留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

养殖场圈舍环节粪污酸化氨减排技术研究与应用

刘娟 王选 曹玉博 柏兆海 马林

刘娟, 王选, 曹玉博, 柏兆海, 马林. 养殖场圈舍环节粪污酸化氨减排技术研究与应用[J]. 中国生态农业学报 (中英文), 2023, 31(2): 290−299 doi: 10.12357/cjea.20220538
引用本文: 刘娟, 王选, 曹玉博, 柏兆海, 马林. 养殖场圈舍环节粪污酸化氨减排技术研究与应用[J]. 中国生态农业学报 (中英文), 2023, 31(2): 290−299 doi: 10.12357/cjea.20220538
LIU J, WANG X, CAO Y B, BAI Z H, MA L. Study on ammonia reduction technology by manure surface acidification in animal housing[J]. Chinese Journal of Eco-Agriculture, 2023, 31(2): 290−299 doi: 10.12357/cjea.20220538
Citation: LIU J, WANG X, CAO Y B, BAI Z H, MA L. Study on ammonia reduction technology by manure surface acidification in animal housing[J]. Chinese Journal of Eco-Agriculture, 2023, 31(2): 290−299 doi: 10.12357/cjea.20220538

养殖场圈舍环节粪污酸化氨减排技术研究与应用

doi: 10.12357/cjea.20220538
基金项目: 河北省重点研发计划项目(20327305D)、河北省现代农业产业技术体系奶牛产业创新团队项目(HBCT2018120206)、河北省现代农业产业技术体系蛋肉鸡产业创新团队项目(HBCT2018150209)和河北省‘三三三人才工程’ 项目(A202110001)资助
详细信息
    作者简介:

    刘娟, 主要从事农业生态学研究。E-mail: liujuan690317@163.com

    通讯作者:

    马林, 主要从事农业生态学和养分管理研究。E-mail: malin1979@sjziam.ac.cn

  • 中图分类号: X713

Study on ammonia reduction technology by manure surface acidification in animal housing

Funds: This study was supported by the Key Research and Development Program of Hebei Province (20327305D), Hebei Province Modern Agricultural Industrial Technology System Dairy Cow Industry Innovation Team Project (HBCT2018120206), Hebei Province Modern Agricultural Industrial Technology System Egg Broiler Industry Innovation Team Project (HBCT2018150209), and Hebei “Three-Three-Three Talents Project” Funded Project (A202110001).
More Information
  • 摘要: 本研究针对养殖场圈舍环节氨挥发量大, 缺少可原位实施的氨减排技术的现状, 欲探究一种经济、高效、可实施并可广泛推广的圈舍原位氨减排技术。本研究利用圈舍模拟试验探索了不同剂量的硫酸和青贮渗出液对粪尿氨挥发的影响, 筛选可用于圈舍原位氨减排的酸化条件; 并进一步研发动物圈舍原位酸化氨减排设备, 将模拟试验筛选出的酸化条件应用于原位圈舍, 从氨减排效果和经济两个方面综合探究动物圈舍原位酸化技术的可行性。研究结果表明, 硫酸和青贮液可快速降低粪尿氨挥发: 以不喷酸作为对照, 按0.03 g∙m−2的喷施量, 在试验开始喷洒一次硫酸和青贮液, 可分别降低氨挥发排放速率39.1% (P<0.05)和42.7% (P<0.05), 但其减氨效果仅维持8 h左右。鉴于硫酸难以市场流通、青贮液无法雾化, 原位圈舍采用青贮液的主要成分乳酸作为酸化剂。本研究利用原位酸化氨减排设备对圈舍粪尿以不同频率喷酸时, 每天按0.03 g∙m−2的剂量喷洒乳酸(0.01 mol∙L−1) 3次(8:00、16:00、0:00)时氨减排效率最高, 与不喷酸相比, 氨减排效率为55.6% (P<0.01); 每天喷洒2次(8:00、16:00) 氨减排成本最低, 为147元∙kg−1(NH3)。本研究为养殖场圈舍环节提供了一项可实施的高效减氨技术, 但其成本仍较高, 该技术的广泛推广和应用还需进一步降低设备成本。
  • 图  1  模拟圈舍酸化试验中喷酸及氨气测定方法

    Figure  1.  Method of spraying acid and NH3 measurement in the experiment

    图  2  圈舍喷酸系统平面图、气体监测仪和采样点位置

    Figure  2.  Floor plan of booth acid spray system, gas monitor and sampling points location

    图  3  不同酸化剂及添加量对羊粪表面氨气排放速率和累积排放量的影响

    图例中“A”表示添加量为0.02 g∙m−2, “B”表示添加量为0.03 g∙m−2。In legend, “A” means that the additive amount is 0.02 g∙m−2, “B” means that the additive amount is 0.03 g∙m−2.

    Figure  3.  Effect of different acidifiers and addition amounts on ammonia emission rate and cumulative of sheep manure compost

    图  4  每天不同酸化次数对圈舍氨浓度的影响

    图a、c、e为3 m高度氨浓度, 图b、d、f为0 m高度氨浓度, g为不同酸化次数下的平均氨浓度。Figure a, c and e show the ammonia concentration at the hight of 3 m, figure b, d and f show the ammonia concentration at the hight of 0 m, figure g is the average ammonia concentration under different acidification times.

    Figure  4.  Effect of daily acidification times on ammonia concentration in the test housing

    图  5  氨浓度与圈舍环境因子的相关关系

    T: 温度; RH: 湿度; WS: 风速; 0 m: 0 m高度处的氨浓度; 3 m: 3 m高度处的氨浓度。实线表示正相关, 虚线表示负相关。**表示P<0.01水平显著相关。T: temperature; RH: humidity; WS: wind speed; 0 m: ammonia concentration at the height of 0 m; 3 m: ammonia concentration at the height of 3 m. Solid line means positive correlation, and dotted line means negetive correlation.

    Figure  5.  Correlation of NH3 concentration with environmental factors

    表  1  不同添加化剂对粪尿NH4+-N、NOx-N、总氮(TN)、pH和含水率的影响

    Table  1.   Effects of different additives on NH4+-N, NOx-N, total nitrogen, pH and moisture content in manure samples

    样品 SampleNH4+-N (g∙kg−1)NOx-N (g∙kg−1)pH总氮 Total nitrogen (g∙kg−1)含水率 Moisture (%)
    24 h72 h24 h72 h24 h72 h24 h72 h24 h72 h
    对照 Control0.811.12±0.12a0.450.24±0.01a8.59 8.59±0.04a22.4520.96±0.47a68.7470.16±0.02a
    硫酸A Sulfuric acid A1.380.68±0.10b0.230.28±0.09a8.548.59±0.07a22.1721.79±0.38a69.9965.82±0.01a
    硫酸B Sulfuric acid B1.090.65±0.12b0.220.22±0.01a8.688.62±0.06a21.4821.71±0.27a71.0767.00±0.00a
    青贮液A Silage leachate A1.150.70±0.10b0.230.37±0.11a8.468.70±0.086a21.4521.65±0.61a71.0964.60±0.02a
    青贮液B Silage leachate B1.340.85±0.16a0.240.30±0.11a8.468.70±0.08a22.8122.41±0.48a71.3665.07±0.04a
      A表示添加量为0.02 g∙m−2, B表示添加量为0.03 g∙m−2。原始样品的NH4+-N、NOx-N、pH、总氮和含水率分别为(1.70±0.13) g∙kg−1、(0.23±0.00) g∙kg−1、8.59±0.01、(21.10±0.21) g∙kg−1和73.4%。平均值中相同小写字母表示在95%置信水平上无显著性差异。“A” means that the additive amount is 0.02 g∙m−2, “B” means that the additive amount is 0.03 g∙m−2. The content of NH4+-N, NOx-N, total nitrogen and water of original samples are (1.70±0.13) g∙kg−1, (0.23±0.00) g∙kg−1, (21.10±0.21) g∙kg−1 and 73.4%, respectively, with pH of 8.59±0.01. Means followed by the same lowercase letter in each column are not significantly different at a 95% confidence level.
    下载: 导出CSV

    表  2  圈舍表面酸化氨减排技术成本投入

    Table  2.   Cost of ammonia reduction technology of manure surface acidification in housing

    项目
    Category
    应用频率 Applying times per day
    123
    设备投入成本 Up-front cost (×106 ¥∙a−1) 2.9 2.9 2.9
    固定运行成本 Fixed operation cost (×105 ¥∙a−1) 2.3 2.3 2.3
    可变运行成本
    Variable operation cost
    电力 Electricity (×103 ¥∙a−1) 9.7 19.0 29.0
    酸 Acid (×104 ¥∙a−1) 7.0 14.0 21.0
    人工 Labor (×105 ¥∙a−1) 1.8 1.8 1.8
    年总成本 Annual cost (×106 ¥∙a−1) 3.4 3.5 3.7
    减氨成本 Ammonia reduction cost [ ¥∙kg−1(NH3)] 211 147 165
    下载: 导出CSV
  • [1] PAULOT F, JACOB D J, PINDER R W, et al. Ammonia emissions in the United States, European Union, and China derived by high-resolution inversion of ammonium wet deposition data: interpretation with a new agricultural emissions inventory (MASAGE_NH3)[J]. Journal of Geophysical Research: Atmospheres, 2014, 119(7): 4343−4364 doi: 10.1002/2013JD021130
    [2] HUANG X, SONG Y, LI M M, et al. A high-resolution ammonia emission inventory in China[J]. Global Biogeochemical Cycles, 2012, 26(1): GB1030
    [3] WANG G H, ZHANG R Y, GOMEZ M E, et al. Persistent sulfate formation from London fog to Chinese haze[J]. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113(48): 13630−13635 doi: 10.1073/pnas.1616540113
    [4] POZZER A, TSIMPIDI A P, KARYDIS V A, et al. Impact of agricultural emission reductions on fine-particulate matter and public health[J]. Atmospheric Chemistry and Physics, 2017, 17(20): 12813−12826 doi: 10.5194/acp-17-12813-2017
    [5] GIANNADAKI D, GIANNAKIS E, POZZER A, et al. Estimating health and economic benefits of reductions in air pollution from agriculture[J]. Science of the Total Environment, 2018, 622/623: 1304−1316 doi: 10.1016/j.scitotenv.2017.12.064
    [6] ZHANG X M, GU B J, VAN GRINSVEN H, et al. Societal benefits of halving agricultural ammonia emissions in China far exceed the abatement costs[J]. Nature Communications, 2020, 11(1): 4357 doi: 10.1038/s41467-020-18196-z
    [7] BAI Z H, MA L, JIN S Q, et al. Nitrogen, phosphorus, and potassium flows through the manure management chain in China[J]. Environmental Science & Technology, 2016, 50(24): 13409−13418
    [8] BAI Z H, LI X X, LU J, et al. Livestock housing and manure storage need to be improved in China[J]. Environmental Science & Technology, 2017, 51(15): 8212−8214
    [9] SOMMER S G, CLOUGH T J, BALAINE N, et al. Transformation of organic matter and the emissions of methane and ammonia during storage of liquid manure as affected by acidification[J]. Journal of Environmental Quality, 2017, 46(3): 514−521 doi: 10.2134/jeq2016.10.0409
    [10] KAI P, PEDERSEN P, JENSEN J E, et al. A whole-farm assessment of the efficacy of slurry acidification in reducing ammonia emissions[J]. European Journal of Agronomy, 2008, 28(2): 148−154 doi: 10.1016/j.eja.2007.06.004
    [11] NDEGWA P M, HRISTOV A N, AROGO J, et al. A review of ammonia emission mitigation techniques for concentrated animal feeding operations[J]. Biosystems Engineering, 2008, 100(4): 453−469 doi: 10.1016/j.biosystemseng.2008.05.010
    [12] 杨福有, 李彩凤, 杜忍让, 等. 全株玉米青贮渗出液成分分析与利用[J]. 陕西农业科学, 2011, 57(2): 15−17 doi: 10.3969/j.issn.0488-5368.2011.02.005

    YANG F Y, LI C F, DU R R, et al. Analysis and utilization of corn silage leachate[J]. Shaanxi Journal of Agricultural Sciences, 2011, 57(2): 15−17 doi: 10.3969/j.issn.0488-5368.2011.02.005
    [13] 许庆方, 韩建国, 玉柱. 青贮渗出液的研究进展[J]. 草业科学, 2005, 22(11): 90−95 doi: 10.3969/j.issn.1001-0629.2005.11.023

    XU Q F, HAN J G, YU Z. Advances in the research of silage effluent[J]. Pratacultural Science, 2005, 22(11): 90−95 doi: 10.3969/j.issn.1001-0629.2005.11.023
    [14] ZHANG N N, BAI Z H, WINIWARTER W, et al. Reducing ammonia emissions from dairy cattle production via cost-effective manure management techniques in China[J]. Environmental Science & Technology, 2019, 53(20): 11840−11848
    [15] 薛文涛, 郭赫, 林聪, 等. 酸化处理对鸡粪沼液储存中氨排放的影响[J]. 中国沼气, 2019, 37(5): 40−45 doi: 10.3969/j.issn.1000-1166.2019.05.007

    XUE W T, GUO H, LIN C, et al. Effects of acidification on ammonia emissions from chicken manure biogas slurry during storage[J]. China Biogas, 2019, 37(5): 40−45 doi: 10.3969/j.issn.1000-1166.2019.05.007
    [16] 刘娟, 柏兆海, 曹玉博, 等. 家畜圈舍粪尿表层酸化对氨气排放的影响[J]. 中国生态农业学报(中英文), 2019, 27(5): 677−685

    LIU J, BAI Z H, CAO Y B, et al. Impact of surface acidification of manure on ammonia emission in animal housing[J]. Chinese Journal of Eco-Agriculture, 2019, 27(5): 677−685
    [17] PARK S H, LEE B R, KIM T H. Effects of cattle manure and swine slurry acidification on ammonia emission as estimated by an acid trap system[J]. Journal of the Korean Society of Grassland and Forage Science, 2015, 35(3): 212−216 doi: 10.5333/KGFS.2015.35.3.212
    [18] MISSELBROOK T, HUNT J, PERAZZOLO F, et al. Greenhouse gas and ammonia emissions from slurry storage: impacts of temperature and potential mitigation through covering (pig slurry) or acidification (cattle slurry)[J]. Journal of Environmental Quality, 2016, 45(5): 1520−1530 doi: 10.2134/jeq2015.12.0618
    [19] PAIN B F, MISSELBROOK T H, REES Y J. Effects of nitrification inhibitor and acid addition to cattle slurry on nitrogen losses and herbage yields[J]. Grass and Forage Science, 1994, 49(2): 209−215 doi: 10.1111/j.1365-2494.1994.tb01994.x
    [20] PANETTA D M, POWERS W J, LORIMOR J C. Management strategy impacts on ammonia volatilization from swine manure[J]. Journal of Environmental Quality, 2005, 34(3): 1119−1130 doi: 10.2134/jeq2004.0313
    [21] CAO Y B, WANG X, BAI Z H, et al. Mitigation of ammonia, nitrous oxide and methane emissions during solid waste composting with different additives: a meta-analysis[J]. Journal of Cleaner Production, 2019, 235: 626−635 doi: 10.1016/j.jclepro.2019.06.288
    [22] WANG H D, ZHAO Z Q, WINIWARTER W, et al. Strategies to reduce ammonia emissions from livestock and their cost-benefit analysis: a case study of Sheyang County[J]. Environmental Pollution (Barking, Essex: 1987), 2021, 290: 118045 doi: 10.1016/j.envpol.2021.118045
  • 加载中
图(5) / 表(2)
计量
  • 文章访问数:  215
  • HTML全文浏览量:  104
  • PDF下载量:  41
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-07-12
  • 录用日期:  2022-09-16
  • 修回日期:  2022-09-16
  • 网络出版日期:  2022-11-07
  • 刊出日期:  2023-02-10

目录

    /

    返回文章
    返回