留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

燕麦与不同作物间作对土壤线虫群落结构及作物产量的影响

王亚南 乔月静 范雅琦 霍瑞轩 郭来春 杨珍平

王亚南, 乔月静, 范雅琦, 霍瑞轩, 郭来春, 杨珍平. 燕麦与不同作物间作对土壤线虫群落结构及作物产量的影响[J]. 中国生态农业学报 (中英文), 2022, 30(0): 1−11 doi: 10.12357/cjea.20220512
引用本文: 王亚南, 乔月静, 范雅琦, 霍瑞轩, 郭来春, 杨珍平. 燕麦与不同作物间作对土壤线虫群落结构及作物产量的影响[J]. 中国生态农业学报 (中英文), 2022, 30(0): 1−11 doi: 10.12357/cjea.20220512
WANG Y N, QIAO Y J, FAN Y Q, HUO R X, GUO L C, YANG Z P. Effects of intercropping oat with different crops on community structure of soil nematodes and crop yields[J]. Chinese Journal of Eco-Agriculture, 2022, 30(0): 1−11 doi: 10.12357/cjea.20220512
Citation: WANG Y N, QIAO Y J, FAN Y Q, HUO R X, GUO L C, YANG Z P. Effects of intercropping oat with different crops on community structure of soil nematodes and crop yields[J]. Chinese Journal of Eco-Agriculture, 2022, 30(0): 1−11 doi: 10.12357/cjea.20220512

燕麦与不同作物间作对土壤线虫群落结构及作物产量的影响

doi: 10.12357/cjea.20220512
基金项目: 国家自然科学基金项目(31901478)、国家现代农业产业技术体系(CARS-07)、黄土高原特色作物优质高效生产省部共建协同创新中心(SBGJXTZX)资助
详细信息
    作者简介:

    王亚南,主要从事作物高产及土壤线虫群落研究。E-mail: 763393032@qq.com

    通讯作者:

    乔月静,主要研究方向为土壤微生态群落, E-mail: qyjsxau@126.com

    郭来春,主要研究方向为燕麦土壤改良,E-mail: guolaichun@126.com

  • 中图分类号: S344.2

Effects of intercropping oat with different crops on community structure of soil nematodes and crop yields

Funds: This study was supported by the National Natural Science Foundation of China (31901478), China Agriculture Research System (CARS-07), the Ministerial and Provincial Co-Innovation Centre for Endemic Crops Production with High-quality and Efficiency in the Loess Plateau (SBGJXTZX).
More Information
  • 摘要: 间作是土地可持续利用的重要种植模式。土壤线虫作为土壤健康的指示生物, 可揭示地下生态系统的食物网功能。为探究燕麦不同间作模式对产量和土壤线虫群落的影响, 本试验分别设置燕麦单作、燕麦||大豆、燕麦||赤小豆、燕麦||马铃薯、燕麦||甘薯5个处理, 分析燕麦不同间作模式对作物产量以及土壤线虫的数量、多样性和群落结构的影响, 以筛选出较优的燕麦间作模式。结果表明: 相比单作, 间作模式在土地利用率和作物总产量方面有一定的优势, 其中燕麦||大豆间作模式最佳, 土地当量比(1.56)最高。4种燕麦间作模式均显著(P<0.05)降低了植物寄生线虫的相对丰度, 提高了食微线虫相对丰度, 优化了土壤线虫群落结构。燕麦||大豆间作模式下食微线虫比例最高(88.42%), 植物寄生线虫比例最低(6.31%), 且在多项生态指数中(瓦斯乐斯卡指数、线虫通路指数、多样性指数和均匀度指数)显著高于燕麦单作(P<0.05)。而燕麦||赤小豆间作模式下富集指数最高, 植食性线虫成熟度指数最低, 土壤线虫群落受干扰程度最低。速效钾与线虫通路指数呈极显著正相关(r=0.722**), 可以使土壤有机质分解主要依靠细菌分解途径。综上, 间作种植模式可以优化土壤线虫群落结构, 改善土壤生态环境, 提高产量; 燕麦||大豆是该试验条件下最佳的间作模式。
  • 图  1  燕麦不同间作模式对土壤线虫总数(a)和各营养类群相对丰度(b)的影响

    O: 燕麦单作; O||S: 燕麦||大豆; O||RB: 燕麦||赤小豆; O||P: 燕麦||马铃薯; O||SP: 燕麦||甘薯。不同小写字母表示不同种植模式间差异显著(P<0.05)。O: oat monoculture; O||S: oat||soybean; O||RB: oat||rice beans; O||P: oat||potato; O||SP: oat||sweet potato. Different letters indicate significant differences among different cropping patterns (P<0.05).

    Figure  1.  Effects of different intercropping patterns of oat on total number (a) and relative abundance of nutrient groups (b) of soil nematodes

    图  2  燕麦不同间作模式的土壤线虫食物网结构富集图

    O: 燕麦单作; O||S: 燕麦||大豆; O||RB: 燕麦||赤小豆; O||P: 燕麦||马铃薯; O||SP: 燕麦||甘薯。不同小写字母表示不同种植模式间差异显著(P<0.05)。O: oat monoculture; O||S: oat||soybean; O||RB: oat||rice beans; O||P: oat||potato; O||SP: oat||sweet potato. Different letters indicate significant differences among different cropping patterns (P<0.05).

    Figure  2.  Enrichment diagram of food web structure of soil nematodes in different intercropping patterns of oat

    图  3  土壤线虫生态指数与土壤理化性质相关性heat map图

    *: 显著相关(P<0.05 ); **: 极显著相关(P<0.01 )。Phosphatase: 磷酶酸; Sucrase: 蔗糖酶; Urease: 脲酶; Organic matter: 有机质; Available K: 速效钾; Available P: 有效磷; WI: 瓦斯乐斯卡指数; NCR: 线虫通路指数; RS: 丰富度指数; H′: 多样性指数; J: 均匀度指数; MI: 自由生活线虫成熟度指数; PPI: 植食性线虫成熟度指数; EI: 富集指数; SI: 结构指数。*: significant correlation at P<0.05; **: significant correlation at P<0.01. WI: Wasilewska index; NCR: nematode channel ratio; RS: species richness index; H′: Shannon-Wiener index; J: evenness index; MI: maturity index; PPI: plant parasite index; EI: enrichment index; SI: structure index.

    Figure  3.  Heatmap map of correlation between soil nematode ecological index and soil physicochemical properties

    表  1  燕麦不同间作模式对作物经济产量和土地当量比的影响

    Table  1.   Effects of different intercropping patterns of oat on crop economic yields and land equivalent ratios

    种植模式
    Cropping pattern
    产量 Yield (kg∙hm−2)土地当量比
    Land equivalent
    ratio
    燕麦 Oat大豆 Soybean赤小豆 Rice bean马铃薯 Potato甘薯 Sweet potato
    单作 Monoculture2560.15±259.24a3175.79±246.23a2797.40±36.58a26245.60±2263.32a25530.70±997.06a
    燕麦||大豆 Oat||soybean1399.34±109.59c2351.76±62.40b1.56
    燕麦||赤小豆 Oat||rice bean1233.96±81.45c1923.98±107.11b1.17
    燕麦||马铃薯 Oat||potato1710.14±117.41b18087.20±2371.49b1.37
    燕麦||甘薯 Oat||sweet potato1276.31±75.41c16572.20±2628.86b1.21
    同列不同字母表示种植模式间差异显著(P<0.05)。Different letters in the same column indicate significant differences among cropping patterns (P<0.05).
    下载: 导出CSV

    表  2  燕麦不同间作模式土壤的线虫群落组成及其相对丰度

    Table  2.   Soil nematode community composition and relative abundances in different intercropping patterns of oat

    营养类群
    Trophic
    group

    Family

    Genus
    c-p值
    Colonizer-
    Persister
    燕麦单作
    Oat
    monoculture
    燕麦||大豆
    Oat||soybean
    燕麦||赤小豆
    Oat||rice bean
    燕麦||马铃薯
    Oat||potato
    燕麦||甘薯
    Oat||sweet
    potato
    食细菌线虫
    Bacterivores
    小杆科 Rhabditidae小杆属 Rhabditis1++++++++++
    头叶科 Cephalobidae头叶属 Cephalobus2++++++++++++++
    真头叶属 Eucephalobus2++++++++++
    丽突属 Acrobeles2+++++++++
    拟丽突属 Acrobeloides2++
    鹿角唇叶属 Cervidellus2++++++++++
    绕线科 Plectidae绕线属 Plectus2++++++++++
    拟绕线属 Anaplectus2+++++++
    威尔斯属 Wilsonema2++++++
    畸头叶科 Teratocephalidae
    畸头属 Teratocephalus3++++++++
    棱咽科 Prismatolaimidae
    棱咽属 Prismatolaimus3++++++++++
    无咽科 Alaimidae
    无咽属 Alaimus4++++++++++
    食真菌线虫
    Fungivores
    滑刃科
    Aphelenchoididae
    滑刃属 Aphelenchoides2++++++++++
    真滑刃科 Aphelenchidae
    真滑刃属 Aphelenchus2++++++++++++++
    膜皮科 Diphtherophoridae
    膜皮属 Diphtherophora3++++++++++
    细齿科 Leptonchidae
    垫咽属 Tylencholaimus4++++++++++
    植物寄生线虫
    Plant-parasites
    垫刃科 Tylenchidae
    垫刃属 Tylenchus2+
    剑尾垫刃属 Malenchus2++++++++
    丝尾垫刃属 Filenchus2+
    野外垫刃属 Aglenchus2++
    针科 Paratylenchidae
    针属 Paratylenchus2++++++
    锥垫刃科 Tylodoridae
    头垫刃属 Cephalenchus3+++++
    锥科 Dolichodoridae
    矮化属 Tylenchorhynchus3+
    鞘科 Hemicycliophoridae
    鞘属 Hemicycliophora3++++
    短体科 Pratylenchidae
    短体属 Pratylenchus3++++++++
    纽带科 Hoplolaimidae
    螺旋属 Helicotylenchus3+++
    毛刺科 Trichodoridae
    毛刺属 Trichodorus4++++++++
    长针科 Longidoridae
    长针属 Longidorus5++++++
    剑属 Xiphinema5+++++++
    杂食线虫
    Omnivores-predators
    倒齿科 Anatonchidae
    等齿属 Miconchus4+++++++
    三孔科 Tripylidae
    三孔属 Tripyla4++++++
    单齿科 Monochidae
    锯齿属 Prionchulus4+++++++++
    锉齿属 Mylonchulus4++
    矛线科 Dorylaimidae前矛线属 Prodorylaimus4++++
    真矛线属 Eudorylaimus4++++++++
    中矛线属 Mesodorylaimus4+++
    螯属 Pungentus4++++
    鄂针科 Belondiridae鄂针属 Belondira5++++++++
    缢咽属 Axonchium5++++++
      +++表示丰度>10%, 为优势属; ++表示丰度在1%和10%之间, 为常见属; +表示丰度<1%, 为稀有属。+++ indicates abundance > 10%, the dominant genus ; ++ indicates that the abundance is between 1%−10%, the common genus; + indicates abundance <1%, the rare genus.
    下载: 导出CSV

    表  3  燕麦不同间作模式对土壤线虫群落的生态指数的影响

    Table  3.   Effects of different intercropping patterns of oat on ecological indices of soil nematode communities

    生态指数
    Ecological indice
    燕麦单作
    Oat monoculture
    燕麦||大豆
    Oat||soybean
    燕麦||赤小豆
    Oat||rice bean
    燕麦||马铃薯
    Oat||potato
    燕麦||甘薯
    Oat||sweet potato
    瓦斯乐斯卡指数 Wasilewska index5.78±0.21b14.68±3.51a12.17±2.25a10.15±2.19ab14.28±4.33a
    线虫通路指数 Nematode channel ratio0.55±0.03b0.71±0.01a0.55±0.01b0.71±0.02a0.69±0.08a
    丰富度指数 Species richness index4.68±0.39a3.11±0.18c3.93±0.28b3.58±0.06b3.94±0.57b
    多样性指数 Shannon-Wiener index4.94±0.21d6.27±0.10a5.72±0.17bc5.26±0.43cd5.89±0.30ab
    均匀度指数 Evenness index0.84±0.03b1.07±0.21a1.02±0.04a0.90±0.09b0.99±0.10a
    自由生活线虫成熟度指数 Maturity index33.54±23.55a21.55±1.91a13.39±1.76a17.41±0.82a20.05±1.30a
    植食性线虫成熟度指数 Plant parasite index4.54±0.96a2.42±0.75ab1.36±0.34b4.02±2.28a2.08±1.18ab
      同行不同小写字母表示不同处理间差异显著(P<0.05)。Different letters in the same row indicate significant differences among different cropping patterns at P<0.05 level.
    下载: 导出CSV
  • [1] LITHOURGIDIS A, DORDAS C, DAMALAS C A, et al. Annual intercrops: an alternative pathway for sustainable agriculture[J]. Australian Journal of Crop Science, 2011, 5: 396−410
    [2] 姜圆圆, 郑毅, 汤利, 等. 豆科禾本科作物间作的根际生物过程研究进展[J]. 农业资源与环境学报, 2016, 33(5): 407−415

    JIANG Y Y, ZHENG Y, TANG L, et al. Rhizosphere biological processes of legume| | cereal intercropping systems: a review[J]. Journal of Agricultural Resources and Environment, 2016, 33(5): 407−415
    [3] 高阳, 段爱旺, 刘祖贵, 等. 单作和间作对玉米和大豆群体辐射利用率及产量的影响[J]. 中国生态农业学报, 2009, 17(1): 7−12 doi: 10.3724/SP.J.1011.2009.00007

    GAO Y, DUAN A W, LIU Z G, et al. Effect of monoculture and intercropping on radiation use efficiency and yield of maize and soybean[J]. Chinese Journal of Eco-Agriculture, 2009, 17(1): 7−12 doi: 10.3724/SP.J.1011.2009.00007
    [4] JENSEN E S, CARLSSON G, HAUGGAARD-NIELSEN H. Intercropping of grain legumes and cereals improves the use of soil N resources and reduces the requirement for synthetic fertilizer N: a global-scale analysis[J]. Agronomy for Sustainable Development, 2020, 40(1): 1−9 doi: 10.1007/s13593-019-0604-0
    [5] FRANCIS C A. Multiple Cropping Systems[M]. New York: Macmillan Publishing Company, 1986
    [6] ZOMER R A, TRABUCCO A, COE R, et al. Trees on farm: analysis of global extent and geographical patterns of Agroforestry ICRAF Working Paper no. 89[R]. World Agroforestry Centre (ICRAF), 2009
    [7] 徐长林. 高寒牧区不同燕麦品种生长特性比较研究[J]. 草业学报, 2012, 21(2): 280−285 doi: 10.11686/cyxb20120236

    XU C L. A study on growth characteristics of different cultivars of oat (Avena sativa) in alpine region[J]. Acta Prataculturae Sinica, 2012, 21(2): 280−285 doi: 10.11686/cyxb20120236
    [8] 冯晓敏, 杨永, 任长忠, 等. 豆科–燕麦间作对作物光合特性及籽粒产量的影响[J]. 作物学报, 2015, 41(9): 1426−1434 doi: 10.3724/SP.J.1006.2015.01426

    FENG X M, YANG Y, REN C Z, et al. Effects of legumes intercropping with oat on photosynthesis characteristics of and grain yield[J]. Acta Agronomica Sinica, 2015, 41(9): 1426−1434 doi: 10.3724/SP.J.1006.2015.01426
    [9] 杨学超, 胡跃高, 钱欣, 等. 施氮量对绿豆‖燕麦间作系统生产力及氮吸收累积的影响[J]. 中国农业大学学报, 2012, 17(4): 46−52 doi: 10.11841/j.issn.1007-4333.2012.04.008

    YANG X C, HU Y G, QIAN X, et al. Effects of nitrogen application level on system productivity, nitrogen absorption and accumulation in mung bean‖oat intercropping system[J]. Journal of China Agricultural University, 2012, 17(4): 46−52 doi: 10.11841/j.issn.1007-4333.2012.04.008
    [10] 冯晓敏, 杨永, 任长忠, 等. 燕麦/大豆和燕麦/花生间作对根际土壤固氮细菌多样性与群落结构的影响[J]. 中国农业大学学报, 2016, 21(1): 22−32 doi: 10.11841/j.issn.1007-4333.2016.01.03

    FENG X M, YANG Y, REN C Z, et al. Effects of oat-soybean and oat-groundnut intercropping on the diversity and community composition of soil nitrogen-fixing bacterial in rhizosphere soil[J]. Journal of China Agricultural University, 2016, 21(1): 22−32 doi: 10.11841/j.issn.1007-4333.2016.01.03
    [11] 王旭, 曾昭海, 朱波, 等. 燕麦与箭筈豌豆不同混作模式对根际土壤微生物数量的影响[J]. 草业学报, 2009, 18(6): 151−157 doi: 10.3321/j.issn:1004-5759.2009.06.020

    WANG X, ZENG Z H, ZHU B, et al. Effects of oat mixed with common vetch on the microorganism populations in rhizosphere soil[J]. Acta Prataculturae Sinica, 2009, 18(6): 151−157 doi: 10.3321/j.issn:1004-5759.2009.06.020
    [12] 傅声雷. 土壤生物多样性的研究概况与发展趋势[J]. 生物多样性, 2007, 15(2): 109−115 doi: 10.3321/j.issn:1005-0094.2007.02.001

    FU S L. A review and perspective on soil biodiversity research[J]. Biodiversity Science, 2007, 15(2): 109−115 doi: 10.3321/j.issn:1005-0094.2007.02.001
    [13] 时雷雷, 傅声雷. 土壤生物多样性研究: 历史、现状与挑战[J]. 科学通报, 2014, 59(6): 493−509 doi: 10.1360/972013-266

    SHI L L, FU S L. Review of soil biodiversity research: history, current status and future challenges[J]. Chinese Science Bulletin, 2014, 59(6): 493−509 doi: 10.1360/972013-266
    [14] FRECKMAN D W. Bacterivorous nematodes and organic-matter decomposition[J]. Agriculture, Ecosystems & Environment, 1988, 24(1/2/3): 195−217
    [15] 宋敏, 刘银占, 井水水. 土壤线虫对气候变化的响应研究进展[J]. 生态学报, 2015, 35(20): 6857−6867

    SONG M, LIU Y Z, JING S S. Response of soil nematodes to climate change: a review[J]. Acta Ecologica Sinica, 2015, 35(20): 6857−6867
    [16] 刘艳方, 刘攀, 王文颖, 等. 土壤线虫作为生态指示生物的研究进展[J]. 生态科学, 2020, 39(2): 207−214

    LIU Y F, LIU P, WANG W Y, et al. The research progress of soil nematodes as ecological indicator organisms[J]. Ecological Science, 2020, 39(2): 207−214
    [17] 钱复生, 王宗英. 水东枣园土壤动物与土壤环境的关系[J]. 应用生态学报, 1995, 6(1): 44−50 doi: 10.3321/j.issn:1001-9332.1995.01.007

    QIAN F S, WANG Z Y. Relationship between soil fauna and soil environment in jujube garden in Shuidong, Anhui Province[J]. Chinese Journal of Applied Ecology, 1995, 6(1): 44−50 doi: 10.3321/j.issn:1001-9332.1995.01.007
    [18] 杨再福, 喻会平, 刘杰, 等. 烟草间作万寿菊对根结线虫的控制及土壤线虫群落的影响[J]. 山地农业生物学报, 2021, 40(2): 16−20

    YANG Z F, YU H P, LIU J, et al. The effectiveness of tobacco marigold intercropping for root-knot nematode control and soil nematode community[J]. Journal of Mountain Agriculture and Biology, 2021, 40(2): 16−20
    [19] 陆秀红, 黄金玲, 胡钧铭, 等. 香蕉绿豆间作对根际线虫的影响[C]//中国植物病理学会2015年学术年会论文集. 海口, 2015: 445

    LU X H, HUANG J L, HU J M, et al. Effects of banana and mung bean intercropping on rhizosphere nematodes [C]//Proceedings of the 2015 Annual Academic Conference of the Chinese Society of Plant Pathology, Haikou, 2015: 445
    [20] 封亮, 黄国勤, 杨文亭, 等. 江西红壤旱地玉米| | 大豆间作模式对作物产量及种间关系的影响[J]. 中国生态农业学报(中英文), 2021, 29(7): 1127−1137

    FENG L, HUANG G Q, YANG W T, et al. Yields and interspecific relationship of the maize-soybean intercropping system in the upland red soil of Jiangxi Province[J]. Chinese Journal of Eco-Agriculture, 2021, 29(7): 1127−1137
    [21] 任媛媛, 王志梁, 王小林, 等. 黄土塬区玉米大豆不同间作方式对产量和经济收益的影响及其机制[J]. 生态学报, 2015, 35(12): 4168−4177

    REN Y Y, WANG Z L, WANG X L, et al. The effect and mechanism of intercropping pattern on yield and economic benefit on the Loess Plateau[J]. Acta Ecologica Sinica, 2015, 35(12): 4168−4177
    [22] 王庆宇, 李立军, 阮慧, 等. 旱地燕麦间作对土壤酶活性、微生物含量及产量的影响[J]. 干旱地区农业研究, 2019, 37(2): 179−184 doi: 10.7606/j.issn.1000-7601.2019.02.26

    WANG Q Y, LI L J, RUAN H, et al. Effects of intercropping of oat on soil enzyme activity, microbial content and yield in arid land[J]. Agricultural Research in the Arid Areas, 2019, 37(2): 179−184 doi: 10.7606/j.issn.1000-7601.2019.02.26
    [23] 鲍士旦. 土壤农化分析[M]. 3版. 北京: 中国农业出版社, 2000

    BAO S D. Soil and Agricultural Chemistry Analysis[M]. Beijing: China Agriculture Press, 2000
    [24] 关松荫. 土壤酶及其研究法[M]. 北京: 农业出版社, 1986

    GUAN S Y. Soil Enzyme and its Research Method[M]. Beijing: Agriculture Press, 1986
    [25] MARTIN J P. Nematology-fundamentals and recent advances with emphasis on plant parasitic and soil forms[J]. Soil Science Society of America Journal, 1960, 54(2): 184
    [26] 谢辉. 植物线虫分类学. 2版[M]. 北京: 高等教育出版社, 2005

    XIE H. Taxonomy of Plant Nematodes. 2 edition[M]. Beijing: Higher Education Press, 2005
    [27] 尹文英. 中国土壤动物检索图鉴[M]. 北京: 科学出版社, 1998

    YIN W Y. Pictorical Keys to Soil Animals of China[M]. Beijing: Science Press, 1998
    [28] BONGERS T. The maturity index: an ecological measure of environmental disturbance based on nematode species composition[J]. Oecologia, 1990, 83(1): 14−19 doi: 10.1007/BF00324627
    [29] NEHER D A. Role of nematodes in soil health and their use as indicators[J]. Journal of Nematology, 2001, 33(4): 161−168
    [30] YEATES G W. Nematodes as soil indicators: functional and biodiversity aspects[J]. Biology and Fertility of Soils, 2003, 37(4): 199−210 doi: 10.1007/s00374-003-0586-5
    [31] 薛会英, 胡锋, 罗大庆. 藏北高寒草甸植物群落对土壤线虫群落的影响[J]. 土壤学报, 2013, 50(3): 507−516 doi: 10.11766/trxb201207280305

    XUE H Y, HU F, LUO D Q. Effect of plant community on soil nematode community in alpine meadows in North Tibet[J]. Acta Pedologica Sinica, 2013, 50(3): 507−516 doi: 10.11766/trxb201207280305
    [32] 李玉娟. 云南哀牢山土壤线虫对植物群落改变及地上/地下资源输入的响应[D]. 上海: 复旦大学, 2008: 1–141

    LI Y J. Responses of soil nematodes to plant community changes and above/belowground resource inputs in Ailao Mountains, Yunnan[D]. Shanghai: Fudan University, 2008: 1–141
    [33] 李玉娟, 吴纪华, 陈慧丽, 陈家宽. 线虫作为土壤健康指示生物的方法及应用[J]. 应用生态学报, 2005, 16(8): 1541−1546 doi: 10.3321/j.issn:1001-9332.2005.08.031

    LI Y J, WU J H, CHEN H L, et al. Nematodes as bioindicator of soil health: methods and applications[J]. Chinese Journal of Applied Ecology, 2005, 16(8): 1541−1546 doi: 10.3321/j.issn:1001-9332.2005.08.031
    [34] FERRIS H, BONGERS T, DE GOEDE R G M. A framework for soil food web diagnostics: extension of the nematode faunal analysis concept[J]. Applied Soil Ecology, 2001, 18(1): 13−29 doi: 10.1016/S0929-1393(01)00152-4
    [35] LITHOURGIDIS A S, VLACHOSTERGIOS D N, DORDAS C A, et al. Dry matter yield, nitrogen content, and competition in pea-cereal intercropping systems[J]. European Journal of Agronomy, 2011, 34(4): 287−294 doi: 10.1016/j.eja.2011.02.007
    [36] KIMARO A A, TIMMER V R, CHAMSHAMA S A O, et al. Competition between maize and pigeonpea in semi-arid Tanzania: effect on yields and nutrition of crops[J]. Agriculture, Ecosystems & Environment, 2009, 134(1/2): 115−125
    [37] WADDINGTON S R, MEKURIA M, SIZIBA S, et al. Long-term yield sustainability and financial returns from grain legume–maize intercrops on a sandy soil in subhumid north central Zimbabwe[J]. Experimental Agriculture, 2007, 43(4): 489−503 doi: 10.1017/S0014479707005303
    [38] 乔月静, 郭来春, 葛军勇, 等. 燕麦与豆科作物间作对土壤酶活和微生物量的影响[J]. 甘肃农业大学学报, 2020, 55(3): 54−61

    QIAO Y J, GUO L C, GE J Y, et al. Effects of oat-legume intercropping on soil enzyme activities and abundance of soil microbe[J]. Journal of Gansu Agricultural University, 2020, 55(3): 54−61
    [39] 乔月静, 刘琪, 曾昭海, 等. 轮作方式对甘薯根际土壤线虫群落结构及甘薯产量的影响[J]. 中国生态农业学报(中英文), 2019, 27(1): 20−29

    QIAO Y J, LIU Q, ZENG Z H, et al. Effect of rotation on nematode community diversity in rhizosphere soils and yield of sweet potato[J]. Chinese Journal of Eco-Agriculture, 2019, 27(1): 20−29
    [40] 张亚楠, 李孝刚, 王兴祥. 茅苍术间作对连作花生土壤线虫群落的影响[J]. 土壤学报, 2016, 53(6): 1497−1505 doi: 10.11766/trxb201603020025

    ZHANG Y N, LI X G, WANG X X. Effects of interplanting of Atractylodes lancea in monocultured peanut fields on soil nematode community[J]. Acta Pedologica Sinica, 2016, 53(6): 1497−1505 doi: 10.11766/trxb201603020025
    [41] 宋成军, 孙锋. 干旱对不同花椒种植模式下土壤微生物和线虫群落的影响[J]. 生物多样性, 2021, 29(10): 1348−1357 doi: 10.17520/biods.2021121

    SONG C J, SUN F. Effects of Zanthoxylum bungeanum agroforestry systems on soil microbial and nematode communities under drought[J]. Biodiversity Science, 2021, 29(10): 1348−1357 doi: 10.17520/biods.2021121
    [42] 张晓珂, 梁文举, 李琪. 我国土壤线虫生态学研究进展和展望[J]. 生物多样性, 2018, 26(10): 1060−1073 doi: 10.17520/biods.2018082

    ZHANG E Z, LIANG W J, LI Q. Recent progress and future directions of soil nematode ecology in China[J]. Biodiversity Science, 2018, 26(10): 1060−1073 doi: 10.17520/biods.2018082
    [43] 钟爽, 何应对, 韩丽娜, 等. 连作年限对香蕉园土壤线虫群落结构及多样性的影响[J]. 中国生态农业学报, 2012, 20(5): 604−611 doi: 10.3724/SP.J.1011.2012.00604

    ZHONG S, HE Y D, HAN L N, et al. Effect of continuous cropping of banana on soil nematode community structure and diversity[J]. Chinese Journal of Eco-Agriculture, 2012, 20(5): 604−611 doi: 10.3724/SP.J.1011.2012.00604
    [44] Verschoor B C, De Goede R G M. The nematode extraction efficiency of the Oostenbrink elutriator cottonwool filter method with special reference to nematode body size and life strategy[J]. Nematology, 2000, 2(3): 325−342 doi: 10.1163/156854100509204
  • 加载中
图(3) / 表(3)
计量
  • 文章访问数:  103
  • HTML全文浏览量:  65
  • PDF下载量:  23
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-07-01
  • 录用日期:  2022-10-31
  • 修回日期:  2022-10-19
  • 网络出版日期:  2022-11-07

目录

    /

    返回文章
    返回