留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

不同降水年型滴灌玉米土壤硝态氮分布、淋失量及氮素吸收利用特征

翟勇全 马琨 贾彪 魏雪 运彬媛 马健祯 张昊 姬丽 李稼润

翟勇全, 马琨, 贾彪, 魏雪, 运彬媛, 马健祯, 张昊, 姬丽, 李稼润. 不同降水年型滴灌玉米土壤硝态氮分布、淋失量及氮素吸收利用特征[J]. 中国生态农业学报 (中英文), 2022, 30(0): 1−11 doi: 10.12357/cjea.20220517
引用本文: 翟勇全, 马琨, 贾彪, 魏雪, 运彬媛, 马健祯, 张昊, 姬丽, 李稼润. 不同降水年型滴灌玉米土壤硝态氮分布、淋失量及氮素吸收利用特征[J]. 中国生态农业学报 (中英文), 2022, 30(0): 1−11 doi: 10.12357/cjea.20220517
ZHAI Y Q, MA K, JIA B, WEI X, YUN B Y, MA J Z, ZHANG H, JI L, LI J R. Effects of different precipitation years on soil nitrate distribution, leaching loss and nitrogen uptake and utilization under drip irrigation of maize[J]. Chinese Journal of Eco-Agriculture, 2022, 30(0): 1−11 doi: 10.12357/cjea.20220517
Citation: ZHAI Y Q, MA K, JIA B, WEI X, YUN B Y, MA J Z, ZHANG H, JI L, LI J R. Effects of different precipitation years on soil nitrate distribution, leaching loss and nitrogen uptake and utilization under drip irrigation of maize[J]. Chinese Journal of Eco-Agriculture, 2022, 30(0): 1−11 doi: 10.12357/cjea.20220517

不同降水年型滴灌玉米土壤硝态氮分布、淋失量及氮素吸收利用特征

doi: 10.12357/cjea.20220517
基金项目: 宁夏回族自治区重点研发计划项目(2021BEG03014)、宁夏自然科学基金项目(2021AAC03025)和宁夏回族自治区农业资源环境监测与保护项目(2130135)资助
详细信息
    作者简介:

    翟勇全, 主要从事作物高产高效优质栽培研究。E-mail: zyq6692@163.com

    通讯作者:

    贾彪, 主要从事作物高产高效优质栽培研究。E-mail: jiabiao2008@nxu.edu.cn

  • 中图分类号: S5

Effects of different precipitation years on soil nitrate distribution, leaching loss and nitrogen uptake and utilization under drip irrigation of maize

Funds: This study was supported by the Key Research and Development Project of Ningxia Hui Autonomous Region (2021BRG03014), Ningxia Natural Science Foundation Project (2021AAC03025), the Agricultural Resources and Environmental Monitoring and Protection Project of Ningxia Hui Autonomous Region (2130135).
More Information
  • 摘要: 为寻找满足宁夏地区滴灌条件下不同降水年型间科学施肥模式, 缓解不合理施氮导致的资源浪费、黄河水质下降和地下水污染等问题, 本研究于2018—2020年在宁夏平吉堡农场开展氮梯度试验, 分析不同降水年型下不同施氮处理土壤硝态氮残留和淋溶量以及对滴灌玉米氮素吸收利用和产量的影响。结果表明: 土壤硝态氮含量峰值与降水量密切相关, 丰水年(2018年)硝态氮残留量峰值在40~60 cm土层, 枯水年(2019年和2020年)在20~40 cm土层; 不同降水年型份间土壤硝态氮残留量和淋失量均随施氮量的增加而增加, 且降水量显著影响硝态氮淋失量; 丰水年由降水因素导致的硝态氮淋失量占总淋失量的50.62%, 枯水年占总淋失量的34.82%。回归分析结果表明, 不同降水年型间玉米产量随施氮量呈先上升后下降的趋势, 均在N3处理 (施N量为270 kg∙hm−2)下达最高产量, 且N3处理的产量和吸氮量与N4处理(施N量为360 kg∙hm−2)无显著差异; 丰水年N3的氮肥利用率、氮肥农学利用率和氮肥偏生产力比N4分别提升11.38%、6.16 kg∙kg−1和13.85 kg∙kg−1, 枯水年分别提升12.10%、5.06 kg∙kg−1和15.00 kg∙kg−1。综合考量不同降水年型间0~100 cm土层硝态氮分布特征和硝态氮淋失量及施氮处理下的产量、氮素吸收利用, 推荐宁夏引黄灌区滴灌玉米不同降水年型下施氮量在270 kg∙hm−2时较适宜, 丰水年施氮最大阈值为275.59 kg∙hm−2 , 枯水年施氮最大阈值为320.20 kg∙hm−2
  • 图  1  2018(A)、2019(B)和2020(C)年玉米生长季(4—9月)气象条件

    Figure  1.  Meteorological conditions during maize growing season (from April to September) in 2018 (A), 2019 (B) and 2020 (C)

    图  2  2018—2020年施氮量对播前(S)和收获后(H) 0~100 cm土层硝态氮分布的影响

    N0、N1、N2、N3、N4分别表示施氮量为0 kg∙hm−2、90 kg∙hm−2、180 kg∙hm−2、270 kg∙hm−2、360 kg∙hm−2。“**”表示不同处理间差异极显著(P<0.01), “ns”表示不同处理间差异不显著(P>0.05)。N0, N1, N2, N3 and N4 represent nitrogen application rates of 0 kg∙hm−2, 90 kg∙hm−2, 180 kg∙hm−2, 270 kg∙hm−2 and 360 kg∙hm−2, respectively. “**” mean that the difference between treatments is extremely significant (P<0.01). “ns” means no significant difference among treatments (P>0.05)

    Figure  2.  Effects of nitrogen application rates on nitrate nitrogen distribution in 0−100 cm soil layer before sowing (S) and after harvest (H) from 2018 to 2020

    图  3  2018—2020年不同施氮量下玉米生长季(4—9月)农田土壤硝态氮总淋失量(T)、灌溉(I)和降水(R)淋失量

    N0、N1、N2、N3、N4分别表示施氮量为0 kg∙hm−2、90 kg∙hm−2、180 kg∙hm−2、270 kg∙hm−2、360 kg∙hm−2。不同小写字母表示处理间差异显著(P <0.05)。N0, N1, N2, N3 and N4 represent nitrogen application rates of 0 kg∙hm−2, 90 kg∙hm−2, 180 kg∙hm−2, 270 kg∙hm−2 and 360 kg∙hm−2, respectively. Different lowercase letters showed significant difference among treatments (P<0.05).

    Figure  3.  Total soil nitrate leaching loss (T), irrigation (I) and rainfall leaching loss (R) in maize growing season (April to September) under different nitrogen application treatments from 2018 to 2020

    图  4  玉米产量、氮素吸收利用、硝态氮淋失量与施氮量回归分析

    REN为氮肥回收利用率; AEN为氮肥农学利用率; PFEN为氮肥偏生产力; N uptake为吸氮量; Nitrate-N leaching为硝态氮淋失量; N Threshold 为硝态氮淋失量阈值; 枯水年回归数据为2019和2020年平均值。 REN is Recovery efficiency of N; AEN is Agronomic efficiency of N; PFEN is Partial-factor productivity of N; N uptake is Nitrogen uptake; Nitrate-N leaching is Nitrate leaching loss; N Threshold is Nitrate leaching threshold; The regression data of water dry years are the average values of 2019 and 2020.

    Figure  4.  Regression Analysis of maize yield, nitrogen absorption and utilization, Nitrate-N leaching and nitrogen application

    表  1  试验地土壤理化性质

    Table  1.   Physical and chemical properties of the test soils

    土层
    Soil layer
    (cm)
    pH有机质
    Organic matter
    (g∙kg−1)
    全氮
    Total N
    (g∙kg−1)
    全磷
    Total P
    (g∙kg−1)
    全钾
    Total K
    (g∙kg−1)
    碱解氮
    Avail N
    (mg∙kg−1)
    速效磷
    Avail K
    (mg∙kg−1)
    速效钾
    Avail K
    (mg∙kg−1)
    容重
    Bulk density
    (g∙cm−3)
    0~207.8112.310.780.543.3238.0319.37101.821.31
    20~407.955.460.520.343.4518.4517.3786.451.35
    40~607.982.360.360.263.3612.5514.3644.671.32
    60~807.941.450.230.173.288.368.3627.741.29
    80~1007.861.520.180.193.245.484.3212.361.30
    下载: 导出CSV

    表  2  玉米不同生育期各试验处理的肥料(纯N-P-K)施用量

    Table  2.   Application rates of fertilizers (N-P-K) in each treatment of the test at different growth stages of maize (kg∙hm−2)

    处理 Treatment苗期 Seedling stage拔节期 Jointing stage抽雄期 Tasseling stage灌浆期 Grouting period
    N00-13.8-120-62.1-540-27.6-240-34.5-30
    N19-13.8-1240.5-62.1-5418-27.6-2422.5-34.5-30
    N218-13.8-1281-62.1-5436-27.6-2445-34.5-30
    N327-13.8-12121.5-62.1-5454-27.6-2467.5-34.5-30
    N436-13.8-12162-62.1-5472-27.6-2490-34.5-30
    下载: 导出CSV

    表  3  2018-2020年滴灌玉米产量、氮素吸收量及利用率

    Table  3.   Yield, nitrogen uptake and utilization rate of drip irrigation Maize in 2018−2020

    年份
    Year
    处理
    Treatment
    产量
    Yield
    (kg·hm−2)
    吸氮量
    N uptake
    (kg·hm−2)
    氮肥回收率
    Recovery efficiency
    of N (%)
    氮肥农学效率
    Agronomic efficiency
    of N (kg·kg−1)
    氮肥偏生产力
    Partial-factor productivity
    of N (kg·kg−1)
    2018N08309.60±150.89Bd79.51±2.28Bd
    N110 305.84±156.17Bc145.87±1.74Bc57.03±3.17Ba22.18±0.06Ba114.51±0.62Ba
    N212 018.66±154.97Bb185.39±3.51Bb51.61±3.08Bab20.61±0.50Ba66.77±0.31Bb
    N312 969.88±34.21Ba219.93±1.01Ba48.20±0.58Bb17.26±0.20Ab48.04±0.13Ac
    N412 308.23±192.14Bab223.16±1.61Ba36.92±0.57Bc11.10±0.15Bc34.19±0.26Bd
    2019N08579.71±100.67Ad104.44±1.58Ad
    N110 934.31±149.99Ac155.77±1.34Ac73.73±1.84Aa26.16±1.30Aa121.49±1.67Aa
    N212 463.31±176.19Ab197.35±5.01Ab55.73±0.95Ab21.58±0.46Ab69.24±0.98Ab
    N313 203.78±28.46Aa234.59±2.36Aa52.00±0.94Ab17.13±0.28Ac48.90±0.10Ac
    N412 925.42±95.03Aab237.36±1.20Aa39.90±0.67Ac12.07±0.14Ad35.90±0.26Ad
    2020N08312.06±131.36Bd121.36±3.88Ad
    N110 507.22±189.18Ac189.18±2.09Ac75.36±2.03Aa24.39±1.24Aa116.75±1.09Aa
    N212 156.17±218.39Ab218.39±4.31Ab53.91±3.58Ab21.36±1.31Ab67.53±1.14Ab
    N313 294.24±237.82aA237.82±1.52Aa46.51±1.51Cc18.45±0.95Ac49.24±0.46Ac
    N412 786.96±68.09Aab246.71±1.54Aa34.82±1.51Bd12.43±0.45Ad35.52±0.19Ad
    方差分析 ANOVA
    降水年型 Rainfall years (R) 37.43** 62.69** 32.70** 21.12** 20.48**
    施氮量 N application rate (N) 995.78** 272.79** 159.37** 288.76** 5447.23**
    R×N 1.62ns 0.70ns 19.51** 3.54* 2.81ns
      不同小写字母表示同一年份间不同施氮处理间差异显著(P<0.05), 不同大写字母表示不同年份间同一施氮处理下差异性显著(P<0.05)。“**”表示不同处理间差异极显著(P<0.01), “*”表示不同处理间差异显著(P<0.05), “ns”表示不同处理间差异不显著(P>0.05)。Different small letters indicated significant differences among different N application treatments in the same year (P<0.05), and different capital letters indicated significant differences under the same N application treatment in different years (P<0.05). “**” mean that the difference between different treatments is extremely significant (P<0.01). “*” mean that significant differences among different treatments (P<0.05). “ns” means no significant difference among treatments (P>0.05)
    下载: 导出CSV

    表  4  不同降水年型施氮量(x)与土壤硝态氮淋失量和玉米产量、吸氮量、氮肥利用率的回归方程模型

    Table  4.   Regression analysis model of nitrogen application rate (x) with soil nitrate-N leaching, maize yield, nitrogen uptake and nitrogen use efficiency in different precipitation years

    年份 Year项目 Item (y)回归方程 Regression equationR2
    丰水年 Rainy year 硝态氮淋失量 Nitrate-N leaching y=5.40×10-2x+3.52 0.984**
    产量 Yield y=−0.05x2+30.72x+8195.93 0.979**
    吸氮量 N uptake y=−1.00×10-3x2+0.87x+78.66 0.997**
    氮肥偏生产力 PEPN y=−0.23x+111.93 0.820*
    氮肥农学效率 AEN y=−3.90×10-2x+25.73 0.960**
    氮肥回收率 REN y=−1.04×10-2x+75.07 0.892**
    枯水年 Dry years 硝态氮淋失量 Nitrate-N leaching y=0.050x+2.39 0.997**
    产量 Yield y=−5.70×10-2x2+33.07x+8365.58 0.993**
    吸氮量 N uptake y=−1.10×10-4x2+0.74x+113.53 0.999**
    氮肥偏生产力 PEPN y=−0.21x+107.43 0.804*
    氮肥农学效率 AEN y=−5.10×10-2x+30.58 0.983**
    氮肥回收率 REN y=−0.13x+83.58 0.958**
      *: P<0.05; **: P<0.01
    下载: 导出CSV
  • [1] 王艳丽, 吴鹏年, 李培富, 等. 有机肥配施氮肥对滴灌春玉米产量及土壤肥力状况的影响[J]. 作物学报, 2019, 45(8): 1230−1237

    WANG Y L, WU P N, LI P F, et al. Effect of organic fertilizer with nitrogen fertilizer on yield and soil fertility status of drip irrigated spring maize[J]. Acta Agronomica Sinica, 2019, 45(8): 1230−1237
    [2] 贾彪, 付江鹏. 基于临界氮浓度的宁夏玉米氮吸收与亏缺模型研究[J]. 农业机械学报, 2020, 51(1): 256−263 doi: 10.6041/j.issn.1000-1298.2020.01.028

    JIA B, FU J P. A model of N uptake and deficit of maize in Ningxia based on critical N concentration[J]. Transactions of the Chinese Society of Agricultural Machinery, 2020, 51(1): 256−263 doi: 10.6041/j.issn.1000-1298.2020.01.028
    [3] 叶盛嘉, 郑晨萌, 张影, 等. 氮肥减量配施有机肥对豫中地区冬小麦-夏玉米轮作生产力和土壤性质的影响[J]. 中国生态农业学报(中英文), 2022, 30(6): 900−912 doi: 10.12357/cjea.20210658

    YE S J, ZHENG C M, ZHANG Y, et al. Effects of N fertilizer reduction with organic fertilizer on productivity and soil properties of winter wheat-summer maize rotation in central Henan[J]. Chinese Journal of Eco-Agriculture, 2022, 30(6): 900−912 doi: 10.12357/cjea.20210658
    [4] 孙继颖, 高聚林, 王志刚, 等. 不同类型青贮玉米饲用产量及营养价值对密度调控的响应[J]. 草地学报, 2019, 27(6): 1733−1742

    SUN J Y, GAO J L, WANG Z G, et al. Response of different types of silage maize forage yield and nutritional value to density regulation[J]. Acta Agrestia Sinica, 2019, 27(6): 1733−1742
    [5] 李少昆, 赵久然, 董树亭, 等. 中国玉米栽培研究进展与展望[J]. 中国农业科学, 2017, 50(11): 1941−1959 doi: 10.3864/j.issn.0578-1752.2017.11.001

    LI S K, ZHAO J R, DONG S T, et al. Progress and prospects of maize cultivation research in China[J]. Scientia Agricultura Sinica, 2017, 50(11): 1941−1959 doi: 10.3864/j.issn.0578-1752.2017.11.001
    [6] ZHANG A P, GAO J, LIU R L, et al. The Comparison of Different Fertilizer Technologies on Nitrogen Leaching Losses and Nitrogen Use Efficiency in Rice Production−Taking Ningxia Irrigation Region as an Example[J]. Journal of Agricultural Resources and Environment, 2015, 32(2): 175−184
    [7] QUAN H, WU L h, DING D Y, et al. Interaction between soil water and fertilizer utilization on maize under plastic mulching in an arid irrigation region of China[J]. Agricultural Water Management, 2022: 265
    [8] 王西娜, 于金铭, 谭军利, 等. 宁夏引黄灌区春小麦氮磷钾需求及化肥减施潜力[J]. 中国农业科学, 2020, 53(23): 4891−4903 doi: 10.3864/j.issn.0578-1752.2020.23.014

    WANG X N, YU J M, TAN J L, et al. Nitrogen, phosphorus and potassium demand and fertilizer reduction potential of spring wheat in Ningxia Yellow Irrigation Area[J]. Scientia Agricultura Sinica, 2020, 53(23): 4891−4903 doi: 10.3864/j.issn.0578-1752.2020.23.014
    [9] GUO J J, FAN J L, XIANG Y Z, et al. Coupling effects of irrigation amount and nitrogen fertilizer type on grain yield, water productivity and nitrogen use efficiency of drip-irrigated maize[J]. Agricultural Water Management, 2022: 261
    [10] WANG Y S, LIU Y S, LIU R L, et al. Biochar amendment reduces paddy soil nitrogen leaching but increases net global warming potential in Ningxia irrigation[J]. Scientific reports, 2017, 7(1): 1592 doi: 10.1038/s41598-017-01173-w
    [11] 章明清, 陈防, 林琼, 等. 施肥对菜园土壤养分淋溶流失浓度的影响[J]. 植物营养与肥料学报, 2008(2): 291−299 doi: 10.3321/j.issn:1008-505X.2008.02.014

    ZHANG M Q, CHEN F, LIN Q, et al. Effect of fertilizer application on the concentration of nutrient leaching loss from vegetable gardens[J]. Journal of Plant Nutrition and Fertilizer, 2008(2): 291−299 doi: 10.3321/j.issn:1008-505X.2008.02.014
    [12] 郭丽, 史建硕, 王丽英, 等. 滴灌水肥一体化条件下施氮量对夏玉米氮素吸收利用及土壤硝态氮含量的影响[J]. 中国生态农业学报, 2018, 26(5): 668−676 doi: 10.13930/j.cnki.cjea.170416

    GUO L, SHI J S, WANG LY, et al. Effect of nitrogen application on nitrogen uptake and utilization and soil nitrate nitrogen content of summer maize under drip irrigation with integrated water and fertilizer[J]. Chinese Journal of Eco-Agriculture, 2018, 26(5): 668−676 doi: 10.13930/j.cnki.cjea.170416
    [13] 张学军, 赵营, 陈晓群, 等. 氮肥施用量对设施番茄氮素利用及土壤NO3−_N累积的影响[J]. 生态学报, 2007(9): 3761−3768 doi: 10.3321/j.issn:1000-0933.2007.09.026

    ZHANG X J, ZHAO Y, CHEN X Q, et al. Effect of nitrogen fertilizer application on nitrogen utilization and soil NO3-_N accumulation in tomatoes[J]. Acta Ecologica Sinica, 2007(9): 3761−3768 doi: 10.3321/j.issn:1000-0933.2007.09.026
    [14] LV H F, LIN S, WANG Y F, et al. Drip fertigation significantly reduces nitrogen leaching in solar greenhouse vegetable production system[J]. Environmental Pollution, 2018, 245: 694−701
    [15] WU Y, BIAN S F, LIU Z M, et al. Drip irrigation incorporating water conservation measures: Effects on soil water–nitrogen utilization, root traits and grain production of spring maize in semi-arid areas[J]. Journal of Integrative Agriculture, 2021, 20(12): 3127−3142 doi: 10.1016/S2095-3119(20)63314-7
    [16] 李娟娟, 李利敏, 马理辉. 不同滴灌施肥量对沙地玉米氮效率及硝态氮的影响[J]. 中国土壤与肥料, 2020(5): 56−63 doi: 10.11838/sfsc.1673-6257.19349

    LI J J, LI L M, MA L H. Effects of different drip irrigation fertilization on N efficiency and nitrate nitrogen in sandy maize[J]. Soil and Fertilizer Sciences in China, 2020(5): 56−63 doi: 10.11838/sfsc.1673-6257.19349
    [17] 王素艳, 李欣, 王璠, 等. 宁夏降水资源格局演变特征[J]. 干旱区研究, 2021, 38(3): 733−746 doi: 10.13866/j.azr.2021.03.15

    WANG S Y, LI X, WANG P, et al. Characteristics of the evolution of precipitation resource pattern in Ningxia[J]. Arid Zone Research, 2021, 38(3): 733−746 doi: 10.13866/j.azr.2021.03.15
    [18] GUO S L, ZHU H H, DANG T H, et al. Winter wheat grain yield associated with precipitation distribution under long-term nitrogen fertilization in the semiarid Loess Plateau in China[J]. Geoderma, 2012, 189-190: 442−450 doi: 10.1016/j.geoderma.2012.06.012
    [19] WANG Y, ZHOU M, HOU M, et al. Regulation of nitrogen balance and yield on greenhouse eggplant under biochar addition in Mollisol[J]. Plant, Soil and Environment, 2022, 68(1)
    [20] CAMBOURIS A N, ZEBARTH B J, NOLIN M C, et al. Apparent fertilizer nitrogen recovery and residual soil nitrate under continuous potato cropping: Effect of N fertilization rate and timing[J]. Canadian Journal of Soil Science, 2008, 88(5): 813−825 doi: 10.4141/CJSS07107
    [21] 宁芳, 张元红, 温鹏飞, 等. 不同降水状况下旱地玉米生长与产量对施氮量的响应[J]. 作物学报, 2019, 45(5): 777−791 doi: 10.3724/SP.J.1006.2019.83055

    NING F, ZHANG Y H, WEN P F, et al. Response of dryland maize growth and yield to nitrogen application under different precipitation conditions[J]. Acta Agronomica Sinica, 2019, 45(5): 777−791 doi: 10.3724/SP.J.1006.2019.83055
    [22] 刘朋召, 王旭敏, 宁芳, 等. 减量施氮对渭北旱地春玉米产量、氮素利用及土壤硝态氮含量的影响[J]. 应用生态学报, 2020, 31(8): 2621−2629 doi: 10.13287/j.1001-9332.202008.025

    LIU P Z, WANG XM, NING F, et al. Effects of reduced N application on yield, N use and soil nitrate-N content of spring maize in Weibei dryland[J]. Chinese Journal of Applied Ecology, 2020, 31(8): 2621−2629 doi: 10.13287/j.1001-9332.202008.025
    [23] LAI Z L, FAN J L, YANG R, et al. Interactive effects of plant density and nitrogen rate on grain yield, economic benefit, water productivity and nitrogen use efficiency of drip-fertigated maize in northwest China[J]. Agricultural Water Management, 2022: 263 doi: 10.1016/J.AGWAT.2021.107453
    [24] WOOD C W, TRACY P W, REEVES D W, et al. Determination of cotton nitrogen status with a handheld chlorophyll meter[J]. Journal of Plant Nutrition, 2008, 15(9): 1435−1448
    [25] XING H L, ZHOU W B, WANG C, et al. Excessive nitrogen application under moderate soil water deficit decreases photosynthesis, respiration, carbon gain and water use efficiency of maize[J]. Plant Physiology and Biochemistry, 2021, 166: 1065−1075 doi: 10.1016/j.plaphy.2021.07.014
    [26] 刘朋召, 周栋, 郭星宇, 等. 不同降雨年型旱地冬小麦水分利用及产量对施氮量的响应[J]. 中国农业科学, 2021, 54(14): 3065−3076 doi: 10.3864/j.issn.0578-1752.2021.14.012

    LIU P Z, ZHOU D, GUO X Y, et al. Water use and yield response of dryland winter wheat to N application in different rainfall years[J]. Scientia Agricultura Sinica, 2021, 54(14): 3065−3076 doi: 10.3864/j.issn.0578-1752.2021.14.012
    [27] 任宁, 汪洋, 王改革, 等. 不同降雨年份控释尿素与普通尿素配施对夏玉米产量、氮素利用及经济效益的影响[J]. 植物营养与肥料学报, 2020, 26(4): 681−691 doi: 10.11674/zwyf.19258

    REN N, WANG G Y, WANG R, et al. Effects of controlled-release urea and regular urea on yield, nitrogen utilization and economic efficiency of summer corn in different rainfall years[J]. Journal of Plant Nutrition and Fertilizer, 2020, 26(4): 681−691 doi: 10.11674/zwyf.19258
    [28] 付江鹏, 贾彪, 杨文伟, 等. 基于叶片干物质的滴灌玉米临界氮稀释曲线构建[J]. 应用生态学报, 2020, 31(3): 945−952 doi: 10.13287/j.1001-9332.202003.030

    FU J P, JIA B, YANG W W, et al. Construction of critical nitrogen dilution curve for drip irrigated maize based on leaf dry matter[J]. Chinese Journal of Applied Ecology, 2020, 31(3): 945−952 doi: 10.13287/j.1001-9332.202003.030
    [29] 张富仓, 严富来, 范兴科, 等. 滴灌施肥水平对宁夏春玉米产量和水肥利用效率的影响[J]. 农业工程学报, 2018, 34(22): 111−120 doi: 10.11975/j.issn.1002-6819.2018.22.014

    ZHANG F C, YAN F L, FAN X K, et al. Effect of drip irrigation fertilization level on yield and water and fertilizer use efficiency of spring maize in Ningxia[J]. Transactions of the Chinese Society of Agricultural Engineering, 2018, 34(22): 111−120 doi: 10.11975/j.issn.1002-6819.2018.22.014
    [30] HOSSEIN D, NADER K. Interactive effects of Nitrogen and Drip Irrigation Rates on Root Development of Corn (Zea Mays L.) and Residual Soil Moisture[J]. Gesunde Pflanzen, 2020, 72: 1−15 doi: 10.1007/s10343-019-00495-1
    [31] 贾彪, 李振洲, 王锐, 等. 不同施氮量下覆膜滴灌玉米相对根长密度模型研究[J]. 农业机械学报, 2020, 51(9): 266−273

    JIA B, LI Z Z, WANG R, et al. Modeling the relative root length density of maize under mulch drip irrigation with different N application rates[J]. Transactions of the Chinese Society of Agricultural Machinery, 2020, 51(9): 266−273
    [32] 郭星宇, 刘朋召, 王瑞, 等. 旱地冬小麦产量、氮肥利用率及土壤氮素平衡对降水年型与施氮量的响应[J]. 作物学报, 2022, 48(5): 1262−1272 doi: 10.3724/SP.J.1006.2022.11034

    GUO XNY, LIU P Z, WANG R, et al. Response of dryland winter wheat yield, nitrogen fertilizer utilization and soil nitrogen balance to annual pattern of precipitation and nitrogen application[J]. Acta Agronomica Sinica, 2022, 48(5): 1262−1272 doi: 10.3724/SP.J.1006.2022.11034
    [33] 刘艳妮, 马臣, 于昕阳, 等. 基于不同降水年型渭北旱塬小麦–土壤系统氮素表观平衡的氮肥用量研究[J]. 植物营养与肥料学报, 2018, 24(3): 569−578

    LIU Y N, MA C, YU X Y, et al. Study on nitrogen fertilizer dosage based on the apparent nitrogen balance of wheat-soil system in Weibei dry plateau with different precipitation year types[J]. Journal of Plant Nutrition and Fertilizer, 2018, 24(3): 569−578
    [34] XU A X, LI L L, XIE J H, et al. Effect of Long-Term Nitrogen Addition on Wheat Yield, Nitrogen Use Efficiency, and Residual Soil Nitrate in a Semiarid Area of the Loess Plateau of China[J]. Sustainability, 2020, 12(5): 1735−1742 doi: 10.3390/su12051735
    [35] CUI Z L, ZHANG F S, CHEN X P, et al. On-farm evaluation of an in-season nitrogen management strat-egy based on soil N-min test[J]. Field Crops Res, 2008, 105: 48−55 doi: 10.1016/j.fcr.2007.07.008
    [36] 雒文鹤, 师祖姣, 王旭敏, 等. 节水减氮对土壤硝态氮分布和冬小麦水氮利用效率的影响[J]. 作物学报, 2020, 46(6): 924−936 doi: 10.3724/SP.J.1006.2020.91060

    LUO W H, SHI Z J, WANG X M, et al. Effects of water conservation and nitrogen reduction on soil nitrate nitrogen distribution and water nitrogen use efficiency of winter wheat[J]. Acta Agronomica Sinica, 2020, 46(6): 924−936 doi: 10.3724/SP.J.1006.2020.91060
    [37] 张春霞, 文宏达, 刘宏斌, 等. 优化施肥对大棚番茄氮素利用和氮素淋溶的影响[J]. 植物营养与肥料学报, 2013, 19(5): 1139−1145 doi: 10.11674/zwyf.2013.0513

    ZHANG C X, WEN H D, LIU H B, et al. Effect of optimal fertilization on nitrogen utilization and nitrogen leaching in greenhouse tomato[J]. Journal of Plant Nutrition and Fertilizer, 2013, 19(5): 1139−1145 doi: 10.11674/zwyf.2013.0513
    [38] 戴嘉璐, 李瑞平, 李聪聪, 等. 盐渍化灌区玉米施氮量阈值DNDC模型模拟[J]. 农业工程学报, 2021, 37(24): 131−140 doi: 10.11975/j.issn.1002-6819.2021.24.015

    DAI J L, LI R P, LI C C, et al. Simulation of DNDC model with N application threshold for maize in saline irrigated areas[J]. Transactions of the Chinese Society of Agricultural Engineering, 2021, 37(24): 131−140 doi: 10.11975/j.issn.1002-6819.2021.24.015
    [39] 冯浩原, 尹光华, 马宁宁, 等. 不同降水年型地下滴灌追氮对玉米产量的影响[J]. 排灌机械工程学报, 2021, 39(12): 1250−1256

    FENG H Y, YIN G H, MA N N, et al. Effect of subsurface drip irrigation on maize yield in different precipitation years[J]. Journal of Drainage and Irrigation Machinery Engineering, 2021, 39(12): 1250−1256
  • 加载中
图(4) / 表(4)
计量
  • 文章访问数:  74
  • HTML全文浏览量:  64
  • PDF下载量:  9
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-07-05
  • 录用日期:  2022-10-29
  • 修回日期:  2022-10-29
  • 网络出版日期:  2022-11-25

目录

    /

    返回文章
    返回