留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

不同盐碱胁迫对棉花营养元素吸收转运以及代谢的影响

鲁晓宇 郭家鑫 陶一凡 叶扬 桂诚浩 郭慧娟 闵伟

鲁晓宇, 郭家鑫, 陶一凡, 叶扬, 桂诚浩, 郭慧娟, 闵伟. 不同盐碱胁迫对棉花营养元素吸收转运以及代谢的影响[J]. 中国生态农业学报 (中英文), 2023, 31(3): 438−451 doi: 10.12357/cjea.20220581
引用本文: 鲁晓宇, 郭家鑫, 陶一凡, 叶扬, 桂诚浩, 郭慧娟, 闵伟. 不同盐碱胁迫对棉花营养元素吸收转运以及代谢的影响[J]. 中国生态农业学报 (中英文), 2023, 31(3): 438−451 doi: 10.12357/cjea.20220581
LU X Y, GUO J X, TAO Y F, YE Y, GUI C H, GUO H J, MIN W. Effects of different salt and alkali stress on absorption, transportation, and metabolism of nutrient elements in cotton[J]. Chinese Journal of Eco-Agriculture, 2023, 31(3): 438−451 doi: 10.12357/cjea.20220581
Citation: LU X Y, GUO J X, TAO Y F, YE Y, GUI C H, GUO H J, MIN W. Effects of different salt and alkali stress on absorption, transportation, and metabolism of nutrient elements in cotton[J]. Chinese Journal of Eco-Agriculture, 2023, 31(3): 438−451 doi: 10.12357/cjea.20220581

不同盐碱胁迫对棉花营养元素吸收转运以及代谢的影响

doi: 10.12357/cjea.20220581
基金项目: 兵团中青年科技创新领军人才计划(2020CB020)、石河子大学青年创新人才培养计划(CXPY202111)和农业农村部西北绿洲农业环境重点实验室开放基金(XBLZ-20214)资助
详细信息
    作者简介:

    鲁晓宇, 主要从事植物逆境生理研究。E-mail: 1804221194@qq.com

    通讯作者:

    闵伟, 主要从事土壤水盐运移、土壤肥力与调控及土壤微生物分子生态研究。E-mail: minwei555@126.com

  • 中图分类号: S562

Effects of different salt and alkali stress on absorption, transportation, and metabolism of nutrient elements in cotton

Funds: This study was supported by the Program of Youth Science and Technology Innovation Leader of the Xinjiang Production and Construction Corps (2020CB020), the Youth Innovation Talent Cultivation Program of Shihezi University (CXPY202111), and the Open Fund of Key Laboratory of Northwest Oasis Agro-Environment, Ministry of Agriculture of China (XBLZ-20214).
More Information
  • 摘要: 新疆盐碱地类型多且积盐严重, 因此, 探讨不同盐碱胁迫对棉花养分吸收转运和代谢的影响, 揭示棉花对不同盐碱胁迫的耐受机制, 可为新疆不同盐碱地类型棉花栽培提供一定的理论基础。本研究设置对照(CK)、氯化钠(NaCl)盐胁迫(CS)、硫酸钠(Na2SO4)盐胁迫(SS)和碱(NaHCO3+Na2CO3)胁迫(AS) 4个处理, 通过离子组和代谢组学的方法, 探究不同盐碱胁迫对棉花根和叶中营养元素含量以及代谢的影响。结果表明, 盐碱胁迫显著抑制棉花生长, 与CK相比, CS、SS和AS处理的棉花总生物量分别显著(P<0.05, 下同)降低51.7%、47.8%和52.3%, CS处理叶片N含量显著增加, P、K、Ca、Mg和S含量显著降低, 茎中N、P、K、Ca、Mg和S含量均显著降低, 根中N、Ca和Mg含量显著降低, P含量显著增加; SS处理叶中P、Ca和Mg含量显著降低, S含量显著增加, 茎中P、Ca和Mg含量显著降低, S含量显著增加, 根中P和Ca含量显著降低, Mg和S含量显著增加; AS处理叶中P、K、Ca、Mg和S含量显著降低, 茎中N、P、Ca、Mg和S含量显著降低, 根中N、P和S含量显著降低, Mg含量显著增加。CS处理下棉花叶片和根系中分别筛选出7条差异代谢通路, SS处理下棉花叶片和根系中分别筛选出16和29条差异代谢通路, AS处理下棉花叶片和根系中分别筛选出8条和18条差异代谢通路。氯化钠胁迫抑制棉花P、Ca、Mg和S的转运能力, 但是对代谢的影响相对较小; 硫酸钠胁迫下棉花体内积累的S促进了氨基酸类代谢; 碱胁迫抑制了P、K、Ca、Mg和S的转运能力, 根部有机酸代谢增强且有机酸显著积累, 叶片中亚油酸显著积累。
  • 表  1  不同处理土壤盐碱类型及盐碱化程度

    Table  1.   Type and degree of saline and alkaline in soil of different treatments

    处理
    Treatment
    盐碱类型
    Saline alkali type
    含盐量
    Salt content (g∙kg−1)
    电导率
    Electrical conductivity (EC1:5, dS∙m−1)
    pH
    (1∶2.5)
    CK非盐(碱)化 Control (non salting/alkalization)0.530.178.16
    CS氯化钠盐胁迫 NaCl stress4.431.398.43
    SS硫酸钠盐胁迫 Na2SO4 stress6.432.018.19
    AS碱胁迫 Na2CO3+NaHCO3 stress2.030.639.92
    下载: 导出CSV

    表  2  不同盐碱胁迫对棉花生物量的影响

    Table  2.   Effects of different salt and alkaline stresses on cotton biomass

    处理
    Treatment
    生物量 Biomass (g∙plant−1)
    叶 Leaf茎 Stem根 Root总 Total
    CK1.44±0.01a1.69±0.02a0.93±0.01a4.05±0.04a
    CS0.75±0.00b0.58±0.02d0.63±0.01b1.96±0.02c
    SS0.77±0.01b0.83±0.01b0.52±0.02c2.11±0.02b
    AS0.57±0.01c0.72±0.03c0.65±0.02b1.93±0.03c
      各处理说明见表1。同列不同小写字母表示不同处理间差异显著(P<0.05)。The description of each treatment is shown in Table 1. Different lowercase letters in the same column indicate significant differences among treatments (P<0.05).
    下载: 导出CSV

    表  3  不同盐碱胁迫对棉花养分吸收和分配的影响

    Table  3.   Effects of different saline alkali stresses on nutrient uptake and distribution in cotton

    处理
    Treatment
    含量 Content (g∙kg−1)器官分配比 Distribution ratio of organ
    NPKCaMgSNPKCaMgS

    Leaves
    CK38.91±0.82b2.77±0.08a26.73±0.56a56.67±1.23a11.72±0.40a21.02±0.33b0.55b0.45a0.45b0.75c0.59b0.84b
    CS44.33±0.58a2.22±0.09c22.25±0.72c44.54±0.58b9.48±0.23c18.02±0.64c0.64a0.44ab0.51a0.80a0.65a0.86a
    SS38.19±0.11b2.06±0.03d27.50±0.26a41.91±0.14c10.14±0.06b27.82±0.46a0.55b0.46a0.47b0.77b0.60b0.86a
    AS37.86±0.44b2.38±0.08b23.88±0.56b33.99±0.41d8.52±0.15d17.33±0.36c0.55b0.43b0.38c0.67d0.48d0.81c

    Stem
    CK19.86±0.41a2.09±0.01a21.70±0.11a14.15±0.16a5.93±0.03a2.83±0.02b0.33a0.40a0.44a0.22b0.35b0.13a
    CS18.63±0.43b1.92±0.04b16.62±0.23b10.41±0.21b4.70±0.09d2.56±0.04c0.21c0.30c0.30c0.15d0.25d0.10d
    SS20.29±0.59a1.57±0.04d21.75±0.27a9.36±0.32d4.91±0.02c3.33±0.07a0.32b0.38b0.40b0.19c0.31c0.11b
    AS18.02±0.19b1.74±0.01c21.53±0.15a9.91±0.07c5.34±0.08b2.43±0.05d0.33ab0.39ab0.43a0.25a0.38a0.14a

    Roots
    CK12.88±0.15a1.36±0.04b10.20±0.43ab3.80±0.08a1.69±0.03d1.18±0.04b0.12c0.14c0.11b0.03d0.06d0.03b
    CS12.38±0.25b1.52±0.04a9.82±0.06b3.26±0.06b1.78±0.01c1.21±0.05b0.15a0.26a0.19a0.05b0.10b0.05a
    SS13.16±0.22a1.06±0.02c10.63±0.25a3.08±0.04c2.11±0.03b1.42±0.05a0.13b0.16b0.13b0.04c0.09c0.03b
    AS7.73±0.31c0.90±0.01d10.65±0.03a3.76±0.08a2.30±0.04a0.96±0.01c0.12bc0.18b0.19a0.08a0.14a0.05a
      各处理说明见表1。同列不同小写字母表示不同处理间差异显著(P<0.05)。The description of each treatment is shown in Table 1. Different lowercase letters in the same column indicate significant differences among treatments (P<0.05).
    下载: 导出CSV

    表  4  NaCl胁迫下棉花根差异代谢通路和差异代谢物

    Table  4.   Differential metabolic pathways and metabolites in cotton roots under NaCl stress

    编号
    No.
    代谢通路
    Metabolic pathway
    差异代谢物
    Differential metabolite
    变化倍数
    Fold change
    1丙氨酸、天冬氨酸和谷氨酸代谢
    Alanine, aspartate and glutamate metabolism
    L-谷氨酰胺 L-Glutamine1.26
    琥珀酸半醛 Succinic semialdehyde1.28
    2丁酸代谢
    Butanoate metabolism
    琥珀酸半醛 Succinic semialdehyde1.28
    3泛酸和辅酶A生物合成
    Pantothenate and CoA biosynthesis
    泛酸 Pantothenate1.35
    二氢尿嘧啶 Dihydrouracil1.32
    4精氨酸生物合成
    Arginine biosynthesis
    L-谷氨酰胺 L-Glutamine1.26
    5半乳糖代谢
    Galactose metabolism
    肌醇 myo-Inositol1.39
    蔗糖 Sucrose1.40
    UDP-D-半乳糖 UDP-D-Galactose1.13
    6精氨酸和脯氨酸代谢
    Arginine and proline metabolism
    4-乙酰氨基丁酸酯 4-acetamidobutanoate0.74
    7磷酸肌醇代谢
    Inositol phosphate metabolism
    肌醇 myo-Inositol1.39
    下载: 导出CSV

    表  5  Na2SO4胁迫下棉花根差异代谢通路和差异代谢物

    Table  5.   Differential metabolic pathways and metabolites in cotton roots under Na2SO4 stress

    编号
    No.
    代谢通路
    Metabolic pathway
    差异代谢物
    Differential metabolite
    变化倍数
    Fold change
    1异喹啉生物碱的生物合成
    Isoquinoline alkaloid biosynthesis
    L-酪氨酸 L-Tyrosine1.35
    多巴胺 Dopamine1.36
    2丙氨酸、天冬氨酸和谷氨酸代谢
    Alanine, aspartate and glutamate metabolism
    L-丙氨酸 L-Alanine2.85
    L-天冬酰胺 L-Asparagine1.27
    丙酮酸 Pyruvate1.49
    L-谷氨酰胺 L-Glutamine1.37
    L-谷氨酸 L-Glutamate1.79
    琥珀酸 Succinate2.10
    琥珀酸半醛 Succinic semialdehyde1.74
    3牛磺酸和低牛磺酸代谢
    Taurine and hypotaurine metabolism
    牛磺酸 Taurine1.57
    4C5支化二元酸代谢
    C5-Branched dibasic acid metabolism
    柠檬酸 Citraconic acid1.34
    丙酮酸 Pyruvate1.49
    5苯丙氨酸代谢
    Phenylalanine metabolism
    苯丙氨酸 L-Phenylalanine1.54
    6甘油磷脂代谢
    Glycerophospholipid metabolism
    甘油磷酸胆碱 Glycerophosphocholine0.62
    磷酰胆碱 Phosphorylcholine1.33
    7精氨酸生物合成
    Arginine biosynthesis
    L-谷氨酸 L-Glutamate1.79
    N-乙酰-L-谷氨酸 N-Acetyl-L-glutamate0.75
    L-瓜氨酸 L-Citrulline3.58
    L-谷氨酰胺 L-Glutamine1.37
    N2-乙酰-L-鸟氨酸 N2-Acetyl-L-ornithine0.47
    8淀粉和蔗糖代谢
    Starch and sucrose metabolism
    蔗糖 Sucrose1.49
    D-麦芽糖 D-Maltose2.33
    D-葡萄糖6-磷酸 D-Glucose 6-phosphate1.81
    α, α-海藻糖 Alpha, alpha-Trehalose1.80
    9甘氨酸、丝氨酸和苏氨酸代谢
    Glycine, serine and threonine metabolism
    L-苏氨酸 L-Threonine0.79
    L-丝氨酸 L-Serine1.57
    丙酮酸 Pyruvate1.49
    10丙酮酸代谢
    Pyruvate metabolism
    丙酮酸 Pyruvate1.49
    L-苹果酸 L-Malic acid2.76
    11乙醛酸和二羧酸代谢
    Glyoxylate and dicarboxylate metabolism
    D-核酮糖1,5-二磷酸 D-Ribulose 1,5-bisphosphate1.46
    顺乌头酸 Cis-Aconitate2.10
    L-苹果酸 L-Malic acid2.76
    琥珀酸 Succinate2.10
    磷酸乙醇酸 Phosphoglycolic acid0.68
    L-谷氨酸 L-Glutamate1.79
    L-丝氨酸 L-Serine1.57
    L-谷氨酰胺 L-Glutamine1.37
    甘油酸 Glyceric acid1.44
    12半乳糖代谢
    Galactose metabolism
    UDP-D-半乳糖 UDP-D-Galactose1.22
    水苏糖 Stachyose2.92
    棉子糖 Raffinose2.32
    肌醇 Myo-Inositol1.61
    蔗糖 Sucrose1.49
    甘油 Glycerol5.50
    13戊糖磷酸途径
    Pentose phosphate pathway
    D-核糖 D-Ribose2.39
    D-核糖5-磷酸 D-Ribose 5-phosphate0.38
    14丁酸代谢
    Butanoate metabolism
    L-谷氨酸 L-Glutamate1.79
    丙酮酸 Pyruvate1.49
    琥珀酸半醛 Succinic semialdehyde1.74
    琥珀酸 Succinate2.10
    15柠檬酸循环(TCA循环)
    Citrate cycle (TCA cycle)
    L-苹果酸 L-Malic acid2.76
    琥珀酸 Succinate2.10
    顺乌头酸 Cis-Aconitate2.10
    丙酮酸 Pyruvate1.49
    16光合生物的固碳作用
    Carbon fixation in photosynthetic organisms
    L-苹果酸 L-Malic acid2.76
    丙酮酸 Pyruvate1.49
    L-丙氨酸 L-Alanine2.85
    D-核糖5-磷酸 D-Ribose 5-phosphate0.38
    D-核酮糖1,5-二磷酸
    D-Ribulose 1,5-bisphosphate
    1.46
    17谷胱甘肽代谢
    Glutathione metabolism
    谷胱甘肽二硫化物 Glutathione disulfide1.93
    L-谷氨酸 L-Glutamate1.79
    γ-谷氨酰半胱氨酸 Gamma-Glutamylcysteine1.85
    L-焦谷氨酸 L-Pyroglutamic acid2.46
    18精氨酸和脯氨酸代谢
    Arginine and proline metabolism
    脯氨酸 Proline1.43
    4-胍基丁酸 4-Guanidinobutyric acid1.22
    4-乙酰氨基丁酸酯 4-acetamidobutanoate0.70
    L-谷氨酸 L-Glutamate1.79
    19氨基糖和核苷酸糖代谢
    Amino sugar and nucleotide sugar metabolism
    UDP-D-半乳糖 UDP-D-Galactose1.22
    UDP-N-乙酰葡糖胺 UDP-N-acetylglucosamine1.57
    20缬氨酸、亮氨酸和异亮氨酸生物合成
    Valine, leucine and isoleucine biosynthesis
    L-亮氨酸 L-Leucine0.83
    柠檬酸 Citraconic acid1.34
    L-苏氨酸 L-Threonine0.79
    丙酮酸 Pyruvate1.49
    L-异亮氨酸 L-Isoleucine0.44
    21泛酸和辅酶A生物合成
    Pantothenate and CoA biosynthesis
    丙酮酸 Pyruvate1.49
    尿嘧啶 Uracil1.83
    泛酸 Pantothenate1.50
    22角质、木栓碱和蜡的生物合成
    Cutin, suberine and wax biosynthesis
    油酸 Oleic acid0.68
    苯甲酸 Behenic acid1.96
    23类黄酮生物合成
    Flavonoid biosynthesis
    柚皮素 Naringenin0.80
    24糖酵解/糖异生
    Glycolysis / Gluconeogenesis
    丙酮酸 Pyruvate1.49
    25酪氨酸代谢
    Tyrosine metabolism
    L-酪氨酸 L-Tyrosine1.35
    多巴胺 Dopamine1.36
    丙酮酸 Pyruvate1.49
    26氨酰tRNA生物合成
    Aminoacyl-tRNA biosynthesis
    L-天冬酰胺 L-Asparagine1.27
    L-组氨酸 L-Histidine0.75
    苯丙氨酸 L-Phenylalanine1.54
    L-谷氨酰胺 L-Glutamine1.37
    L-丝氨酸 L-Serine1.57
    L-丙氨酸 L-Alanine2.85
    L-异亮氨酸 L-Isoleucine0.44
    L-亮氨酸 L-Leucine0.83
    L-苏氨酸 L-Threonine0.79
    L-酪氨酸 L-Tyrosine1.35
    L-脯氨酸 L-Proline1.44
    L-谷氨酸 L-Glutamate1.79
    27硫代谢
    Sulfur metabolism
    L-丝氨酸 L-Serine1.57
    O-乙酰-L-丝氨酸 O-Acetyl-L-serine3.34
    琥珀酸 Succinate2.10
    28苯丙氨酸、酪氨酸和色氨酸生物合成
    Phenylalanine, tyrosine and tryptophan biosynthesis
    预苯酸 Prephenate1.69
    L-苯丙氨酸 L-Phenylalanine1.54
    L-酪氨酸 L-Tyrosine1.35
    29肌醇磷酸代谢
    Inositol phosphate metabolism
    肌醇 Myo-Inositol1.61
    D-葡萄糖6-磷酸 D-Glucose 6-phosphate1.81
    下载: 导出CSV

    表  6  Na2CO3+NaHCO3胁迫下棉花根差异代谢通路和差异代谢物

    Table  6.   Differential metabolic pathways and metabolites in cotton roots under Na2CO3+NaHCO3 stress

    编号
    No.
    代谢通路
    Metabolic pathway
    差异代谢物
    Differential metabolite
    变化倍数
    Fold change
    1异喹啉生物碱的生物合成
    Isoquinoline alkaloid biosynthesis
    L-酪氨酸 L-Tyrosine1.30
    多巴胺 Dopamine1.33
    2丙氨酸、天冬氨酸和谷氨酸代谢
    Alanine, aspartate and glutamate metabolism
    L-天冬酰胺 L-Asparagine1.23
    L-丙氨酸 L-Alanine3.29
    L-谷氨酰胺 L-Glutamine0.72
    L-谷氨酸 L-Glutamate2.00
    琥珀酸 Succinate2.91
    4-氨基丁酸 4-Aminobutyric acid1.16
    琥珀酸半醛 Succinic semialdehyde1.58
    琥珀酸 Succinate2.91
    3维生素B6代谢
    Vitamin B6 metabolism
    吡哆醇 Pyridoxine2.62
    5’-磷酸吡哆醛 Pyridoxal 5’-phosphate0.76
    4精氨酸生物合成
    Arginine biosynthesis
    L-谷氨酸 L-Glutamate2.00
    N-乙酰-L-谷氨酸 N-Acetyl-L-glutamate0.28
    L-瓜氨酸 L-Citrulline2.86
    L-谷氨酰胺 L-Glutamine0.72
    5丁酸代谢
    Butanoate metabolism
    L-谷氨酸 L-Glutamate2.00
    琥珀酸 Succinate2.91
    4-氨基丁酸 4-Aminobutyric acid1.16
    琥珀酸半醛 Succinic semialdehyde1.58
    6乙醛酸和二羧酸代谢
    Glyoxylate and dicarboxylate metabolism
    顺乌头酸 Cis-Aconitate1.27
    琥珀酸 Succinate2.91
    L-谷氨酸 L-Glutamate2.00
    L-谷氨酰胺 L-Glutamine0.72
    磷酸乙醇酸 Phosphoglycolic acid0.47
    L-苹果酸 L-Malic acid4.20
    7戊糖磷酸途径
    Pentose phosphate pathway
    D-核糖 D-Ribose2.49
    D-核糖5-磷酸 D-Ribose 5-phosphate0.15
    8淀粉和蔗糖代谢
    Starch and sucrose metabolism
    蔗糖 Sucrose1.34
    麦芽糖 Maltose2.45
    9柠檬酸循环(TCA循环)
    Citrate cycle (TCA cycle)
    琥珀酸 Succinate2.91
    顺乌头酸 Cis-Aconitate1.27
    L-苹果酸 L-Malic acid4.20
    10甘油磷脂代谢
    Glycerophospholipid metabolism
    胆碱 Choline1.27
    甘油磷酸胆碱 Glycerophosphocholine0.45
    11丙酮酸代谢
    Pyruvate metabolism
    L-苹果酸 L-Malic acid4.20
    12半乳糖代谢
    Galactose metabolism
    水苏糖 Stachyose4.37
    棉子糖 Raffinose2.29
    肌醇 Myo-Inositol1.59
    蔗糖 Sucrose1.34
    13谷胱甘肽代谢
    Glutathione metabolism
    L-谷氨酸盐 L-Glutamate2.00
    谷胱甘肽二硫化物 Glutathione disulfide1.62
    γ-谷氨酰半胱氨酸 Gamma-Glutamylcysteine2.73
    14甘氨酸、丝氨酸和苏氨酸代谢
    Glycine, serine and threonine metabolism
    胆碱 Choline1.27
    L-苏氨酸 L-Threonine0.66
    甘油酸 Glyceric acid2.23
    15泛酸和辅酶A生物合成
    Pantothenate and CoA biosynthesis
    泛酸 Pantothenate2.03
    16角质、木栓碱和蜡的生物合成
    Cutin, suberine and wax biosynthesis
    油酸 Oleic acid0.47
    17酪氨酸代谢
    Tyrosine metabolism
    L-酪氨酸 L-Tyrosine1.30
    多巴胺 Dopamine1.33
    18肌醇磷酸代谢
    Inositol phosphate metabolism
    肌醇 Myo-Inositol1.59
    下载: 导出CSV

    表  7  NaCl胁迫下棉花叶差异代谢通路和差异代谢物

    Table  7.   Differential metabolic pathways and metabolites in cotton leaves under NaCl stress

    编号
    No.
    代谢通路
    Metabolic pathway
    差异代谢物
    Differential metabolite
    变化倍数
    Fold change
    1异喹啉生物碱生物合成
    Isoquinoline alkaloid biosynthesis
    L-酪氨酸
    L-Tyrosine
    1.53
    2丙酮酸代谢
    Pyruvate metabolism
    L-苹果酸
    L-Malic acid
    1.43
    3芪类、二芳基庚烷类和姜酚的生物合成
    Stilbenoid, diarylheptanoid and gingerol biosynthesis
    绿原酸
    Chlorogenic acid
    1.64
    4氰基氨基酸代谢
    Cyanoamino acid metabolism
    野樱皮甙
    Prunasin
    1.26
    5磷酸戊糖途径
    Pentose phosphate pathway
    6-磷酸-D-葡萄糖酸
    6-Phospho-D-gluconate
    1.22
    6酪氨酸代谢
    Tyrosine metabolism
    L-酪氨酸
    L-Tyrosine
    1.54
    7萜类骨架生物合成
    Terpenoid backbone biosynthesis
    1-脱氧-D-木酮糖5-磷酸 1-Deoxy-D-xylulose 5-phosphate1.82
    (R)-5-磷酸甲羟戊酸 (R)-mevalonic acid 5-Phosphate1.75
    下载: 导出CSV

    表  8  Na2SO4胁迫下棉花叶差异代谢通路和差异代谢物

    Table  8.   Differential metabolic pathways and metabolites in cotton leaves under Na2SO4 stress

    编号
    No.
    代谢通路
    Metabolic pathway
    差异代谢物
    Differential metabolite
    变化倍数
    Fold change
    1亚油酸代谢
    Linoleic acid metabolism
    亚油酸 Linoleic acid4.24
    2丙氨酸、天冬氨酸和谷氨酸代谢
    Alanine, aspartate and glutamate metabolism
    L-天冬氨酸 L-Aspartate2.17
    L-天门冬酰胺 L-Asparagine0.65
    丙酮酸 Pyruvate1.34
    氧戊二酸 Oxoglutaric acid1.48
    L-谷氨酰胺 L-Glutamine0.79
    L-谷氨酸 L-Glutamate1.79
    琥珀酸 Succinate1.42
    3黄酮和黄酮醇的生物合成
    Flavone and flavonol biosynthesis
    山奈酚 Kaempferol1.47
    4戊糖磷酸途径
    Pentose phosphate pathway
    6-磷酸-D-葡萄糖酸 6-Phospho-D-gluconate1.23
    D-核糖5-磷酸 D-Ribose 5-phosphate1.52
    5色氨酸代谢
    Tryptophan metabolism
    2-氧代辛酸 2-Oxoadipic acid0.51
    L-色氨酸 L-Tryptophan0.27
    N-乙酰血清素 N-Acetylserotonin3.14
    吲哚乙酸 Indoleacetic acid0.4
    6柠檬酸循环(TCA 循环)
    Citrate cycle (TCA cycle)
    琥珀酸 Succinate1.42
    柠檬酸 Citrate6.14
    顺乌头酸 Cis-Aconitate1.39
    丙酮酸 Pyruvate1.34
    2-氧代辛酸 2-Oxoadipic acid0.51
    7赖氨酸降解
    Lysine degradation
    2-氧代辛酸 2-Oxoadipic acid0.51
    糖苷 Saccharopine0.52
    8苯丙氨酸代谢
    Phenylalanine metabolism
    苯乙酸 Phenylacetic acid1.15
    苯乙胺 Phenylethylamine0.68
    反式肉桂酸酯 Trans-cinnamate1.20
    9精氨酸生物合成
    Arginine biosynthesis
    2-氧代辛酸 2-Oxoadipic acid0.51
    L-谷氨酸 L-Glutamate1.79
    L-谷氨酰胺 L-Glutamine0.79
    L-天冬氨酸 L-Aspartate2.17
    N2-乙酰-L-鸟氨酸 N2-Acetyl-L-ornithine0.57
    10半乳糖代谢
    Galactose metabolism
    α-D-葡萄糖 Alpha-D-Glucose0.64
    水苏糖 Stachyose0.74
    棉子糖 Raffinose2.67
    蔗糖 Sucrose1.21
    11乙醛酸和二羧酸代谢
    Glyoxylate and dicarboxylate metabolism
    顺乌头酸 Cis-Aconitate1.39
    柠檬酸 Citrate6.14
    琥珀酸 Succinate1.42
    L-谷氨酸 L-Glutamate1.79
    L-谷氨酰胺 L-Glutamine0.79
    2-氧代辛酸 2-Oxoadipic acid0.51
    甘油酸 Glyceric acid1.28
    12丙酮酸代谢
    Pyruvate metabolism
    丙酮酸 Pyruvate1.34
    13甘氨酸、丝氨酸和苏氨酸代谢
    Glycine, serine and threonine metabolism
    L-天冬氨酸 L-Aspartate2.17
    甘油酸 Glyceric acid1.28
    L-苏氨酸 L-Threonine1.52
    L-色氨酸 L-Tryptophan0.27
    丙酮酸 Pyruvate1.34
    14芪类、二芳基庚烷类和姜辣素生物合成
    Stilbenoid, diarylheptanoid and gingerol biosynthesis
    绿原酸
    Chlorogenic acid
    1.79
    15糖酵解/糖异生
    Glycolysis / Gluconeogenesis
    α-D-葡萄糖 Alpha-D-Glucose0.64
    丙酮酸 Pyruvate1.34
    16缬氨酸、亮氨酸和异亮氨酸的生物合成
    Valine, leucine and isoleucine biosynthesis
    L-苏氨酸 L-Threonine1.52
    丙酮酸 Pyruvate1.34
    下载: 导出CSV

    表  9  Na2CO3+NaHCO3胁迫下棉花叶差异代谢通路和差异代谢物

    Table  9.   Differential metabolic pathways and metabolites in cotton leaves under Na2CO3+NaHCO3 stress

    编号
    No.
    代谢通路
    Metabolic pathway
    差异代谢物
    Differential metabolite
    变化倍数
    Fold change
    1亚油酸代谢 Linoleic acid metabolism亚油酸 Linoleic acid3.47
    2黄酮和黄酮醇生物合成 Flavone and flavonol biosynthesis山奈酚 Kaempferol2.87
    3戊糖磷酸途径 Pentose phosphate pathway6-磷酸-D-葡萄糖酸 6-Phospho-D-gluconate0.58
    D-核糖5-磷酸 D-Ribose 5-phosphate1.50
    4丙氨酸、天冬氨酸和谷氨酸代谢
    Alanine, aspartate and glutamate metabolism
    L-天冬氨酸 L-Aspartate1.95
    L-谷氨酰胺 L-Glutamine0.57
    琥珀酸 Succinate0.35
    5硫胺素代谢 Thiamine metabolism一磷酸硫胺素 Thiamine monophosphate0.36
    6赖氨酸降解 Lysine degradation2-氧代辛酸 2-Oxoadipic acid0.35
    糖苷 Saccharopine0.59
    7精氨酸和脯氨酸代谢
    Arginine and proline metabolism
    L-精氨酸 L-Arginine2.59
    羟脯氨酸 Hydroxyproline1.83
    腐胺 Putrescine1.58
    8色氨酸代谢
    Tryptophan metabolism
    2-氧代辛酸 2-Oxoadipic acid0.35
    N-乙酰血清素 N-Acetylserotonin8.23
    吲哚乙酸 Indoleacetic acid0.36
    下载: 导出CSV
  • [1] ROLLY N K, IMRAN Q M, LEE I J, et al. Salinity stress-mediated suppression of expression of salt overly sensitive signaling pathway genes suggests negative regulation by AtbZIP62 transcription factor in Arabidopsis thaliana[J]. International Journal of Molecular Sciences, 2020, 21(5): 1726 doi: 10.3390/ijms21051726
    [2] YANG H C, WANG J Y, ZHANG F H. Soil aggregation and aggregate-associated carbon under four typical halophyte communities in an arid area[J]. Environmental Science and Pollution Research, 2016, 23(23): 23920−23929 doi: 10.1007/s11356-016-7583-3
    [3] ELKELISH A A, ALHAITHLOUL H A S, QARI S H, et al. Pretreatment with Trichoderma harzianum alleviates waterlogging-induced growth alterations in tomato seedlings by modulating physiological, biochemical, and molecular mechanisms[J]. Environmental and Experimental Botany, 2020, 171: 103946 doi: 10.1016/j.envexpbot.2019.103946
    [4] ELSAKHAWY T, ALKAHTANI M D F, SHARSHAR A, et al. Efficacy of mushroom metabolites (Pleurotus ostreatus) as a natural product for the suppression of broomrape growth (Orobanche crenata Forsk) in Faba bean plants[J]. Plants, 2020, 9(1): 1265−1282
    [5] ABBASI G H, AKHTAR J, ANWAR-UL-HAQ M, et al. Exogenous potassium differentially mitigates salt stress in tolerant and sensitive maize hybrids[J]. Pakistan Journal of Botany, 2014, 46(1): 135−146
    [6] CARILLO P, CIRILLO C, DE MICCO V, et al. Morpho-anatomical, physiological and biochemical adaptive responses to saline water of Bougainvillea spectabilis Willd. trained to different canopy shapes[J]. Agricultural Water Management, 2019, 212: 12−22 doi: 10.1016/j.agwat.2018.08.037
    [7] AHANGER M A, AZIZ U, ALSAHLI A A, et al. Influence of exogenous salicylic acid and nitric oxide on growth, photosynthesis, and ascorbate-glutathione cycle in salt stressed Vigna angularis[J]. Biomolecules, 2019, 10(1): E42 doi: 10.3390/biom10010042
    [8] ALAM P, ALBALAWI T H, ALTALAYAN F H, et al. 24-epibrassinolide (EBR) confers tolerance against NaCl stress in soybean plants by up-regulating antioxidant system, ascorbate-glutathione cycle, and glyoxalase system[J]. Biomolecules, 2019, 9(11): 640 doi: 10.3390/biom9110640
    [9] DE LACERDA C F, CAMBRAIA J, OLIVA M A, et al. Solute accumulation and distribution during shoot and leaf development in two Sorghum genotypes under salt stress[J]. Environmental and Experimental Botany, 2003, 49(2): 107−120 doi: 10.1016/S0098-8472(02)00064-3
    [10] CHRYSARGYRIS A, PAPAKYRIAKOU E, PETROPOULOS S A, et al. The combined and single effect of salinity and copper stress on growth and quality of Mentha spicata plants[J]. Journal of Hazardous Materials, 2019, 368: 584−593 doi: 10.1016/j.jhazmat.2019.01.058
    [11] SHELDON A R, DALAL R C, KIRCHHOF G, et al. The effect of salinity on plant-available water[J]. Plant and Soil, 2017, 418(1/2): 477−491
    [12] WIN K T, TANAKA F, OKAZAKI K, et al. The ACC deaminase expressing endophyte Pseudomonas spp. enhances NaCl stress tolerance by reducing stress-related ethylene production, resulting in improved growth, photosynthetic performance, and ionic balance in tomato plants[J]. Plant Physiology and Biochemistry, 2018, 127: 599−607 doi: 10.1016/j.plaphy.2018.04.038
    [13] MORENO-IZAGUIRRE E, OJEDA-BARRIOS D, AVILA-QUEZADA G, et al. Sodium sulfate exposure slows growth of native pecan seedlings[J]. Phyton, 2015, 84(1): 80−85 doi: 10.32604/phyton.2015.84.080
    [14] AGHAJANZADEH T, REICH M, KOPRIVA S, et al. Impact of chloride (NaCl, KCl) and sulphate (Na2SO4, K2SO4) salinity on glucosinolate metabolism in Brassica rapa[J]. Journal of Agronomy and Crop Science, 2018, 204: 137−146 doi: 10.1111/jac.12243
    [15] DAVIDIAN J C, KOPRIVA S. Regulation of sulfate uptake and assimilation — the same or not the same?[J]. Molecular Plant, 2010, 3(2): 314−325 doi: 10.1093/mp/ssq001
    [16] TAKAHASHI H, KOPRIVA S, GIORDANO M, et al. Sulfur assimilation in photosynthetic organisms: molecular functions and regulations of transporters and assimilatory enzymes[J]. Annual Review of Plant Biology, 2011, 62: 157−184 doi: 10.1146/annurev-arplant-042110-103921
    [17] GUO K W, XU Z S, HUO Y Z, et al. Effects of salt concentration, pH, and their interaction on plant growth, nutrient uptake, and photochemistry of alfalfa (Medicago sativa) leaves[J]. Plant Signaling & Behavior, 2020, 15(12): 1832373
    [18] 刘高峰. NO和钙信使系统在草酸诱导黄瓜叶片抗霜霉病中的作用[J]. 西北植物学报, 2012, 32(5): 969−974

    LIU G F. Role of nitric oxide and calcium signaling in oxalate-induced resistance of cucumber leaves to Pseudoperonospora cubensis[J]. Acta Botanica Boreali-Occidentalia Sinica, 2012, 32(5): 969−974
    [19] XIANG G Q, MA W Y, GAO S W, et al. Transcriptomic and phosphoproteomic profiling and metabolite analyses reveal the mechanism of NaHCO3-induced organic acid secretion in grapevine roots[J]. BMC Plant Biology, 2019, 19(1): 383 doi: 10.1186/s12870-019-1990-9
    [20] GUO S H, NIU Y J, ZHAI H, et al. Effects of alkaline stress on organic acid metabolism in roots of grape hybrid rootstocks[J]. Scientia Horticulturae, 2018, 227: 255−260 doi: 10.1016/j.scienta.2017.09.051
    [21] HAN L, XIAO C X, XIAO B B, et al. Proteomic profiling sheds light on alkali tolerance of common wheat (Triticum aestivum L.)[J]. Plant Physiology and Biochemistry: PPB, 2019, 138: 58−64 doi: 10.1016/j.plaphy.2019.02.024
    [22] PANG Q Y, ZHANG A Q, ZANG W, et al. Integrated proteomics and metabolomics for dissecting the mechanism of global responses to salt and alkali stress in Suaeda corniculate[J]. Plant and Soil, 2016, 402(1/2): 379−394 doi: 10.1007/s11104-015-2774-0
    [23] ZHANG J, YANG D S, LI M X, et al. Metabolic profiles reveal changes in wild and cultivated soybean seedling leaves under salt stress[J]. Plos One, 2016, 11(7): e0159622 doi: 10.1371/journal.pone.0159622
    [24] XIAO C, CUI X, LU H, et al. Comparative adaptive strategies of old and young leaves to alkali-stress in hexaploid wheat[J]. Environmental and Experimental Botany, 2020, 171: 103955−103979 doi: 10.1016/j.envexpbot.2019.103955
    [25] PORCEL R, AROCA R, RUIZ-LOZANO J M. Salinity stress alleviation using arbuscular mycorrhizal fungi. A review[J]. Agronomy for Sustainable Development, 2012, 32(1): 181−200 doi: 10.1007/s13593-011-0029-x
    [26] RAHNAMA A, JAMES R, POUSTINI K, et al. Stomatal conductance as a screen for osmotic stress tolerance in durum wheat growing in saline soil[J]. Functional Plant Biology, 2010, 37: 255−263 doi: 10.1071/FP09148
    [27] SAIED A S, KEUTGEN A J, NOGA G. The influence of NaCl salinity on growth, yield and fruit quality of strawberry cvs. ‘Elsanta’ and ‘Korona’[J]. Scientia Horticulturae, 2005, 103(3): 289−303 doi: 10.1016/j.scienta.2004.06.015
    [28] SIROHI G, PANDEY B K, DEVESHWAR P, et al. Emerging trends in epigenetic regulation of nutrient deficiency response in plants[J]. Molecular Biotechnology, 2016, 58(3): 159−171 doi: 10.1007/s12033-016-9919-0
    [29] FAROOQ M, HUSSAIN M, WAKEEL A, et al. Salt stress in maize: effects, resistance mechanisms, and management. A review[J]. Agronomy for Sustainable Development, 2015, 35(2): 461−481 doi: 10.1007/s13593-015-0287-0
    [30] AHANGER M A, ALYEMENI M N, WIJAYA L, et al. Potential of exogenously sourced kinetin in protecting Solanum lycopersicum from NaCl-induced oxidative stress through up-regulation of the antioxidant system, ascorbate-glutathione cycle and glyoxalase system[J]. PLoS One, 2018, 13(9): e0202175 doi: 10.1371/journal.pone.0202175
    [31] AHMAD P, AHANGER M A, ALAM P, et al. Silicon (Si) supplementation alleviates NaCl toxicity in mung bean [Vigna radiata (L.) Wilczek] through the modifications of physio-biochemical attributes and key antioxidant enzymes[J]. Journal of Plant Growth Regulation, 2019, 38(1): 70−82 doi: 10.1007/s00344-018-9810-2
    [32] 邢英英, 张富仓, 张燕, 等. 膜下滴灌水肥耦合促进番茄养分吸收及生长[J]. 农业工程学报, 2014, 30(21): 70−80 doi: 10.3969/j.issn.1002-6819.2014.21.010

    XING Y Y, ZHANG F C, ZHANG Y, et al. Irrigation and fertilization coupling of drip irrigation under plastic film promotes tomato’s nutrient uptake and growth[J]. Transactions of the Chinese Society of Agricultural Engineering, 2014, 30(21): 70−80 doi: 10.3969/j.issn.1002-6819.2014.21.010
    [33] CRAWFORD N M, GLASS A D M. Molecular and physiological aspects of nitrate uptake in plants[J]. Trends in Plant Science, 1998, 3(10): 389−395
    [34] GARNETT T, CONN V, KAISER B N. Root based approaches to improving nitrogen use efficiency in plants[J]. Plant, Cell & Environment, 2009, 32(9): 1272−1283 doi: 1272
    [35] 武文明, 陈洪俭, 李金才, 等. 氮肥运筹对孕穗期受渍冬小麦旗叶叶绿素荧光与籽粒灌浆特性的影响[J]. 作物学报, 2012, 38(6): 1088−1096

    WU W M, CHEN H J, LI J C, et al. Effects of nitrogen fertilization on chlorophyll fluorescence parameters of flag leaf and grain filling in winter wheat suffered waterlogging at booting stage[J]. Acta Agronomica Sinica, 2012, 38(6): 1088−1096
    [36] MUNNS R, TESTER M. Mechanisms of salinity tolerance[J]. Annual Review of Plant Biology, 2008, 59: 651−681 doi: 10.1146/annurev.arplant.59.032607.092911
    [37] LAMBERS H, COLMER T D. Root physiology — from gene to function[J]. Plant and Soil, 2005, 274(1/2): vii−xv
    [38] GIRI B, KAPOOR R, MUKERJI K G. Influence of arbuscular mycorrhizal fungi and salinity on growth, biomass, and mineral nutrition of Acacia auriculiformis[J]. Biology and Fertility of Soils, 2003, 38(3): 170−175 doi: 10.1007/s00374-003-0636-z
    [39] EVELIN H, KAPOOR R, GIRI B. Arbuscular mycorrhizal fungi in alleviation of salt stress: a review[J]. Annals of Botany, 2009, 104(7): 1263−1280 doi: 10.1093/aob/mcp251
    [40] 王树凤, 胡韵雪, 李志兰, 等. 盐胁迫对弗吉尼亚栎生长及矿质离子吸收、运输和分配的影响[J]. 生态学报, 2010, 30(17): 4609−4616

    WANG S F, HU Y X, LI Z L, et al. Effects of NaCl stress on growth and mineral ion uptake, transportation and distribution of Quercus virginiana[J]. Acta Ecologica Sinica, 2010, 30(17): 4609−4616
    [41] KOTULA L, KHAN H A, QUEALY J, et al. Salt sensitivity in chickpea (Cicer arietinum L.): ions in reproductive tissues and yield components in contrasting genotypes[J]. Plant, Cell & Environment, 2015, 38(8): 1565−1577
    [42] 胡静, 胡小柯, 尉秋实, 等. 植物内整流K+通道AKT1的研究进展[J]. 草业科学, 2017, 34(4): 813−822 doi: 10.11829/j.issn.1001-0629.2016-0295

    HU J, HU X K, YU Q S, et al. Study advances of plant inward rectifying K+ channel AKT1[J]. Pratacultural Science, 2017, 34(4): 813−822 doi: 10.11829/j.issn.1001-0629.2016-0295
    [43] CHA-UM S, SINGH H, SAMPHUMPHUANG T, et al. Calcium-alleviated salt tolerance in indica rice (Oryza sativa L. spp. ‘indica’): physiological and morphological changes[J]. Australian Journal of Crop Science, 2012, 6: 176−182
    [44] LIU A L, XIAO Z X, LI M W, et al. Transcriptomic reprogramming in soybean seedlings under salt stress[J]. Plant, Cell & Environment, 2019, 42(1): 98−114
    [45] PORCEL R, AROCA R, AZCON R, et al. Regulation of cation transporter genes by the arbuscular mycorrhizal symbiosis in rice plants subjected to salinity suggests improved salt tolerance due to reduced Na+ root-to-shoot distribution[J]. Mycorrhiza, 2016, 26(7): 673−684 doi: 10.1007/s00572-016-0704-5
    [46] ALMEIDA D M, OLIVEIRA M M, SAIBO N J M. Regulation of Na+ and K+ homeostasis in plants: towards improved salt stress tolerance in crop plants[J]. Genetics and Molecular Biology, 2017, 40(1 suppl 1): 326–345
    [47] SGRIGNANI J, MAGISTRATO A. The structural role of Mg2+ ions in a class I RNA polymerase ribozyme: a molecular simulation study[J]. The Journal of Physical Chemistry B, 2012, 116(7): 2259−2268 doi: 10.1021/jp206475d
    [48] ZHAO D Y, GAO S, ZHANG X L, et al. Impact of saline stress on the uptake of various macro and micronutrients and their associations with plant biomass and root traits in wheat[J]. Plant Soil and Environment, 2021, 67: 61−70 doi: 10.17221/467/2020-PSE
    [49] APSE M P, BLUMWALD E. Na+ transport in plants[J]. FEBS Letters, 2007, 581(12): 2247−2254 doi: 10.1016/j.febslet.2007.04.014
    [50] HAWKESFORD M J, DE KOK L J. Managing sulphur metabolism in plants[J]. Plant, Cell & Environment, 2006, 29(3): 382−395
    [51] YANG C, GUO W, SHI D. Physiological roles of organic acids in alkali‐tolerance of the alkali‐tolerant halophyte Chloris virgata[J]. Agronomy journal, 2010, 102(4): 1081−1089 doi: 10.2134/agronj2009.0471
    [52] HE X J, CHEN T P, ZHU J K. Regulation and function of DNA methylation in plants and animals[J]. Cell Research, 2011, 21(3): 442−465 doi: 10.1038/cr.2011.23
    [53] YANG G H. Alkali stress induced the accumulation and secretion of organic acids in wheat[J]. African Journal of Agricultural Research, 2012, 7(18): 2844−2852
    [54] XU J, LI L H, ZHU J H, et al. Insights into fatty acids β-oxidation in plant[J]. Letters in Biotechnology, 2008, 1: 141−144
    [55] BADRI D, VIVANCO J. Regulation and function of root exudates[J]. Plant, Cell & Environment, 2009, 32(6): 666−681
    [56] SUN J K, HE L, LI T. Response of seedling growth and physiology of Sorghum bicolor (L.) Moench to saline-alkali stress[J]. PLoS One, 2019, 14(7): e0220340 doi: 10.1371/journal.pone.0220340
    [57] ZHANG L, ZHANG Z J, FANG S Z, et al. Metabolome and transcriptome analyses unravel the molecular regulatory mechanisms involved in photosynthesis of Cyclocarya paliurus under salt stress[J]. International Journal of Molecular Sciences, 2022, 23(3): 1161 doi: 10.3390/ijms23031161
  • 加载中
表(9)
计量
  • 文章访问数:  162
  • HTML全文浏览量:  98
  • PDF下载量:  39
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-07-26
  • 录用日期:  2022-09-19
  • 网络出版日期:  2022-11-07
  • 刊出日期:  2023-03-10

目录

    /

    返回文章
    返回