留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

半干旱区深层土壤CO2浓度对降雨事件的响应

王晓璐 张宁 贺高航 林晓华 陈岩 王蕊 郭胜利

王晓璐, 张宁, 贺高航, 林晓华, 陈岩, 王蕊, 郭胜利. 半干旱区深层土壤CO2浓度对降雨事件的响应[J]. 中国生态农业学报 (中英文), 2023, 31(2): 336−344 doi: 10.12357/cjea.20220586
引用本文: 王晓璐, 张宁, 贺高航, 林晓华, 陈岩, 王蕊, 郭胜利. 半干旱区深层土壤CO2浓度对降雨事件的响应[J]. 中国生态农业学报 (中英文), 2023, 31(2): 336−344 doi: 10.12357/cjea.20220586
WANG X L, ZHANG N, HE G H, LIN X H, CHEN Y, WANG R, GUO S L. Response of deep soil CO2 concentration to precipitation events in semi-arid areas[J]. Chinese Journal of Eco-Agriculture, 2023, 31(2): 336−344 doi: 10.12357/cjea.20220586
Citation: WANG X L, ZHANG N, HE G H, LIN X H, CHEN Y, WANG R, GUO S L. Response of deep soil CO2 concentration to precipitation events in semi-arid areas[J]. Chinese Journal of Eco-Agriculture, 2023, 31(2): 336−344 doi: 10.12357/cjea.20220586

半干旱区深层土壤CO2浓度对降雨事件的响应

doi: 10.12357/cjea.20220586
基金项目: 国家自然科学基金重点项目(41830751)资助
详细信息
    作者简介:

    王晓璐, 主要研究方向为土壤侵蚀。E-mail: wangxiaolu1998@126.com

    通讯作者:

    郭胜利, 主要研究方向为土壤碳氮磷循环与生态环境。E-mail: slguo@ms.iswc.ac.cn

  • 中图分类号: S152

Response of deep soil CO2 concentration to precipitation events in semi-arid areas

Funds: The study was supported by the National Natural Science Foundation of China (41830751).
More Information
  • 摘要: 降雨是干旱半干旱地区土壤CO2产生、传输或扩散的重要影响因素, 并进一步影响土壤和大气中的CO2浓度。目前大量研究集中在地表CO2通量变化与降雨的关系, 深层土壤有机碳储量巨大, 但深层土壤CO2浓度变化对降雨事件的响应机制尚不清楚。本研究通过对10 cm、50 cm和100 cm处土壤CO2浓度进行原位连续监测, 分析不同深度土壤CO2浓度对降雨事件的响应过程及其影响因素。结果表明: 试验期间, 78%的降雨事件能迅速引起10 cm处土壤CO2浓度发生改变, 且随着降雨量增大, 土壤CO2浓度发生变化的深度逐渐增加。当降雨量在10~25 mm时, 50 cm处土壤CO2浓度在91 h后降低; 降雨量>25 mm时, 100 cm处土壤CO2浓度在121 h后降低。当土壤由干变湿时, 降雨量>25 mm的降雨事件促进10 cm处土壤CO2浓度升高30%后开始降低, 而50 cm和100 cm处土壤CO2浓度随水分升高分别降低16.3%和10.9%。在半干旱区, 当土壤含水量较低时, 降雨可以对10 cm处土壤CO2浓度变化产生短暂的正激发效应, 而深层土壤含水量往往高于田间持水量, 水分升高会导致该处土壤CO2浓度降低。降雨对不同深度土壤CO2浓度变化的影响存在差异, 这在很大程度上取决于土壤含水量状况。
  • 图  1  苹果园仪器布设图

    Figure  1.  Equipment layout in the apple orchard

    图  2  试验期间土壤CO2浓度、土壤温度和土壤含水量变化

    Figure  2.  Variations of soil CO2 concentration, soil temperature and soil moisture during the experiment

    图  3  晴天(左侧图a, b, c)和雨天(右侧图d, e, f)气温和不同土层土壤温度、CO2浓度的变化

    Figure  3.  Variations of air temperature, soil temperature and soil CO2 concentration in different soil layers under different weather conditions (the left figures are sunny days; the right figures are rainy days)

    图  4  不同降水事件对10 cm、50 cm和100 cm深土壤CO2浓度的影响

    小雨的降雨量为10 cm以下, 中雨的降雨量为10~25 cm, 大雨的降雨量为大于25 cm。pre-指降雨前, post-指降雨后, 其后数字为天数。The precipitation of light rain, moderate rain and heavy rain are <10 cm, 10−25 cm and >25 cm. pre- means before rainfall, post- means after rainfall, the numbers following them are number of days.

    Figure  4.  Effect of different precipitation events on soil CO2 concentration of 10 cm, 50 cm and 100 cm soil layers

    图  5  不同深度土壤CO2浓度和土壤含水量的关系

    Figure  5.  Relationship between soil CO2 concentration and soil moisture in different soil depths

    图  6  不同降水事件对对10 cm、50 cm和100 cm深土壤CO2扩散系数的影响

    小雨的降雨量为10 cm以下, 中雨的降雨量为10~25 cm, 大雨的降雨量为大于25 cm。pre-指降雨前, post-指降雨后, 其后数字为天数。

    Figure  6.  Effect of different precipitation events on soil CO2 diffusivities in 10 cm, 50 cm and 100 cm soil layers

    The precipitation of light rain, moderate rain and heavy rain are <10 cm, 10−25 cm and >25 cm. pre- means before rainfall, post- means after rainfall, the numbers following them are number of days.

    表  1  试验地不同深度土壤基本理化指标

    Table  1.   Soil basic physical and chemical indexes at different depths of the experimental site

    土壤深度
    Soil depth
    (cm)
    容重
    Bulk density
    (g∙cm−3)
    充气孔隙度
    Air-filled porosity
    (cm3∙cm−3)
    pH有机质
    Organic matter
    (g∙kg−1)
    全氮
    Total N
    (g∙kg−1)
    全磷
    Total P
    (g∙kg−1)
    全钾
    Total K
    (g∙kg−1)
    101.250.348.2313.400.980.828.05
    501.300.178.209.140.810.839.12
    1001.300.268.3011.030.630.718.30
    下载: 导出CSV

    表  2  2019—2021年试验期间降水事件和土壤CO2浓度响应特征

    Table  2.   Characteristics of precipitation events and soil CO2 concentration response during the experiment from 2019 to 2021

    降水类型
    Precipitation type
    降水频次
    Precipitation frequency
    占总降水频次比例
    Proportion in total
    precipitation frequency (%)
    土壤CO2浓度响应频次
    Soil CO2 concentration response frequency
    10 cm土层
    10 cm soil layer
    50 cm土层
    50 cm soil layer
    100 cm土层
    100 cm soil layer
    小雨 Light rain (<10 mm)1356800
    中雨 Moderate rain (10~25 mm)626620
    大雨 Heavy rain (>25 mm)418443
    总计 Total231001863
    下载: 导出CSV
  • [1] NAN W, YUE S, LI S, et al. The factors related to carbon dioxide effluxes and production in the soil profiles of rain-fed maize-fields[J]. Agriculture, Ecosystems & Environment, 2016, 216: 177−187
    [2] MIN K, BERHE A A, KHOI C M, et al. Differential effects of wetting and drying on soil CO2 concentration and flux in near-surface vs. deep soil layers[J]. Biogeochemistry, 2020, 148(3): 255−269 doi: 10.1007/s10533-020-00658-7
    [3] FIERER N, ALLEN A S, SCHIMEL J P, et al. Controls on microbial CO2 production: a comparison of surface and subsurface soil horizons[J]. Global Change Biology, 2010, 9(9): 1322−1332
    [4] WANG X L, FU S L, LI J X, et al. Forest soil profile inversion and mixing change the vertical stratification of soil CO2 concentration without altering soil surface CO2 flux[J]. Forests, 2019, 10(2): 192 doi: 10.3390/f10020192
    [5] HARRISONR B, FOOTEN P W, STRAHM B D. Deep soil horizons: contribution and importance to soil carbon pools and in assessing whole-ecosystem response to management and global change[J]. Forest Science, 2011, 57(1): 67−76
    [6] RATTAN L. Digging deeper: a holistic perspective of factors affecting soil organic carbon sequestration in agroecosystems[J]. Global Change Biology, 2018, 24(8): 3285−3301 doi: 10.1111/gcb.14054
    [7] RAICH J W, SCHLESINGER W H. The global carbon dioxide flux in soil respiration and its relationship to vegetation and climate[J]. Tellus B, 1992, 44(2): 81−99 doi: 10.3402/tellusb.v44i2.15428
    [8] LI X, WANG H H, LI X, et al. Shifts in bacterial community composition increase with depth in three soil types from paddy fields in China[J]. Pedobiologia, 2019, 77: 150589 doi: 10.1016/j.pedobi.2019.150589
    [9] GABRIEL C E, KELLMAN L. Investigating the role of moisture as an environmental constraint in the decomposition of shallow and deep mineral soil organic matter of a temperate coniferous soil[J]. Soil Biology & Biochemistry, 2014, 68: 373−384
    [10] TAYLOR J P, WILSON B, MILLS M S, et al. Comparison of microbial numbers and enzymatic activities in surface soils and subsoils using various techniques[J]. Soil Biology & Biochemistry, 2002, 34(3): 387−401
    [11] TIAN Q X, YANG X L, WANG X G, et al. Microbial community mediated response of organic carbon mineralization to labile carbon and nitrogen addition in topsoil and subsoil[J]. Biogeochemistry, 2016, 128(1/2): 125−139
    [12] SHEN R, PENNELL K G, SUUBERG E M. Influence of soil moisture on soil gas vapor concentration for vapor intrusion[J]. Environmental Engineering Science, 2013, 30(10): 628−637 doi: 10.1089/ees.2013.0133
    [13] GHEZZEHEI T A, SULMAN B, ARNOLD C L, et al. On the role of soil water retention characteristic on aerobic microbial respiration[J]. Biogeosciences, 2019, 16(6): 1187−1209 doi: 10.5194/bg-16-1187-2019
    [14] LEE X H, WU H J, SIGLER J, et al. Rapid and transient response of soil respiration to rain[J]. Global Change Biology, 2004, 10(6): 1017−1026 doi: 10.1111/j.1529-8817.2003.00787.x
    [15] MAIER M, SCHACK-KIRCHNER H, HILDEBRAND E E, et al. Pore-space CO2 dynamics in a deep, well-aerated soil[J]. European Journal of Soil Science, 2010, 61(6): 877−887 doi: 10.1111/j.1365-2389.2010.01287.x
    [16] BALESDENT J, BASILE-DOELSCH I, CHADOEUF J, et al. Atmosphere–soil carbon transfer as a function of soil depth[J]. Nature, 2018, 559(7715): 599−602 doi: 10.1038/s41586-018-0328-3
    [17] YU Y X, ZHAO C Y, JIA H T, et al. Effects of nitrogen fertilizer, soil temperature and moisture on the soil-surface CO2 efflux and production in an oasis cotton field in arid northwestern China[J]. Geoderma, 2017, 308: 93−103 doi: 10.1016/j.geoderma.2017.07.032
    [18] 郎红东, 杨剑虹. 土壤CO2浓度变化及其影响因素的研究[J]. 西南大学学报(自然科学版), 2004, 26(6): 731−734, 739

    LANG H D, YANG J H. Study of CO2 concentration changes in soil profile and its affecting factors[J]. Journal of Southwest University (Natural Science Edition), 2004, 26(6): 731−734, 739
    [19] DELSARTE I, COHEN G J V, MOMTBRUN M, et al. Soil carbon dioxide fluxes to atmosphere: the role of rainfall to control CO2 transport[J]. Applied Geochemistry, 2021, 127: 104854 doi: 10.1016/j.apgeochem.2020.104854
    [20] RACHHPAL J, ANDY B, MIKE N, et al. Relationship between soil CO2 concentrations and forest-floor CO2 effluxes[J]. Agricultural and Forest Meteorology, 2005, 130(3): 176−192
    [21] FERNANDEZ-BOU A S, DIERICK D, ALLEN M F, et al. Precipitation-drainage cycles lead to hot moments in soil carbon dioxide dynamics in a neotropical wet forest[J]. Global Change Biology, 2020, 26(9): 5303−5319 doi: 10.1111/gcb.15194
    [22] 刘合满, 曹丽花, 李江荣, 等. 色季拉山急尖长苞冷杉林不同层次土壤CO2浓度对短时降雨的响应[J]. 生态学报, 2020, 40(22): 8354−8363

    LIU H M, CAO L H, LI J R, et al. Response of soil CO2 concentration at different depth of Abies georgei var Smithii forest to short-time rainfall on Sejila Mountain, southeastern Tibet[J]. Acta Ecologica Sinica, 2020, 40(22): 8354−8363
    [23] CHEN Q. Characteristics of soil profile CO2 concentrations in karst areas and their significance for global carbon cycles and climate change[J]. Earth System Dynamics, 2019, 10(3): 525−538 doi: 10.5194/esd-10-525-2019
    [24] 张芳, 郭胜利, 邹俊亮, 等. 长期施氮和水热条件对夏闲期土壤呼吸的影响[J]. 环境科学, 2011, 32(11): 3174−3180 doi: 10.13227/j.hjkx.2011.11.023

    ZHANG F, GUO S L, ZOU J L, et al. Effects of nitrogen fertilization, soil moisture and soil temperature on soil respiration during summer fallow season[J]. Environmental Science, 2011, 32(11): 3174−3180 doi: 10.13227/j.hjkx.2011.11.023
    [25] 郭正, 李军, 张玉娇, 等. 黄土高原不同降水量区旱作苹果园地水分生产力和土壤干燥化效应模拟与比较[J]. 自然资源学报, 2016, 31(1): 135−150 doi: 10.11849/zrzyxb.20141498

    GUO Z, LI J, ZHANG Y J, et al. Simulation and comparison of water productivity and soil desiccation effects of apple orchards in different rainfall regions of the loess plateau[J]. Journal of Natural Resources, 2016, 31(1): 135−150 doi: 10.11849/zrzyxb.20141498
    [26] 白岗栓, 邹超煜, 邵发琦, 等. 自然生草和蚯蚓对渭北旱塬苹果园土壤特性及苹果品质的影响[J]. 中国农业大学学报, 2022, 27(3): 146−157 doi: 10.11841/j.issn.1007-4333.2022.03.16

    BAI G S, ZOU C Y, SHAO F Q, et al. Effects of self-sown grass and earthworm on the soil property and apple quality of apple orchard in weibei dry plateau[J]. Journal of China Agricultural University, 2022, 27(3): 146−157 doi: 10.11841/j.issn.1007-4333.2022.03.16
    [27] 苏志慧. 应用浓度梯度法估算农田和草地土壤地表CO2通量[D]. 北京: 中国农业大学, 2016

    SU Z H. Using gradient method to estimate soil surface CO2 flux in crop and grass field[D]. Beijing: China Agricultural University, 2016
    [28] MOLDRUP P, OLESEN T, GAMST J, et al. Predicting the gas diffusion coefficient in repacked soil water‐induced linear reduction model[J]. Soil Science Society of America Journal, 2000, 64(5): 1588−1594 doi: 10.2136/sssaj2000.6451588x
    [29] EILERS K G, DEBENPORT S, ANDERSON S, et al. Digging deeper to find unique microbial communities: the strong effect of depth on the structure of bacterial and archaeal communities in soil[J]. Soil Biology & Biochemistry, 2012, 50: 58−65
    [30] WORDELL-DIETRICH P, DON A, Helfrich M. Controlling factors for the stability of subsoil carbon in a Dystric Cambisol[J]. Geoderma, 2017, 304: 40−48 doi: 10.1016/j.geoderma.2016.08.023
    [31] 程建中, 李心清, 周志红, 等. 土壤CO2浓度与地表CO2通量的季节变化及其相互关系[J]. 地球与环境, 2011, 39(2): 196−202

    CHENG J Z, LI X Q, ZHOU Z H, et al. Seasonal variation and relationship between soil CO2 concentrations and surface CO2 fluxes[J]. Earth and Environment, 2011, 39(2): 196−202
    [32] 戴万宏, 王益权, 黄耀, 等. 土剖面CO2浓度的动态变化及其受环境因素的影响[J]. 土壤学报, 2004, 41(5): 827−831 doi: 10.3321/j.issn:0564-3929.2004.05.026

    DAI W H, WANG Y Q, HUANG Y, et al. Seasonal dynamic of CO2 concentration in Lou soil and impact by environment factors[J]. Acta Pedologica Sinica, 2004, 41(5): 827−831 doi: 10.3321/j.issn:0564-3929.2004.05.026
    [33] ZHOU L X, FU S L, DING M M, et al. Soil CO2 concentration and efflux from three forests in subtropical China[J]. Soil Research, 2012, 50(4): 328−336 doi: 10.1071/SR12109
    [34] 张红星, 王效科, 冯宗炜, 等. 黄土高原小麦田土壤呼吸对强降雨的响应[J]. 生态学报, 2008, 28(12): 6189−6196 doi: 10.3321/j.issn:1000-0933.2008.12.049

    ZHANG H X, WANG X K, FENG Z W, et al. The great rainfall effect on soil respiration of wheat field in semi-arid region of the Loess Plateau[J]. Acta Ecologica Sinica, 2008, 28(12): 6189−6196 doi: 10.3321/j.issn:1000-0933.2008.12.049
    [35] LIU Y C, LIU S R, MIAO R H, et al. Seasonal variations in the response of soil CO2 efflux to precipitation pulse under mild drought in a temperate oak (Quercus variabilis) forest[J]. Agricultural and Forest Meteorology, 2019, 271: 240−250 doi: 10.1016/j.agrformet.2019.03.009
    [36] SIERRA C A, MALGHANI S, LOESCHER H W. Interactions among temperature, moisture, and oxygen concentrations in controlling decomposition rates in a boreal forest soil[J]. Biogeosciences, 2017, 14(3): 703−710 doi: 10.5194/bg-14-703-2017
    [37] 王融融, 余海龙, 李诗瑶, 等. 干湿交替对土壤呼吸和土壤有机碳矿化的影响述评[J]. 水土保持研究, 2022, 29(1): 78−85 doi: 10.3969/j.issn.1005-3409.2022.1.stbcyj202201012

    WANG R R, YU H L, LI S Y, et al. Review on the effects of soil alternate drying-rewetting cycle on soil respiration and soil organic carbon mineralization[J]. Research of Soil and Water Conservation, 2022, 29(1): 78−85 doi: 10.3969/j.issn.1005-3409.2022.1.stbcyj202201012
    [38] DAVIDSON E A, BELK E, BOONE R D. Soil water content and temperature as independent or confounded factors controlling soil respiration in a temperate mixed hardwood forest[J]. Global Change Biology, 1998, 4(2): 217−227 doi: 10.1046/j.1365-2486.1998.00128.x
    [39] ZHU M X, De BOECK H J, XU H, et al. Seasonal variations in the response of soil respiration to rainfall events in a riparian poplar plantation[J]. Science of the Total Environment, 2020, 747: 141222 doi: 10.1016/j.scitotenv.2020.141222
    [40] 王旭, 闫玉春, 闫瑞瑞, 等. 降雨对草地土壤呼吸季节变异性的影响[J]. 生态学报, 2013, 33(18): 5631−5635 doi: 10.5846/stxb201304080631

    WANG X, YAN Y C, YAN R R, et al. Effect of rainfall on the seasonal variation of soil respiration in Hulumber Meadow Steppe[J]. Acta Ecologica Sinica, 2013, 33(18): 5631−5635 doi: 10.5846/stxb201304080631
    [41] 郭胜利, 高会议, 党廷辉. 施氮水平对黄土旱塬区小麦产量和土壤有机碳、氮的影响[J]. 植物营养与肥料学报, 2009, 15(4): 808−814 doi: 10.3321/j.issn:1008-505X.2009.04.011

    GUO S L, GAO H Y, DANG T H. Effects of nitrogen application rates on grain yield, soil organic carbon and nitrogen under a rainfed cropping system in the loess tablelands of China[J]. Plant Nutrition and Fertilizer Science, 2009, 15(4): 808−814 doi: 10.3321/j.issn:1008-505X.2009.04.011
    [42] GAO Y, ZHANG P, LIU J. One third of the abiotically-absorbed atmospheric CO2 by the loess soil is conserved in the solid phase[J]. Geoderma, 2020, 374: 11448
  • 加载中
图(6) / 表(2)
计量
  • 文章访问数:  93
  • HTML全文浏览量:  30
  • PDF下载量:  32
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-07-29
  • 录用日期:  2022-11-25
  • 网络出版日期:  2022-12-27
  • 刊出日期:  2023-02-10

目录

    /

    返回文章
    返回