留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

结构转型、技术进步选择对农业碳影子价格的影响

许标文 王海平 沈智扬

许标文, 王海平, 沈智扬. 结构转型、技术进步选择对农业碳影子价格的影响−基于BP技术与FGLS模型的实证分析[J]. 中国生态农业学报 (中英文), 2023, 31(2): 241−252 doi: 10.12357/cjea.20220492
引用本文: 许标文, 王海平, 沈智扬. 结构转型、技术进步选择对农业碳影子价格的影响−基于BP技术与FGLS模型的实证分析[J]. 中国生态农业学报 (中英文), 2023, 31(2): 241−252 doi: 10.12357/cjea.20220492
XU B W, WANG H P, SHEN Z Y. Impact of structural transformation, technological progress choice on agricultural carbon shadow price: An empirical analysis based on BP technology and a mediating effect model[J]. Chinese Journal of Eco-Agriculture, 2023, 31(2): 241−252 doi: 10.12357/cjea.20220492
Citation: XU B W, WANG H P, SHEN Z Y. Impact of structural transformation, technological progress choice on agricultural carbon shadow price: An empirical analysis based on BP technology and a mediating effect model[J]. Chinese Journal of Eco-Agriculture, 2023, 31(2): 241−252 doi: 10.12357/cjea.20220492

结构转型、技术进步选择对农业碳影子价格的影响基于BP技术与FGLS模型的实证分析

doi: 10.12357/cjea.20220492
基金项目: 国家自然科学基金项目(72104028)、福建省自然科学基金项目(2020J011375)和福建省农业科学院科技创新项目(CXTD0098)资助
详细信息
    作者简介:

    许标文, 主要研究方向为农业可持续发展。E-mail: 13596447@qq.com

    通讯作者:

    沈智扬, 主要研究方向为效率与生产率估计。E-mail: z.shen@ieseg.fr

  • 中图分类号: F323; X196

Impact of structural transformation, technological progress choice on agricultural carbon shadow price: An empirical analysis based on BP technology and a mediating effect model

Funds: This study was supported by the National Natural Science Foundation of China (72104028), the Natural Science Foundation of Fujian Province (2020J011375) and the Science and Technology Innovation Program of Fujian Academy of Agricultural Sciences (CXTD0098).
More Information
  • 摘要: 通过经济结构转型和技术进步有效实施减排策略, 已经成为实现中国经济社会低碳转型发展的必然选择。基于数据包络分析(DEA)框架建模、满足经济理论和物料守恒原则, 利用改进的By-production (BP)技术对1997—2020年我国31个省份农业碳影子价格进行了更加准确的测度, 并利用核密度分析了农业碳影子价格动态演变特征; 并采用可行广义最小二乘法(FGLS)模型考察结构转型、技术进步选择对农业碳排放影子价格的影响。结果表明: 1)我国农业碳影子价格呈上升态势, 东部、中部和西部地区农业碳排放影子价格分别为7759.69元∙t−1、4192.35元∙t−1和3997.51元∙t−1, 且东、中、西部地区农业碳影子价格上升趋势依次降低。2)我国农业碳影子价格核密度值有增加趋势; 东部地区农业碳影子价格核密度曲线出现较为明显的右移趋势; 中部地区农业碳影子价格核密度曲线呈现左移-右移趋势, 且区域间差异在变大; 西部地区农业碳影子价格核密度曲线呈现明显的向下、变宽趋势。3)整体回归显示, 结构转型、劳动节约型技术进步显著提升了农业碳影子价格, 而资本深化抑制了农业碳影子价格提升, 经济发展水平、农业经营规模、城市化水平及对外开放水平等对农业碳影子价格也会产生重要影响。4)东、中、西部地区部分样本回归显示农业碳影子价格影响因素有所差异, 结构转型在东部地区显著提升农业碳影子价格, 在西部地区却显著抑制了农业碳影子价格; 劳动节约型技术进步在东部抑制了农业碳影子价格, 而在西部显著提升农业碳影子价格; 资本深化在东、西部显著抑制农业碳影子价格, 在中部显著提升农业碳影子价格。为此, 提出持续推进产业结构转型、制定差异化绿色协调发展政策、适时建立农业碳排放交易市场等政策建议, 以促进农业低碳绿色高质量发展。
  • 图  1  1997—2020年东部、中部和西部地区及全国农业碳影子价格时序变化

    Figure  1.  Time series of agricultural carbon shadow price in the east, central, west regions and whole nation from 1997 to 2020

    图  2  1997—2020年农业碳影子价格Kernel核密度图

    Figure  2.  Kernel density of agricultural carbon shadow price from 1997 to 2020

    表  1  结构转型、技术进步选择对农业碳影子价格影响效应的估计结果

    Table  1.   Estimation results of impact of structural transformation and technological progress choices on agricultural carbon shadow price

    变量 Variable符号 Symbol模型1 Model 1模型2 Model2模型3 Model3
    结构转型 Structural transformationst0.299* (0.171)0.794*** (0.168)0.454*** (0.021)
    劳动力节约型技术进步 Labor-saving technological progressls−0.366 (0.250)−1.275*** (0.190)0.455*** (0.067)
    资本体现式技术进步选择 Capital-deepening technological progresscd0.778*** (0.144)1.127*** (0.198)−0.171*** (0.018)
    农业经营规模化 Scale of agricultural managementsam−0.139 (0.092)−0.150 (0.100)−0.084*** (0.016)
    经济发展水平 Economic developmented0.038 (0.037)−0.010 (0.019)−1.096*** (0.086)
    城镇化 Urbanizationur−0.543** (0.262)−0.539** (0.234)0.595*** (0.072)
    对外开放 Opening-upop0.619 (0.476)0.921* (0.512)−0.597*** (0.041)
    常数项 Constantcons0.120 (1.333)−2.863 (1.941)−289.916*** (20.564)
    Wald test54329.05***
    F test3.932**
    Frees test1.969***
      模型(1)~(3)分别用随机效应模型、固定效应模型和全面用可行的广义最小二乘法(FGLS)。*、**和***分别表示回归系数在P<10%、P<5%和P<1%水平显著, 括号内为标准差。Model 1, model 2 and model 3 are random effects model, fixed effect model and full feasible generalized least squares (FGLS). *, ** and *** denote the significance levels of the regression coefficients of P<10%, P<5%, and P<1%, respectively. Data in parentheses are the corresponding standard deviations.
    下载: 导出CSV

    表  2  东、中、西部地区农业碳影子价格影响因素分析

    Table  2.   Analysis of influencing factors of agricultural carbon shadow price in eastern, central and western regions

    变量 Variable符号 Symbol模型4 Model 4模型5 Model 5模型6 Model 6
    结构转型 Structural transformationst1.496*** (0.197)0.368*** (0.164)−0.293*** (0.064)
    劳动力节约型技术进步 Labor-saving technological progressls−0.483*** (0.336)0.116*** (0.016)1.986*** (0.407)
    资本体现式技术进步选择 Capital-deepening technological progresscd−0.142*** (0.039)0.027*** (0.133)−0.502*** (0.085)
    农业经营规模化 Scale of agricultural managementsam−0.124* (0.074)−0.010 (0.028)−0.336*** (0.083)
    经济发展水平 Economic development ed0.457** (0.182)0.303 (0.319)−1.549*** (0.387)
    城镇化 Urbanizationur0.324*** (0.098)0.462 (1.000)1.566*** (0.299)
    对外开放 Opening-upop−0.119 (0.131)−4.932*** (1.160)−1.704*** (0.640)
    常数项 Constantcons−113.352*** (34.211)−60.546 (91.962)−479.476*** (65.956)
    Wald test2640.73***27 216.47***13 967.00***
    F test2.5402.7390.672
    Frees test0.338***0.301***0.930***
      模型(4)~(6)分别是东部、中部、西部地区回归结果。*、**和***分别表示回归系数在P<10%、P<5%和P<1%水平显著, 括号内为标准差。Model 4, model 5 and model 6 are regression results of the east, central and west regions. *, ** and *** denote the significance levels of the regression coefficients of P<10%, P<5%, and P<1%, respectively. Data in parentheses are the corresponding standard deviations.
    下载: 导出CSV
  • [1] ZHANG X X, WU L Y, MA X Z, et al. Dynamic computable general equilibrium simulation of agricultural greenhouse gas emissions in China[J]. Journal of Cleaner Production, 2022, 345: 131122 doi: 10.1016/j.jclepro.2022.131122
    [2] 王倩, 高翠云. 中国省际碳影子价格与碳生产率非线性关联研究[J]. 资源科学, 2018, 40(10): 2118−2131

    WANG Q, GAO C Y. Research on the nonlinear correlation between provincial carbon shadow price and carbon productivity[J]. Resources Science, 2018, 40(10): 2118−2131
    [3] SHEN Z Y, BALEŽENTIS T, CHEN X L, et al. Green growth and structural change in Chinese agricultural sector during 1997−2014[J]. China Economic Review, 2018, 51: 83−96 doi: 10.1016/j.chieco.2018.04.014
    [4] SONNENSCHEIN J, VAN BUSKIRK R, RICHTER J L, et al. Minimum energy performance standards for the 1.5℃ target: an effective complement to carbon pricing[J]. Energy Efficiency, 2019, 12(2): 387−402 doi: 10.1007/s12053-018-9669-x
    [5] CUI Q, LI Y. Airline efficiency measures under CNG2020 strategy: an application of a dynamic By-production model[J]. Transportation Research Part A: Policy and Practice, 2017, 106: 130−143 doi: 10.1016/j.tra.2017.09.006
    [6] DAKPO K H, LANSINK A O. Dynamic pollution-adjusted inefficiency under the by-production of bad outputs[J]. European Journal of Operational Research, 2019, 276(1): 202−211 doi: 10.1016/j.ejor.2018.12.040
    [7] 邵帅, 范美婷, 杨莉莉. 经济结构调整、绿色技术进步与中国低碳转型发展−基于总体技术前沿和空间溢出效应视角的经验考察[J]. 管理世界, 2022, 38(2): 46−69, 4

    SHAO S, FAN M T, YANG L L. Economic restructuring, green technical progress, and low-carbon transition development in China: an empirical investigation based on the overall technology frontier and spatial spillover effect[J]. Journal of Management World, 2022, 38(2): 46−69, 4
    [8] BONDAREV A, GREINER A. How ongoing structural change creates a double dividend: outdating of technologies and green growth[J]. Portuguese Economic Journal, 2022, 21(2): 125−160 doi: 10.1007/s10258-021-00196-6
    [9] WANG S J, LI G D, FANG C L. Urbanization, economic growth, energy consumption, and CO2 emissions: empirical evidence from countries with different income levels[J]. Renewable and Sustainable Energy Reviews, 2018, 81: 2144−2159 doi: 10.1016/j.rser.2017.06.025
    [10] 原嫄, 周洁. 中国省域尺度下产业结构多维度特征及演化对碳排放的影响[J]. 自然资源学报, 2021, 36(12): 3186−3202 doi: 10.31497/zrzyxb.20211213

    YUAN Y, ZHOU J. Influence of multi-dimensional characteristics and evolution of industrial structure on carbon emissions at provincial scale in China[J]. Journal of Natural Resources, 2021, 36(12): 3186−3202 doi: 10.31497/zrzyxb.20211213
    [11] 齐昕, 郭薛南. 新兴经济体国家城镇化发展对碳排放影响的比较研究[J]. 生态经济, 2022, 38(3): 101−108

    QI X, GUO X N. A comparative study of the impact of urbanization on carbon emissions in emerging economies[J]. Ecological Economy, 2022, 38(3): 101−108
    [12] CHURCHILL S A, INEKWE J, SMYTH R, et al. R&D intensity and carbon emissions in the G7: 1870–2014[J]. Energy Economics, 2019, 80: 30−37 doi: 10.1016/j.eneco.2018.12.020
    [13] 佟新华, 周红岩, 陈武, 等. 工业化不同发展阶段碳排放影响因素驱动效应测度[J]. 中国人口·资源与环境, 2020, 30(5): 26−35

    TONG X H, ZHOU H Y, CHEN W, et al. Study on the measurement of carbon-driven effects from different development stages of industrialization[J]. China Population, Resources and Environment, 2020, 30(5): 26−35
    [14] 何彬, 范硕. 自主创新、技术引进与碳排放−不同技术进步路径对碳减排的作用[J]. 商业研究, 2017(7): 58−66

    HE B, FAN S. Independent innovation, technological introduction and carbon emission: the role of different technological progress paths in carbon emission reduction[J]. Commercial Research, 2017(7): 58−66
    [15] 黄凌云, 谢会强, 刘冬冬. 技术进步路径选择与中国制造业出口隐含碳排放强度[J]. 中国人口·资源与环境, 2017, 27(10): 94−102

    HUANG L Y, XIE H Q, LIU D D. Study on impacts of technological progress paths on embodied carbon emission intensity of Chinese manufacturing exports[J]. China Population, Resources and Environment, 2017, 27(10): 94−102
    [16] 吴贤荣, 张俊飚. 中国省域农业碳排放: 增长主导效应与减排退耦效应[J]. 农业技术经济, 2017(5): 27−36

    WU X R, ZHANG J B. Agricultural carbon emissions in China: growth driving effects and reduction decoupling effects[J]. Journal of Agrotechnical Economics, 2017(5): 27−36
    [17] 李成龙, 周宏. 农业技术进步与碳排放强度关系−不同影响路径下的实证分析[J]. 中国农业大学学报, 2020, 25(11): 162−171

    LI C L, ZHOU H. Relationship between agricultural technology progress and carbon emission intensity: an empirical analysis under different influence paths[J]. Journal of China Agricultural University, 2020, 25(11): 162−171
    [18] 陈银娥, 陈薇. 农业机械化、产业升级与农业碳排放关系研究−基于动态面板数据模型的经验分析[J]. 农业技术经济, 2018(5): 122−133

    CHEN Y E, CHEN W. A study on the relationship among agricultural mechanization, industrial upgrading and agricultural carbon emission — the empirical research based on dynamic panel data model[J]. Journal of Agrotechnical Economics, 2018(5): 122−133
    [19] 金书秦, 林煜, 牛坤玉. 以低碳带动农业绿色转型: 中国农业碳排放特征及其减排路径[J]. 改革, 2021(5): 29−37

    JIN S Q, LIN Y, NIU K Y. Driving green transformation of agriculture with low carbon: characteristics of agricultural carbon emissions and its emission reduction path in China[J]. Reform, 2021(5): 29−37
    [20] 田云, 尹忞昊. 技术进步促进了农业能源碳减排吗?−基于回弹效应与空间溢出效应的检验[J]. 改革, 2021(12): 45−58

    TIAN Y, YIN M H. Does technological progress promote carbon emission reduction of agricultural energy? test based on rebound effect and spatial spillover effect[J]. Reform, 2021(12): 45−58
    [21] BOUSSEMART J P, LELEU H, SHEN Z Y. Worldwide carbon shadow prices during 1990−2011[J]. Energy Policy, 2017, 109: 288−296 doi: 10.1016/j.enpol.2017.07.012
    [22] LI T X, BALEŽENTIS T, MAKUTĖNIENĖ D, et al. Energy-related CO2 emission in European Union agriculture: driving forces and possibilities for reduction[J]. Applied Energy, 2016, 180: 682−694 doi: 10.1016/j.apenergy.2016.08.031
    [23] HE Y Q, ZHU S Y, ZHANG Y, et al. Calculation, elasticity and regional differences of agricultural greenhouse gas shadow prices[J]. The Science of the Total Environment, 2021, 790: 148061 doi: 10.1016/j.scitotenv.2021.148061
    [24] 吴贤荣, 张俊飚, 程琳琳, 等. 中国省域农业碳减排潜力及其空间关联特征−基于空间权重矩阵的空间Durbin模型[J]. 中国人口·资源与环境, 2015, 25(6): 53−61 doi: 10.3969/j.issn.1002-2104.2015.06.009

    WU X R, ZHANG J B, CHENG L L, et al. Potential of agricultural carbon reduction under climate change and its spatial correlation characteristics in China: based on the spatial durbin model[J]. China Population, Resources and Environment, 2015, 25(6): 53−61 doi: 10.3969/j.issn.1002-2104.2015.06.009
    [25] 何培培, 张俊飚, 何可, 等. 农业生产何以存在低碳效率幻觉?−来自1997—2016年31个省份面板数据的证据[J]. 自然资源学报, 2020, 35(9): 2205−2217 doi: 10.31497/zrzyxb.20200913

    HE P P, ZHANG J B, HE K, et al. Why there is a low-carbon efficiency illusion in agricultural production: evidence from Chinese provincial panel data in 1997−2016[J]. Journal of Natural Resources, 2020, 35(9): 2205−2217 doi: 10.31497/zrzyxb.20200913
    [26] 吴丽丽, 李谷成, 周晓时. 要素禀赋变化与中国农业增长路径选择[J]. 中国人口·资源与环境, 2015, 25(8): 144−152 doi: 10.3969/j.issn.1002-2104.2015.08.018

    WU L L, LI G C, ZHOU X S. Change of factor endowments and China agricultural growth path selection[J]. China Population, Resources and Environment, 2015, 25(8): 144−152 doi: 10.3969/j.issn.1002-2104.2015.08.018
    [27] ZHOU P, ZHOU X, FAN L W. On estimating shadow prices of undesirable outputs with efficiency models: a literature review[J]. Applied Energy, 2014, 130: 799−806 doi: 10.1016/j.apenergy.2014.02.049
    [28] MURTY S, RUSSELL R R, LEVKOFF S B. On modeling pollution-generating technologies[J]. Journal of Environmental Economics and Management, 2012, 64(1): 117−135 doi: 10.1016/j.jeem.2012.02.005
    [29] BALEŽENTIS T, BLANCARD S, SHEN Z Y, et al. Analysis of environmental total factor productivity evolution in European agricultural sector[J]. Decision Sciences, 2021, 52(2): 483−511 doi: 10.1111/deci.12421
    [30] SHEN Z Y, LI R R, BALEŽENTIS T. The patterns and determinants of the carbon shadow price in China’s industrial sector: a by-production framework with directional distance function[J]. Journal of Cleaner Production, 2021, 323: 129175 doi: 10.1016/j.jclepro.2021.129175
    [31] 政府间气候变化专门委员会(IPCC). 2006年IPCC国家温室气体清单指南[R]. 日本: 日本全球环境战略研究所, 2006

    IPCC. 2006 IPCC Guidelines for National Greenhouse Gas Inventories[R]. Japan: Institute for Global Environmental Strategies, 2006
    [32] 李波, 张俊飚, 李海鹏. 中国农业碳排放时空特征及影响因素分解[J]. 中国人口·资源与环境, 2011, 21(8): 80−86

    LI B, ZHANG J B, LI H P. Research on spatial-temporal characteristics and affecting factors decomposition of agricultural carbon emission in China[J]. China Population, Resources and Environment, 2011, 21(8): 80−86
    [33] 干春晖, 郑若谷, 余典范. 中国产业结构变迁对经济增长和波动的影响[J]. 经济研究, 2011, 46(5): 4−16, 31

    GAN C H, ZHENG R G, YU D F. An empirical study on the effects of industrial structure on economic growth and fluctuations in China[J]. Economic Research Journal, 2011, 46(5): 4−16, 31
    [34] 杨海钰, 马兴栋, 邵砾群. 区域要素禀赋变化与农业技术变迁路径差异−基于苹果产业视角和7个主产省的数据[J]. 湖南农业大学学报(社会科学版), 2018, 19(2): 16−22

    YANG H Y, MA X D, SHAO L Q. Variation of regional factor endowments and agricultural technological changes: based on the apple industry and the data from seven major producing provinces[J]. Journal of Hunan Agricultural University (Social Sciences), 2018, 19(2): 16−22
    [35] 朱轶, 曾春琼. 中国工业的资本深化与技术进步偏向是否互为关联−基于省际面板数据的实证检验[J]. 现代财经(天津财经大学学报), 2016, 36(9): 49−63

    ZHU Y, ZENG C Q. Is capital deepening and biased technical progress of China’s industrial sector interrelated — a empirical study on provincial panel data[J]. Modern Finance and Economics-Journal of Tianjin University of Finance and Economics, 2016, 36(9): 49−63
    [36] 姚增福, 刘欣. 技术进步约束、不确定性与农业环境效率−基于730份微观数据和改进的两步法DEA模型的检验[J]. 调研世界, 2021(7): 24−33

    YAO Z F, LIU X. Constraints, uncertainties and agricultural environmental efficiency of technological progress — the test of two-step DEA model based on 730 micro data and improved[J]. The World of Survey and Research, 2021(7): 24−33
    [37] 邹利林, 刘彦随, 王永生. 1978—2017年中国农业污染物影子价格及污染成本测算[J]. 农业工程学报, 2020, 36(6): 223−230 doi: 10.11975/j.issn.1002-6819.2020.06.026

    ZOU L L, LIU Y S, WANG Y S. Shadow prices and pollution costs of agricultural pollutants in China from 1978 to 2017[J]. Transactions of the Chinese Society of Agricultural Engineering, 2020, 36(6): 223−230 doi: 10.11975/j.issn.1002-6819.2020.06.026
    [38] 吴贤荣, 张俊飚, 田云, 等. 基于公平与效率双重视角的中国农业碳减排潜力分析[J]. 自然资源学报, 2015, 30(7): 1172−1182 doi: 10.11849/zrzyxb.2015.07.010

    WU X R, ZHANG J B, TIAN Y, et al. Analysis on China’s agricultural carbon abatement capacity from the perspective of both equity and efficiency[J]. Journal of Natural Resources, 2015, 30(7): 1172−1182 doi: 10.11849/zrzyxb.2015.07.010
    [39] 杨子晖, 陈里璇, 罗彤. 边际减排成本与区域差异性研究[J]. 管理科学学报, 2019, 22(2): 1−21 doi: 10.3969/j.issn.1007-9807.2019.02.001

    YANG Z H, CHEN L X, LUO T. Marginal cost of emission reduction and regional differences[J]. Journal of Management Sciences in China, 2019, 22(2): 1−21 doi: 10.3969/j.issn.1007-9807.2019.02.001
    [40] 张金鑫, 王红玲. 环境规制、农业技术创新与农业碳排放[J]. 湖北大学学报(哲学社会科学版), 2020, 47(4): 147−156

    ZHANG J X, WANG H L. Analysis on environmental planning, agricultural technological innovation and agricultural carbon emission[J]. Journal of Hubei University (Philosophy and Social Science), 2020, 47(4): 147−156
  • 加载中
图(2) / 表(2)
计量
  • 文章访问数:  197
  • HTML全文浏览量:  89
  • PDF下载量:  31
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-06-27
  • 录用日期:  2022-08-16
  • 网络出版日期:  2022-11-07
  • 刊出日期:  2023-02-10

目录

    /

    返回文章
    返回