留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

气候变化背景下东北地区大豆种植区气候适宜性变化

何亮 毛留喜

何亮, 毛留喜. 气候变化背景下东北地区大豆种植区气候适宜性变化[J]. 中国生态农业学报 (中英文), 2023, 31(0): 1−9 doi: 10.12357/cjea.20220574
引用本文: 何亮, 毛留喜. 气候变化背景下东北地区大豆种植区气候适宜性变化[J]. 中国生态农业学报 (中英文), 2023, 31(0): 1−9 doi: 10.12357/cjea.20220574
HE L, MAO L X. Change of soybean climatic suitability in Northeast China under climate change[J]. Chinese Journal of Eco-Agriculture, 2023, 31(0): 1−9 doi: 10.12357/cjea.20220574
Citation: HE L, MAO L X. Change of soybean climatic suitability in Northeast China under climate change[J]. Chinese Journal of Eco-Agriculture, 2023, 31(0): 1−9 doi: 10.12357/cjea.20220574

气候变化背景下东北地区大豆种植区气候适宜性变化

doi: 10.12357/cjea.20220574
基金项目: 科技创新2030“新一代人工智能”重大项目(2021ZD0113605)资助
详细信息
    通讯作者:

    何亮, 主要从事作物模型、农业气象和全球变化研究。E-mail: heliang@cma.gov.cn

  • 中图分类号: S161.2

Change of soybean climatic suitability in Northeast China under climate change

Funds: This study was supported by the Science and Technology Innovation 2030-"New Generation Artificial Intelligence" Major Project (2021ZD0113605).
More Information
  • 摘要: 东北地区是我国大豆主产区, 该地区深受气候变化影响。厘清气候变化背景下的农业气候资源、农业气象灾害、大豆气候种植适宜性变化对指导大豆生产和扩种具有重要意义。通过利用最新气候态(1991−2020年)与旧气候态(1981−2010年)的农业气候资源、农业气象灾害, 分析了大豆种植气候适宜度的时空变化。结果发现: 1)内蒙古东部、黑龙江西南部和东北部、吉林中西部等地大豆生长季≥10 ℃活动积温增加26~65 ℃∙d, 局部地区增加66~182 ℃∙d; 1981−2020年整个时间段, 东北大豆的种植区生长季积温大部呈上升趋势。大豆生长季降水和日照变化呈现空间差异。2)东北地区大部大豆生长季霜冻害日数减少; 黑龙江大部和吉林西北部大豆生长季干旱天数减少, 吉林中东部和辽宁大部干旱天数增加。3)内蒙古东部、黑龙江西部、吉林西部、辽宁西部和东部大豆种植气候适宜度提高, 黑龙江中部和东部、吉林中部和东北部气候适宜度略下降。4)气象因子对大豆气候适宜度变化贡献率分析表明, 日照变化是大豆气候适宜度变化的主要因素, 其次是积温变化, 降水变化对大豆气候适宜度变化贡献率最小。最新气候态下东北地区大部大豆种植气候条件变好, 东北地区可以充分利用温度资源, 适当调整播期和品种, 但从积温上升幅度看, 不宜采取过激的跨积温带盲目种植。
  • 图  1  研究区域与气象站点

    Figure  1.  Study region and meteorological stations

    图  2  1991—2020年与1981—2010年80%保证率活动积温差值(a)和1981—2020年80%保证率活动积温时间趋势(b)

    Figure  2.  The difference of accumulated temperature in the rate of 80% climatic guarantee between 1991−2020 and 1981−2010 (a) and its temporal trend from 1981 to 2020 (b)

    图  3  1991—2020年与1981—2010年80%保证率生育期降水差值(a)和1981—2020年80%保证率生育期降水时间趋势(b)

    Figure  3.  The difference of growing season precipitation in the rate of 80% climatic guarantee between 1991−2020 and 1981−2010 (a) and its temporal trend from 1981 to 2020 (b)

    图  4  1991—2020年与1981—2010年80%保证率生育期日照时数(a) 和1981—2020年80%保证率生育期日照时数时间趋势(b)

    Figure  4.  The difference of growing season sunshine hours in the rate of 80% climatic guarantee between 1991−2020 and 1981−2010 (a) and its temporal trend from 1981 to 2020 (b)

    图  5  1991—2020年与1981—2010年干旱日数差值(a)和霜冻日数差值(b)

    Figure  5.  The difference of drought days (a) and frost days (b) between 1991−2020 and 1981−2010

    图  6  1991—2020年与1981—2010年大豆种植气候适宜度变化

    Figure  6.  The change of soybean climatic suitability between 1991−2020 and 1981−2010

    图  7  生长季积温(a)、降水(b)、日照(c)对大豆适宜度变化的贡献率

    Figure  7.  The contribution rate of accumulated temperature (a), precipitation (b) and sunshine hours in the growing season

    表  1  不同发育期适宜度模型中的参数设置

    Table  1.   Parameters of suitability model in different phenological stages

    发育期
    Phenological stage
    参数 Parameter
    $ {T}_{i1} $$ {T}_{i2} $$ {T}_{i0} $$ {P}_{il} $$ {P}_{ih} $$ {S}_{i0} $$ {b}_{i} $
    播种—出苗 Sowing−emergence7.526.018.516.722.39.375.05
    出苗—分枝 Emergence−branching10.530.023.520.724.79.034.87
    分枝—开花 Branching−anthesis17.532.027.0154.1195.38.754.72
    开花—鼓粒 Anthesis−pod filling13.030.525.0102.4132.58.314.48
    鼓粒—成熟 Pod filling−maturity14.030.024.534.156.67.754.18
      $ {T}_{i1} $为发育期i的下限温度, $ {T}_{i2} $为发育期i的上限温度, $ {T}_{i0} $为发育期i的最适温度, $ {P}_{il} $为大豆发育期i的下限需水量, $ {P}_{ih} $为大豆发育期i的上限需水量, $ {S}_{i0} $为大豆发育期i的最适日照时数, $ {b}_{i} $为发育期i的日照适宜度常数。$ {T}_{i1} $is the lower limit temperature of phenology i, $ {T}_{i2} $ is the upper limit temperature of phenology i, $ {T}_{i0} $ is the optimal temperature of phenology i, $ {P}_{il} $ is the upper limit requirement water of phenology i, $ {P}_{ih} $ is the lower limit requirement water of phenology i, $ {S}_{i0} $ is the optimal sunshine hour of phenology i , $ {b}_{i} $is the sunshine suitability constant of phenology i.
    下载: 导出CSV
  • [1] 郭天宝. 中国大豆生产困境与出路研究[D]. 长春: 吉林农业大学, 2017: 1−5

    GUO T. B. Study on dilemma and way out of China's soybean production [D]. Changchun: Jinlin Agricultural University, 2017: 1−5
    [2] 张彩霞, 付桢. 国际背景下中国大豆的生产困境分析与对策[J]. 河北经贸大学学报: 综合版, 2022, 20(4): 73−77

    ZHANG C X, FU Z. Analysis and countermeasure of production dilemma of Chinese soybean under the international background[J]. Journal of Hebei University of Economics and Business (Comprehensive Edition), 2022, 20(4): 73−77
    [3] 国家统计局. 国家数据[EB/OL]. [2022-04-26]. https://data.stats.gov.cn/easyquery.htm?cn=C01

    National Bureau of Statistics. National data[EB/OL]. [2022-04-26]. https://data.stats.gov.cn/easyquery.htm?cn=C01
    [4] 农业农村部. 大豆振兴计划实施方案 [EB/OL]. [2022-04-26]. http://www.moa.gov.cn/nybgb/2019/0201903/201905/t20190525_6315395.htm

    Ministry of Agriculture and Rural Affairs of the People’s Republic of China. Implementation plan of soybean revitalization plan [EB/OL]. [2022-04-26]. http://www.moa.gov.cn/nybgb/2019/0201903/201905/t20190525_6315395.htm
    [5] 中共中央国务院关于做好2022年全面推进乡村振兴重点工作的意见[EB/OL]. [2022-04-15]. http://www.gov.cn/zhengce/2022-02/22/content_5675035.htm

    Opinions of the CPC Central Committee and The State Council on comprehensively promoting the key work of rural revitalization in 2022[EB/OL]. [2022-04-15]. http://www.gov.cn/zhengce/2022-02/22/content_5675035.htm
    [6] 刘爱民, 封志明, 阎丽珍, 等. 中国大豆生产能力与未来供求平衡研究[J]. 中国农业资源与区划, 2003, 24(4): 36−39 doi: 10.3969/j.issn.1005-9121.2003.04.009

    LIU A M, FENG Z M, YAN L Z, et al. A study on the throughput and balance of supply and demand of soybean in China[J]. Journal of China Agricultural Resources and Regional Planning, 2003, 24(4): 36−39 doi: 10.3969/j.issn.1005-9121.2003.04.009
    [7] 刘爱民, 封志明, 阎丽珍, 等. 基于耕地资源约束的中国大豆生产能力研究[J]. 自然资源学报, 2003, 18(4): 430−436 doi: 10.3321/j.issn:1000-3037.2003.04.006

    LIU A M, FENG Z M, YAN L Z, et al. Study on soybean throughput based on cultivated land resources restriction in China[J]. Journal of Natural Resources, 2003, 18(4): 430−436 doi: 10.3321/j.issn:1000-3037.2003.04.006
    [8] 中国气象局气候变化中心. 中国气候变化蓝皮书2021[M]. 北京: 科学出版社, 2021: 16−25

    Climate Change Center of China Meteorological Administration. Blue book on climate change in China 2021[M]. Beijing: Scientific Press 2021: 16−25
    [9] 刘志娟, 杨晓光, 王文峰, 等. 气候变化背景下我国东北三省农业气候资源变化特征[J]. 应用生态学报, 2009(9): 2199−2206 doi: 10.13287/j.1001-9332.2009.0362

    LIU Z J, YANG X G, WANG W F, et al. Characteristics of agricultural climate resources in three provinces of Northeast China under global climate change[J]. Chinese Journal of Applied Ecology, 2009(9): 2199−2206 doi: 10.13287/j.1001-9332.2009.0362
    [10] 杨晓光, 李勇, 代姝玮, 等. 气候变化背景下中国农业气候资源变化Ⅸ. 中国农业气候资源时空变化特征[J]. 应用生态学报, 2011, 22(12): 3177−3188

    YANG X G, LI Y, DAI S W et al. Changes of China agricultural climate resources under the background of climate change: IX. Spatiotemporal change characteristics of China agricultural climate resources[J]. Chinese Journal of Applied Ecology, 2011, 22(12): 3177−3188
    [11] 解文娟, 杨晓光, 杨婕, 等. 气候变化背景下东北三省大豆干旱时空特征[J]. 生态学报, 2014, 34(21): 6232−6243

    XIE W J, YANG X G, YANG J, et al. Spatio-temporal characteristics of drought for soybean under climate change in the three provinces of Northeast China[J]. Acta Ecologica Sinica, 2014, 34(21): 6232−6243
    [12] 梁宏, 王培娟, 章建成, 等. 1960-2011年东北地区热量资源时空变化特征[J]. 自然资源学报, 2014, 29(3): 466−479 doi: 10.11849/zrzyxb.2014.03.010

    LIANG H, WANG P J, DONG J C, et al. Spatial and Temporal Distribution of Variation in Heat Resource over Northeast China during the Period from 1960 to2011[J]. Journal of Natural Resources, 2014, 29(3): 466−479 doi: 10.11849/zrzyxb.2014.03.010
    [13] 郝兴宇, 韩雪, 居煇, 等. 气候变化对大豆影响的研究进展[J]. 应用生态学报, 2010(10): 2697−2706 doi: 10.13287/j.1001-9332.2010.0375

    HAO X Y, HAN X, JU H, et al. Impact of climatic change on soybean production: A review[J]. Chinese Journal of Applied Ecology, 2010(10): 2697−2706 doi: 10.13287/j.1001-9332.2010.0375
    [14] 魏萌, 舒启, 宋振亚, 等. CMIP6气候模式对21世纪初全球增暖减缓现象模拟能力评估与归因分析[J]. 中国科学: 地球科学, 2021, 51(6): 947−961

    WEI M, SHU Q, SONG Z Y, et al. 2021. Could CMIP6 climate models reproduce the early-2000s global warming slow down?[J] Science China Earth Sciences, 64(6): 853−865
    [15] WMO. WMO Guidelines on the calculation of climate normal (WMO No. 1203) [Z]. 2017. Geneva.
    [16] 胡琦, 潘学标, 徐琳. 应用气候学实习[M]. 北京: 中国农业大学出版社, 2020: 31−41

    HU Q, PAN X B, XU L. Practice of Applied Climatology[M]. Beijing: China Agricultural University Press, 2020: 31−41
    [17] 吕厚荃, 张玉书, 李茂松, 等. 中华人民共和国国家标准 (GB/T 32136—2015). 农业干旱等级[S]. 北京: 中国标准出版社, 2015

    LU H Q, ZHANG Y S, LI M S, et al. National Standards of People’s Republic of China (GB/T 32136–2015). Grade of Agricultural Drought[S]. Beijing: China Standard Press, 2015
    [18] 谭方颖, 何亮, 吕厚荃, 等. 基于游程理论的农业干旱指数在辽宁省春玉米旱灾损失评估中的应用[J]. 中国生态农业学报, 2020, 28(2): 191−199 doi: 10.13930/j.cnki.cjea.190675

    TAN F Y, HE L, LYU H Q, et al. Application of agricultural drought index based on run theory for the assessment of yield loss in spring maize owing to drought in Liaoning Province[J]. Chinese Journal of Eco-Agriculture, 2020, 28(2): 191−199 doi: 10.13930/j.cnki.cjea.190675
    [19] HE Y B, YAO Y M, TANG H, et al. Using an Integrated Response-Function Method to Explore Agro-Climatic Suitability for Spring Soybean Growth in North China[J]. Journal of Applied Meteorology and Climatology, 2011, 50(6): 1354−1361 doi: 10.1175/2010JAMC2577.1
    [20] 代立芹, 李春强, 魏瑞江, 等. 河北省冬小麦气候适宜度及其时空变化特征分析[J]. 中国农业气象, 2011, 32(3): 399−406

    DAI L Q, LI C Q, WEI R J, et al. Climatic suitability of winter wheat and its spatial-temporal changes in Hebei Province[J], Chinese Journal of Agrometeorology, 2011, 32(3): 399−406
    [21] 何英彬, 姚艳敏, 李建平, 等. 大豆种植适宜性精细评价及种植合理性分析——以东北三省为例[J]. 中国农业资源与区划, 2012, 33(1): 11−16

    HE Y B, YAO Y M, LI J P, et al. Precisely assessment on soybean growth suitability and analysis on its cultivation reasonability-taking the Northeast China as an example[J], Chinese Journal of Agricultural Resources and Regional Planning, 2012, 33(1): 11−16
    [22] 杨显峰, 杨德光, 汤彦辉, 等. 东北春大豆气候适宜性指标体系的建立研究初步[J]. 种子世界, 2009(11): 36−38 doi: 10.3969/j.issn.1000-8071.2009.11.016

    YANG X F, YANG D G, TANG Y H, et al. Establish climatic adaptability index system for spring soybean[J]. Seed World, 2009(11): 36−38 doi: 10.3969/j.issn.1000-8071.2009.11.016
    [23] SEN P K. Estimates of the Regression Coefficient Based on Kendall’s Tau[J]. Journal of the American Statistical Association, 1968, 63(324): 1379−1389 doi: 10.1080/01621459.1968.10480934
    [24] XU Z X, TAKEUCHI K, ISHIDAIRA H. Monotonic trend and step changes in Japanese precipitation[J]. Journal of Hydrology, 2003, 279(1): 144−150
    [25] 汪攀, 刘毅敏. Sen’s斜率估计与Mann-Kendall法在设备运行趋势分析中的应用[J]. 武汉科技大学学报, 2014, 37(6): 454−457

    WANG P, LIU Y M. Application of Sen’s slope estimation and Mann-Kendall method in the trend analysis of equipment operation[J]. Journal of Wuhan University of Science and Technology, 2014, 37(6): 454−457
    [26] HE L, JIN N, YU Q. Impacts of climate change and crop management practices on soybean phenology changes in China[J]. Science of The Total Environment, 2020, 707: 135638 doi: 10.1016/j.scitotenv.2019.135638
  • 加载中
图(7) / 表(1)
计量
  • 文章访问数:  64
  • HTML全文浏览量:  75
  • PDF下载量:  20
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-07-25
  • 录用日期:  2022-11-25
  • 修回日期:  2022-12-23
  • 网络出版日期:  2022-12-27

目录

    /

    返回文章
    返回