate Change 2021: The Physical Science Basis. Contribution of Working GroupⅠ to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change[M]. Cambridge: Cambridge University Press, 2021: 423–552
    [2] LINQUIST B, GROENIGEN K J, ADVIENTO-BORBE M A, et al. An agronomic assessment of greenhouse gas emissions from major cereal crops[J]. Global Change Biology, 2012, 18(1): 194−209 doi: 10.1111/j.1365-2486.2011.02502.x
    [3] ALEXANDRATOS N, BRUINSMA J. World Agriculture Towards 2030/2050: the 2012 Revision[M]. Rome: Food and Agriculture Organization of the United Nations, 2012: 65–71
    [4] ZHANG P, BING X, JIAO L, et al. Amelioration effects of coastal saline-alkali soil by ball-milled red phosphorus-loaded biochar[J]. Chemical Engineering Journal, 2022, 431: 133904 doi: 10.1016/j.cej.2021.133904
    [5] REICHENAUER T G, PANAMULLA S, SUBASINGHE S, et al. Soil amendments and cultivar selection can improve rice yield in salt-influenced (tsunami-affected) paddy fields in Sri Lanka[J]. Environmental Geochemistry and Health, 2009, 31(5): 573−579 doi: 10.1007/s10653-009-9253-6
    [6] MEL V C, BADO V B, NDIAYE S, et al. Suitable management options to improve the productivity of rice cultivars under salinity stress[J]. Archives of Agronomy and Soil Science, 2019, 65(8): 1093−1106 doi: 10.1080/03650340.2018.1552785
    [7] WANG S J, CHEN Q, LI Y, et al. Research on saline-alkali soil amelioration with FGD gypsum[J]. Resources, Conservation and Recycling, 2017, 121: 82−92 doi: 10.1016/j.resconrec.2016.04.005
    [8] WANG Y G, WANG Z F, LIANG F, et al. Application of flue gas desulfurization gypsum improves multiple functions of saline-sodic soils across China[J]. Chemosphere, 2021, 277: 130345 doi: 10.1016/j.chemosphere.2021.130345
    [9] LINDAU C W, WICKERSHAM P, DELAUNE R D, et al. Methane and nitrous oxide evolution and 15N and 226Ra uptake as affected by application of gypsum and phosphogypsum to Louisiana rice[J]. Agriculture, Ecosystems & Environment, 1998, 68(1): 165−173
    [10] 李佳, 张宇, 孙丽英, 等. 不同改良剂对滨海盐土区稻田综合温室效应的影响[J]. 中国农业科技导报, 2021, 23(11): 164−171 doi: 10.13304/j.nykjdb.2020.0683

    LI J, ZHANG Y, SUN L Y, et al. Effects of different ameliorant on global warming potentials of coastal saline paddy field[J]. Journal of Agricultural Science and Technology, 2021, 23(11): 164−171 doi: 10.13304/j.nykjdb.2020.0683
    [11] THEINT E E, BELLINGRATH-KIMURA S D, OO A Z, et al. Influence of gypsum amendment on methane emission from paddy soil affected by saline irrigation water[J]. Frontiers in Environmental Science, 2016, 3: 79
    [12] BASAK N, SHEORAN P, SHARMA R, et al. Gypsum and pressmud amelioration improve soil organic carbon storage and stability in sodic agroecosystems[J]. Land Degradation & Development, 2021, 32(15): 4430−4444
    [13] SUN L Y, MA Y C, LIU Y L, et al. The combined effects of nitrogen fertilizer, humic acid, and gypsum on yield-scaled greenhouse gas emissions from a coastal saline rice field[J]. Environmental Science and Pollution Research International, 2019, 26(19): 19502−19511 doi: 10.1007/s11356-019-05363-z
    [14] WANG W Q, ZENG C S, SARDANS J, et al. Industrial and agricultural wastes decreased greenhouse-gas emissions and increased rice grain yield in a subtropical paddy field[J]. Experimental Agriculture, 2018, 54(4): 623−640 doi: 10.1017/S001447971700031X
    [15] JIANG Y, LIAO P, VAN GESTEL N, et al. Lime application lowers the global warming potential of a double rice cropping system[J]. Geoderma, 2018, 325: 1−8 doi: 10.1016/j.geoderma.2018.03.034
    [16] 王强盛. 稻田种养结合循环农业温室气体排放的调控与机制[J]. 中国生态农业学报, 2018, 26(5): 633−642

    WANG Q S. Regulation and mechanism of greenhouse gas emissions of circular agriculture ecosystem of planting and breeding in paddy[J]. Chinese Journal of Eco-Agriculture, 2018, 26(5): 633−642
    [17] ZHAO D D, WANG Z C, YANG F, et al. Amendments to saline-sodic soils showed long-term effects on improving growth and yield of rice (Oryza sativa L.)[J]. PeerJ, 2020, 8: e8726 doi: 10.7717/peerj.8726
    [18] GHAFOOR A, MURTAZA G, AHMAD B, et al. Evaluation of amelioration treatments and economic aspects of using saline-sodic water for rice and wheat production on salt-affected soils under arid land conditions[J]. Irrigation and Drainage: The Journal of the International Commission on Irrigation and Drainage, 2008, 57(4): 424−434
    [19] MURTAZA G, GHAFOOR A, OWENS G, et al. Environmental and economic benefits of saline-sodic soil reclamation using low-quality water and soil amendments in conjunction with a rice-wheat cropping system[J]. Journal of Agronomy and Crop Science, 2009, 195(2): 124−136 doi: 10.1111/j.1439-037X.2008.00350.x
    [20] AUGUSTO L, BAKKER M R, MEREDIEU C. Wood ash applications to temperate forest ecosystems — potential benefits and drawbacks[J]. Plant and Soil, 2008, 306(1): 181−198
    [21] LIAO P, SUN Y N, ZHU X C, et al. Identifying agronomic practices with higher yield and lower global warming potential in rice paddies: a global meta-analysis[J]. Agriculture, Ecosystems & Environment, 2021, 322: 107663
    [22] JIANG Y, CARRIJO D, HUANG S, et al. Water management to mitigate the global warming potential of rice systems: a global meta-analysis[J]. Field Crops Research, 2019, 234: 47−54 doi: 10.1016/j.fcr.2019.02.010
    [23] 刘宇锋, 李伏生. 灌溉方式与施肥水平对超级稻光合生理的影响[J]. 中国生态农业学报, 2013, 21(4): 416−425

    LIU Y F, LI F S. Effect of irrigation method and fertilization dose on photosynthetic physiology of super rice[J]. Chinese Journal of Eco-Agriculture, 2013, 21(4): 416−425
    [24] LIAO P, HUANG S, ZENG Y J, et al. Liming increases yield and reduces grain cadmium concentration in rice paddies: a meta-analysis[J]. Plant and Soil, 2021, 465(1): 157−169
    [25] DE GRAAFF M A, VAN GROENIGEN K J, SIX J, et al. Interactions between plant growth and soil nutrient cycling under elevated CO2: a meta-analysis[J]. Global Change Biology, 2006, 12(11): 2077−2091 doi: 10.1111/j.1365-2486.2006.01240.x
    [26] HEDGES L V, GUREVITCH J, CURTIS P S. The meta-analysis of response ratios in experimental ecology[J]. Ecology, 1999, 80(4): 1150−1156 doi: 10.1890/0012-9658(1999)080[1150:TMAORR]2.0.CO;2
    [27] 廖萍, 孟轶, 翁文安, 等. 杂交稻对产量和氮素利用率影响的荟萃分析[J]. 中国农业科学, 2022, 55(8): 1546−1556

    LIAO P, MENG Y, WENG W A, et al. Effects of hybrid rice on grain yield and nitrogen use efficiency: a meta-analysis[J]. Scientia Agricultura Sinica, 2022, 55(8): 1546−1556
    [28] SANTOS P D D, CAVALCANTE L F, GHEYI H R, et al. Saline-sodic soil treated with gypsum, organic sources and leaching for successive cultivation of sunflower and rice[J]. Revista Brasileira De Engenharia Agrícola e Ambiental, 2019, 23(12): 891−898
    [29] WU G Q, WANG S M. Calcium regulates K+/Na+ homeostasis in rice (Oryza sativa L.) under saline conditions[J]. Plant, Soil and Environment, 2012, 58(3): 121−127 doi: 10.17221/374/2011-PSE
    [30] SAQIB A I, AHMED K, QADIR G, et al. Enhancing the solubility and reclamation efficiency of gypsum with H2SO4[J]. Cercetari Agronomice in Moldova, 2019, 52(2): 128−140 doi: 10.2478/cerce-2019-0013
    [31] HELMY A M, SHABAN K A, EL-GALAD M A. Effect of gypsum and sulphur application in amelioration of saline soil and enhancing rice productivity[J]. Journal of Soil Sciences and Agricultural Engineering, 2013, 4(10): 1037−1051 doi: 10.21608/jssae.2013.52497
    [32] 王增蓁. 火电厂脱硫石膏资源化研究[D]. 保定: 华北电力大学, 2013: 15–22

    WANG Z Z. Study on resourse utilization of FGD gypsum in power plant[D]. Baoding: North China Electric Power University, 2013: 15–22
    [33] KORALEGEDARA N H, PINTO P X, DIONYSIOU D D, et al. Recent advances in flue gas desulfurization gypsum processes and applications — A review[J]. Journal of Environmental Management, 2019, 251: 109572 doi: 10.1016/j.jenvman.2019.109572
    [34] SHAH A L, ISLAM M R, HAQUE M M, et al. Efficacy of major nutrients in rice production[J]. Bangladesh Journal of Agricultural Research, 2008, 33(4): 639−645
    [35] 肖国举, 罗成科, 白海波, 等. 脱硫石膏改良碱化土壤种植水稻施用量研究[J]. 生态环境学报, 2009, 18(6): 2376−2380 doi: 10.3969/j.issn.1674-5906.2009.06.068

    XIAO G J, LUO C K, BAI H B, et al. Research on the amount of desulfurized gypsum from the coal-burning power plant applied to improve the alkalized soil for paddy rice[J]. Ecology and Environmental Sciences, 2009, 18(6): 2376−2380 doi: 10.3969/j.issn.1674-5906.2009.06.068
    [36] SINGH Y, SINGH R, SHARMA D. Determination of time frame for substitution of salt-tolerant varieties of rice (Oryza sativa) and wheat (Triticum aestivum) through crop diversification in sodic soils[J]. Indian Journal of Agricultural Sciences, 2010, 80(10): 6−11
    [37] LIU M, LIANG Z W, MA H Y, et al. Responses of rice (Oryza sativa L.) growth and yield to phosphogypsum amendment in saline-sodic soils of North-East China[J]. Journal of Food, Agriculture & Environment, 2010, 8(2): 827−833
    [38] YAN F Y, WEI H M, DING Y F, et al. Melatonin enhances Na+/K+ homeostasis in rice seedlings under salt stress through increasing the root H+-pump activity and Na+/K+ transporters sensitivity to ROS/RNS[J]. Environmental and Experimental Botany, 2021, 182: 104328 doi: 10.1016/j.envexpbot.2020.104328
    [39] QADIR A A, MURTAZA G, ZIA-UR-REHMAN M, et al. Application of gypsum or sulfuric acid improves physiological traits and nutritional status of rice in calcareous saline-sodic soils[J]. Journal of Soil Science and Plant Nutrition, 2022, 22(2): 1846−1858 doi: 10.1007/s42729-022-00776-1
    [40] WANG J M, YANG P L. Potential flue gas desulfurization gypsum utilization in agriculture: a comprehensive review[J]. Renewable and Sustainable Energy Reviews, 2018, 82: 1969−1978 doi: 10.1016/j.rser.2017.07.029
    [41] 胡翔宇, 向秋洁, 木志坚. 脱硫石膏对稻田CH4释放及其功能微生物种群的影响[J]. 环境科学, 2018, 39(8): 3894−3900

    HU X Y, XIANG Q J, MU Z J. Effects of gypsum on CH4 emission and functional microbial communities in paddy soil[J]. Environmental Science, 2018, 39(8): 3894−3900
    [42] GAUCI V, MATTHEWS E, DISE N, et al. Sulfur pollution suppression of the wetland methane source in the 20th and 21st centuries[J]. Proceedings of the National Academy of Sciences, 2004, 101(34): 12583−12587 doi: 10.1073/pnas.0404412101
    [43] SANGKERDSUB S, RICKE S C. Ecology and characteristics of methanogenic Archaea in animals and humans[J]. Critical Reviews in Microbiology, 2014, 40(2): 97−116 doi: 10.3109/1040841X.2013.763220
    [44] 江家彬, 祝贞科, 林森, 等. 针铁矿吸附态和包裹态有机碳在稻田土壤中的矿化及其激发效应[J]. 土壤学报, 2021, 58(6): 1530−1539 doi: 10.11766/trxb202005050215

    JIANG J B, ZHU Z K, LIN S, et al. Mineralization of goethite-adsorbed and -encapsulated organic carbon and its priming effect in paddy soil[J]. Acta Pedologica Sinica, 2021, 58(6): 1530−1539 doi: 10.11766/trxb202005050215
    [45] LIAO P, SUN Y N, JIANG Y, et al. Hybrid rice produces a higher yield and emits less methane[J]. Plant, Soil and Environment, 2019, 65(11): 549−555 doi: 10.17221/330/2019-PSE
    [46] JIANG Y, TIAN Y L, SUN Y N, et al. Effect of rice panicle size on paddy field CH4 emissions[J]. Biology and Fertility of Soils, 2016, 52(3): 389−399 doi: 10.1007/s00374-015-1084-2
    [47] DENIER VAN DER GON H A, BODEGOM P M, WASSMANN R, et al. Sulfate-containing amendments to reduce methane emissions from rice fields: mechanisms, effectiveness and costs[J]. Mitigation and Adaptation Strategies for Global Change, 2001, 6(1): 71−89 doi: 10.1023/A:1011380916490
    [48] LIU G, YU H Y, MA J, et al. Effects of straw incorporation along with microbial inoculant on methane and nitrous oxide emissions from rice fields[J]. Science of the Total Environment, 2015, 518: 209−216
    [49] 王飞, 李清华, 何春梅, 等. 稻秸-有机肥联合还田对黄泥田水稻产能与化肥替代的影响[J]. 中国生态农业学报(中英文), 2021, 29(12): 2024−2033 doi: 10.12357/cjea.20210267

    WANG F, LI Q H, HE C M, et al. Combined return of rice straw and organic fertilizer to yellow-mud paddy soil to improve the rice productivity and substitute chemical fertilizers[J]. Chinese Journal of Eco-Agriculture, 2021, 29(12): 2024−2033 doi: 10.12357/cjea.20210267
    [50] VAN DER GON H A C D, NEUE H U. Impact of gypsum application on the methane emission from a wetland rice field[J]. Global Biogeochemical Cycles, 1994, 8(2): 127−134 doi: 10.1029/94GB00386
    [51] CHOUDHARY O P, GHUMAN B S, BIJAY-SINGH, et al. Effects of long-term use of sodic water irrigation, amendments and crop residues on soil properties and crop yields in rice-wheat cropping system in a calcareous soil[J]. Field Crops Research, 2011, 121(3): 363−372 doi: 10.1016/j.fcr.2011.01.004
    [52] ALI M A, LEE C H, KIM P J. Effect of Phospho-gypsum on reduction of methane emission from rice paddy soil[J]. Korean Journal of Environmental Agriculture, 2007, 26(2): 131−140 doi: 10.5338/KJEA.2007.26.2.131
    [53] MORALES C L, TRAVESET A. A meta-analysis of impacts of alien vs. native plants on pollinator visitation and reproductive success of co-flowering native plants[J]. Ecology Letters, 2009, 12(7): 716−728 doi: 10.1111/j.1461-0248.2009.01319.x
  • 加载中
图(5)
计量
  • 文章访问数:  121
  • HTML全文浏览量:  47
  • PDF下载量:  44
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-06-04
  • 录用日期:  2022-08-24
  • 网络出版日期:  2022-11-07
  • 刊出日期:  2023-02-10

目录

    /

    返回文章
    返回