留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

不同稻虾种养模式土壤溶解性有机质光谱特征

梁以豪 倪才英 刘星星 黎衍亮 刘方平 徐涛

梁以豪, 倪才英, 刘星星, 黎衍亮, 刘方平, 徐涛. 不同稻虾种养模式土壤溶解性有机质光谱特征[J]. 中国生态农业学报 (中英文), 2022, 30(0): 1−15 doi: 10.12357/cjea.20220602
引用本文: 梁以豪, 倪才英, 刘星星, 黎衍亮, 刘方平, 徐涛. 不同稻虾种养模式土壤溶解性有机质光谱特征[J]. 中国生态农业学报 (中英文), 2022, 30(0): 1−15 doi: 10.12357/cjea.20220602
LIANG Y H, NI C Y, LIU X X, LI Y L, LIU F P, XU T. Spectral characteristics of soil dissolved organic matter in different rice-crayfish cultivation modes[J]. Chinese Journal of Eco-Agriculture, 2022, 30(0): 1−15 doi: 10.12357/cjea.20220602
Citation: LIANG Y H, NI C Y, LIU X X, LI Y L, LIU F P, XU T. Spectral characteristics of soil dissolved organic matter in different rice-crayfish cultivation modes[J]. Chinese Journal of Eco-Agriculture, 2022, 30(0): 1−15 doi: 10.12357/cjea.20220602

不同稻虾种养模式土壤溶解性有机质光谱特征

doi: 10.12357/cjea.20220602
基金项目: 国家自然科学基金项目(42167006)、 江西省现代农业产业技术体系建设专项(JXARS-12-环境控制)和江西省水利厅科技项目(202223YBKT37)资助
详细信息
    作者简介:

    梁以豪, 主要研究方向为土壤重金属污染行为。E-mail: 1037261404@qq.com

    通讯作者:

    倪才英, 主要研究方向为土壤重金属污染行为与健康评价。E-mail: ncy1919@126.com

  • 中图分类号: S153.6

Spectral characteristics of soil dissolved organic matter in different rice-crayfish cultivation modes

Funds: This study was supported by the National Natural Science Foundation of China (42167006), the Earmarked Fund for Jiangxi Agriculture Research System (JXARS-12- Environmental Control) and Project of Jiangxi Provincial Water Resources Department (202223YBKT37).
More Information
  • 摘要: 稻虾种养的农业活动显著改变了田间生物化学因子, 土壤溶解性有机质(DOM)是其中之一。本研究利用紫外-可见吸收光和三维荧光光谱技术, 耦合平行因子分析, 对有环沟式稻虾轮作和共作、无环沟式稻虾共作和传统稻作4种稻虾种养模式土壤DOM的特征进行了研究。结果显示, 不同稻虾种养模式土壤DOM紫外吸光度和比吸收系数均低于传统稻作, 光谱斜率比(SR)均值为0.9~2.0; 254 nm和365 nm处紫外吸光度的比值(E2/E3)在无环沟稻虾共作模式中最小, 水稻单作中E2/E3值相对于稻虾种养模式大; 300 nm和400 nm处紫外吸光度的比值(E3/E4)在稻虾种养模式均<3.5, 水稻单作>3.5。4种模式的荧光指数>1.9, 腐殖化指数<4, 自生源指数为0.6~0.7。不同模式均解析出2个类蛋白质组分(类络氨酸、类蛋白物质)和2个类腐殖质组分(腐殖酸、类腐殖质), 与生物源密切相关的类络氨酸组分占比较高且与其他组分均呈负相关, 其余组分相互呈正相关。上述结果中, 紫外-可见吸收光谱参数表明稻虾种养降低了土壤DOM的腐殖化程度、芳香性和物质组成, 稻虾种养土壤腐殖质类DOM腐殖酸为主, 水稻单作以富里酸为主; 4种模式的土壤DOM既有内源也有外源, 其中无环沟稻虾共作模式土壤DOM分子量最大, 且有一定外源性特征, 说明土壤保肥能力较好, 在4种模式中综合效益最佳; 三维荧光光谱分析表明不同模式下土壤DOM的物质组成无明显差异, 研究认为这与农田管理措施的间接影响等有关, 占比较高的络氨酸组分来源不同于其他组分, 可能与微生物对DOM或其他物质的分解转化有关, 而腐殖酸、类蛋白物质和类腐殖质组分很可能有高度的同源性; 不同种养模式之间的淹水差异通过影响溶解性有机碳(DOC)和DOM的释放, 从而影响种养模式之间DOM光谱特征。
  • 图  1  不同稻虾种养模式与传统水稻单作田间试验布局示意图

    Figure  1.  Schematic diagrams of the field trails of different integrated rice-crayfish cultivation patterns and traditional rice monoculture

    图  2  不同稻虾种养模式土壤溶解性有机质紫外-可见光吸收光谱图

    RS1: 有环沟式稻虾轮作; RS2: 有环沟式稻虾共作; RS0: 无环沟式稻虾共作; MR: 水稻单作。RS1: integrated rice-crayfish rotation system with ring groove; RS2: integrated rice-crayfish system with ring groove; RS0: integrated rice-crayfish system; MR: traditional rice monoculture.

    Figure  2.  UV-Vis absorption spectra of soil dissolved organic matter in different integrated rice-crayfish cultivation patterns

    图  3  不同稻虾种养模式土壤溶解性有机质的紫外-可见吸收光谱相关参数[UV254、SUVA254SRα(355)、E2/E3、E3/E4]

    各参数的具体解释见表1。不同小写字母表示不同模式在P<0.05水平差异显著; RS1: 有环沟式稻虾轮作; RS2: 有环沟式稻虾共作; RS0: 无环沟式稻虾共作; MR: 水稻单作。The description of each parameter is shown in the table 1. Different lowercase letters indicate significant differences among different modes at P<0.05 level. RS1: integrated rice-crayfish rotation system with ring groove; RS2: integrated rice-crayfish system with ring groove; RS0: integrated rice-crayfish system; MR: traditional rice monoculture.

    Figure  3.  Parameters of UV-Vis absorption spectral [UV254, SUVA254, SR, α(355), E2/E3, E3/E4] of soil dissolved organic matter in different integrated rice crayfish cultivation patterns

    图  4  平行因子解析得出的不同稻虾种养模式土壤可溶性有机质中4个荧光组分与对应的载荷

    RS1: 有环沟式稻虾轮作; RS2: 有环沟式稻虾共作; RS0: 无环沟式稻虾共作; MR: 水稻单作。 RS1: integrated rice-crayfish rotation system with ring groove; RS2: integrated rice-crayfish system with ring groove; RS0: integrated rice-crayfish system; MR: traditional rice monoculture.

    Figure  4.  Four fluorescent components and loadings in soil dissolved organic mater of different integrated rice-crayfish cultivation patterns analyzed by parallel factor analysis (PARAFAC)

    图  5  不同稻虾种养模式土壤溶解性有机质的4个组分荧光强度贡献百分比

    RS1: 有环沟式稻虾轮作; RS2: 有环沟式稻虾共作; RS0: 无环沟式稻虾共作; MR: 水稻单作。RS1: integrated rice-crayfish rotation system with ring groove; RS2: integrated rice-crayfish system with ring groove; RS0: integrated rice-crayfish system; MR: traditional rice monoculture.

    Figure  5.  Contribution percentages of fluorescence intensities of four components of soil dissolved organic matter in different integrated rice-crayfish cultivation patterns

    图  6  不同稻虾种养模式土壤溶解性有机质的荧光光谱参数

    不同小写字母表示不同模式在P<0.05水平差异显著; RS1: 有环沟式稻虾轮作; RS2: 有环沟式稻虾共作; RS0: 无环沟式稻虾共作; MR: 水稻单作。FI: 荧光参数; BIX: 自生源指数; HIX: 腐殖化指数。Different lowercase letters indicate significant differences among different modes at P<0.05 level. RS1: integrated rice-crayfish rotation system with ring groove; RS2: integrated rice-crayfish system with ring groove; RS0: integrated rice-crayfish system; MR: traditional rice monoculture. FI: fluorescence index; BIX: biological indix; HIX: humification index.

    Figure  6.  Fluorescence parameters of soil dissolved organic matter in different integrated rice crayfish cultivation patterns

    图  7  不同稻虾种养模式土壤溶解性有机质(DOC)组分与紫外-可见吸收光谱参数和荧光参数的相关性

    * 、**和***分别表示P≤0.05、P≤0.01和P≤0.001水平显著相关性显著; 图中圆形直径越大颜色越深表示相关性越强。C1、C2、C3和C4分别为荧光组分类络氨酸、腐殖酸、类蛋白和类腐殖质, 其他的具体解释见表1。RS1: 有环沟式稻虾轮作; RS2: 有环沟式稻虾共作; RS0: 无环沟式稻虾共作; MR: 水稻单作。*, ** and *** mean significant correlation at P≤0.05, P≤0.01 and P≤0.001 levels, respectively. The larger the circular diameter and the darker the color, the stronger the correlation. C1, C2, C3 and C4 are fluorescent components of tyrosine-like amino acids, humic acid, proteoid and humic-like substances. The description of other abbraviations are shown in the table 1. RS1: integrated rice-crayfish rotation system with ring groove; RS2: integrated rice-crayfish system with ring groove; RS0: integrated rice-crayfish system; MR: traditional rice monoculture.

    Figure  7.  Correlations between soil dissolved organic matter (DOC) components and UV-Vis absorption spectral parameters and fluorescence parameters in different integrated rice-crayfish cultivation patterns

    图  8  土壤溶解性有机质(DOC)组分与紫外-可见吸收光谱参数(a、b)、荧光参数(c、d)主成分分析的载荷(a、c)与得分(b、d)

    “→”指示对应参数的载荷坐标方向和大小。C1、C2、C3和C4分别为荧光组分类络氨酸、腐殖酸、类蛋白和类腐殖质, 其他的具体解释见表1。RS1: 有环沟式稻虾轮作; RS2: 有环沟式稻虾共作; RS0: 无环沟式稻虾共作; MR: 水稻单作。“→” indicates the direction and magnitude of load coordinates of corresponding parameters in PCA analysis. C1, C2, C3 and C4 are fluorescent components of tyrosine-like amino acids, humic acid, proteoid and humic-like substances. The description of other abbraviations are shown in the table 1. RS1: integrated rice-crayfish rotation system with ring groove; RS2: integrated rice-crayfish system with ring groove; RS0: integrated rice-crayfish system; MR: traditional rice monoculture.

    Figure  8.  Loadings plot (a,c) and sample scores (b,d) in PCA between soil dissolved organic matter (DOC) components, UV-Vis absorption spectral parameters (a, b) and fluorescence parameters (c, d)

    表  1  紫外-可见光吸收光谱与荧光光谱参数描述

    Table  1.   Description of parameters of UV-Vis absorption spectrum and fluorescence spectrum

    光谱参数名称
    Spectral parameter name
    定义与计算方法
    Definition and calculation method
    参数指示意义
    Idicative meaning
    UV254 波长254 nm处的紫外吸光度
    UV absorbance at wavelength 254 nm
    表征溶解性有机质(DOM)的浓度和芳香性[19]
    To characterize the concentration and aromaticity of dissolved organic matter (DOM)
    吸收系数
    Absorption coefficient (aλ)
    αλ=2.303×Aλ/r; Aλ为波长λ处的吸光度, r为光程路径(m)
    αλ=2.303×Aλ/r; Aλ is the absorbance at wavelength λ, r is the optical path (m).
    表征样品中CDOM (有色可溶性有机质)相对浓度[20]
    To characterize the relative concentration of colored DOM in samples.
    E2/E3 254 nm和365 nm处紫外吸光度的比值
    Ratio of UV absorbance at 254 nm to 365 nm
    估算DOM分子量的相对大小, 与分子量呈反比[21]
    To emstimat the relative size of DOM molecular, which inversely proportional to the molecular weight
    E3/E4 300 nm和400 nm处紫外吸光度的比值
    Ratio of UV absorbance at 300 nm to 400 nm
    衡量腐殖质的腐殖化程度及其芳香性[21]
    To characterizes the degree of humification and aromaticity of humus
    比吸收系数
    Specific absorption coefficient (SUVA254)
    UV254与可溶性有机碳(DOC)浓度的比值
    Ratio of UV254 to concentration of dissolved organic carbon (DOC)
    与DOM芳香度密切相关, 表征DOM的芳香性, 值越大, 芳香性越高[22]
    Closely positively correlated to DOM aromaticity, and represent the aromaticity of DOM
    光谱斜率比
    Spectral slope ratio (SR)
    275~295 nm波长和350~400 nm波长吸光度指数函数曲线光谱斜率的比值, 即
    SR=S(275~295)/S(350~400)。
    Ratio of the spectral slope of the absorbance index function curve for the wavelength of 275 nm to 295 nm and the wavelength of 350−400 nm, SR=S(275−295)/S(350−400)
    反映DOM的来源与分子量大小: 当SR>1, 表示以生物源为主; SR<1则为外源。SR越大表明DOM 分子量越小[23]
    Reflect the source and molecular weight of DOM. When SR>1, the DOM is mainly from biological sources; while when SR<1, it is exogenous. The larger the value, the smaller the DOM molecular weight.
    荧光指数
    Fluorescence index (FI)
    指激发波(Ex)在370 nm处, 发射波长(Em)在
    450 nm与500 nm处的荧光强度比值
    Refers to the fluorescence intensity ratio between excitation wavelength at 370 nm and emission wavelength at 450 nm and 500 nm
    反映芳香氨基酸和其他物质对荧光强度的贡献, 可作为来源指示。FI>1.9, 生物代谢和释放为主要来源, 自生源突出; FI<1.4, 植物和土壤有机物贡献为主, 外源性突出[24]
    Reflect the contribution of aromatic amino acids and other substances to fluorescence intensity, it can be used as source indicator. If FI >1.9, the biological metabolism and release are the main sources, autogenesis is prominent. if FI<1.4, the plant and soil organic matter are the main source, showing exogenous featuer.
    腐殖化指数
    Humification index (HIX)
    激发波长(Ex)在254 nm处, 发射波长(Em)在435~480 nm与300~345 nm之间的积分值比值
    Ratio of the integral value between the excitation wavelength at 254 nm and the emission wavelength at 435−480 nm and 300−345 nm
    衡量DOM的腐殖化程度, 指数值越高, 腐殖化程度越高。其中, HIX>6表示高度腐殖化且陆源贡献较大; 4~6表示高度腐殖化具有微弱的自生源特性; HIX<4则表示腐殖化程度弱, 以自生源为主[25]
    Measure the degree of humification of DOM. The higher the index value, the higher the degree of humification. HIX>6 indicates high humification with large terrestrial contribution. 4−6 HIX indicates high humification with weak autobiographical characteristics. HIX<4 indicates humification degree is weak and autogenous.
    自生源指数
    Biologcal index (BIX)
    指激发波长(Ex)在310 nm处, 发射波长(Em)在380 nm与430 nm处的荧光强度比值
    Fluorescence intensity ratio between excitation wavelength at 310 nm and emission wavelength at 380 nm and 430 nm.
    反映DOM中新鲜产生的物质比例, 可评估DOM所在环境中的生物活性程度。BIX>1为生物源, BIX<0.7则表示低本土成分, 0.7~0.8为中等本土成分, 0.8~1.0为强本土成分[26]
    Reflect the proportion of freshly produced substances in DOM, the degree of biological activity in the environment. BIX>1 is biogenic, BIX<0.7 is low native component, 0.7−0.8 is medium native component, and 0.8−1.0 is strong native component.
    下载: 导出CSV
  • [1] 滕瀚, 吴珍, 许辉, 等. 乡村振兴战略视域下稻虾共作发展问题及对策分析−以安徽省六安市为例[J]. 黑龙江工业学院学报(综合版), 2022, 22(2): 109−113

    TENG H, WU Z, XU H, et al. On the development issues and countermeasures of rice and crayfish co-culture industry from perspective of rural revitalization strategy: taking Lu’an City in Anhui Province as an example[J]. Journal of Heilongjiang University of Technology (Comprehensive Edition), 2022, 22(2): 109−113
    [2] 李杰, 李妍, 季美娣, 等. 水稻+龙虾综合种养模式效益分析及技术探讨[J]. 中国农学通报, 2021, 37(20): 160−164 doi: 10.11924/j.issn.1000-6850.casb2020-0615

    LI J, LI Y, JI M D, et al. Integrated farming mode of rice-crayfish: benefit analysis and technical discussion[J]. Chinese Agricultural Science Bulletin, 2021, 37(20): 160−164 doi: 10.11924/j.issn.1000-6850.casb2020-0615
    [3] BU R Y, REN T, LEI M J, et al. Tillage and straw-returning practices effect on soil dissolved organic matter, aggregate fraction and bacteria community under rice-rice-rapeseed rotation system[J]. Agriculture, Ecosystems & Environment, 2020, 287: 106681
    [4] WELIKALA D, ROBINSON B H, MOLTCHANOVA E, et al. Soil cadmium mobilisation by dissolved organic matter from soil amendments[J]. Chemosphere, 2021, 271: 129536 doi: 10.1016/j.chemosphere.2021.129536
    [5] 李海斌, 谢发之, 李国莲, 等. 南漪湖上覆水溶解性有机质的光谱特征[J]. 中国环境科学, 2022, 42(7): 3306−3315

    LI H B, XIE F Z, LI G L, et al. Spectral characteristics of dissolved organic matter in the overlying water from Nanyi Lake[J]. China Environmental Science, 2022, 42(7): 3306−3315
    [6] 罗雪婷, 周丰武, 詹娟, 等. 秸秆和Eh对稻田土壤溶解性有机质组成及金属释放的影响[J]. 农业环境科学学报, 2022, 41(6): 1221−1229

    LUO X T, ZHOU F W, ZHAN J, et al. Effects of straw addition and Eh on dissolved organic matter composition and metal release in paddy soil[J]. Journal of Agro-Environment Science, 2022, 41(6): 1221−1229
    [7] ZHANG Y, WANG Y F, ZHANG X Y, et al. Investigating the behavior of binding properties between dissolved organic matter (DOM) and Pb(II) during the soil sorption process using parallel factor analysis (PARAFAC) and two-dimensional correlation spectroscopy (2D-COS)[J]. Environmental Science and Pollution Research, 2017, 24(32): 25156−25165 doi: 10.1007/s11356-017-0167-z
    [8] 佀国涵, 袁家富, 彭成林, 等. 稻虾共作模式下小龙虾养殖对水体环境的影响[J]. 江苏农业科学, 2019, 47(23): 299−303

    SI G H, YUAN J F, PENG C L, et al. Effect of crayfish aquaculture on water environment under integrated rice-crayfish system[J]. Jiangsu Agricultural Sciences, 2019, 47(23): 299−303
    [9] 徐荣, 杨婷, 韩光明, 等. 稻虾种养模式对土壤还原性物质及养分累积的影响[J]. 生态学杂志, 2022, 41(5): 925−932

    XU R, YANG T, HAN G M, et al. Effect of rice-crayfish cultivation mode on the accumulation of soil reducing substances and nutrients[J]. Chinese Journal of Ecology, 2022, 41(5): 925−932
    [10] 陈玲, 范先鹏, 黄敏, 等. 江汉平原稻虾轮作模式地表径流氮、磷流失特征[J]. 农业环境科学学报, 2022, 41(7): 1520−1530

    CHEN L, FAN X P, HUANG M, et al. Characteristics of nitrogen and phosphorus loss in surface runoff under the rice-crawfish rotation system in the Jianghan Plain, China[J]. Journal of Agro-Environment Science, 2022, 41(7): 1520−1530
    [11] 倪明理, 邓凯, 张文宇, 等. 稻虾种养对水稻产量和粮食安全的影响[J]. 中国生态农业学报(中英文), 2022, 30(8): 1293−1300 doi: 10.12357/cjea.20210891

    NI M L, DENG K, ZHANG W Y, et al. Effects of rice-crayfish coculture on rice yield and food security[J]. Chinese Journal of Eco-Agriculture, 2022, 30(8): 1293−1300 doi: 10.12357/cjea.20210891
    [12] 孟草, 田威, 文春根, 等. 江西省稻渔综合种养产业发展特征及对策[J]. 中国稻米, 2022, 28(1): 28−31, 37

    MENG C, TIAN W, WEN C G, et al. Development characteristics and countermeasures of rice-fishing farming industry in Jiangxi[J]. China Rice, 2022, 28(1): 28−31, 37
    [13] 王蓉, 朱杰, 金涛, 等. 稻虾共作模式下稻田土壤氨氧化微生物丰度和群落结构的特征[J]. 植物营养与肥料学报, 2019, 25(11): 1887−1899 doi: 10.11674/zwyf.18414

    WANG R, ZHU J, JIN T, et al. Characteristics of ammonia oxidation microbial abundance and community structure in paddy soils of rice-crayfish symbiosis farming system[J]. Journal of Plant Nutrition and Fertilizers, 2019, 25(11): 1887−1899 doi: 10.11674/zwyf.18414
    [14] 佀国涵, 彭成林, 徐祥玉, 等. 稻虾共作模式对涝渍稻田土壤理化性状的影响[J]. 中国生态农业学报, 2017, 25(1): 61−68

    SI G H, PENG C L, XU X Y, et al. Effect of integrated rice-crayfish farming system on soil physico-chemical properties in waterlogged paddy soils[J]. Chinese Journal of Eco-Agriculture, 2017, 25(1): 61−68
    [15] 苏良湖, 王赛尔, 纪荣婷, 等. 基于3DEEM-PARAFAC的短期稻虾共作土壤DOM荧光光谱分析[J]. 江苏农业学报, 2021, 37(3): 639−650

    SU L H, WANG S E, JI R T, et al. Fluorescence spectrometric analysis of dissolved organic matter (DOM) in soil from a short-term integrated rice-crayfish system based on 3DEEM-PARAFAC[J]. Jiangsu Journal of Agricultural Sciences, 2021, 37(3): 639−650
    [16] 吴东明, 邓晓, 李怡, 等. 土壤溶解性有机质的提取与特性分析研究进展[J]. 江苏农业科学, 2019, 47(3): 6−11 doi: 10.15889/j.issn.1002-1302.2019.03.002

    WU D M, DENG X, LI Y, et al. Research progress for extraction and characterization of dissolved organic matter in soil[J]. Jiangsu Agricultural Sciences, 2019, 47(3): 6−11 doi: 10.15889/j.issn.1002-1302.2019.03.002
    [17] 占新华, 周立祥. 土壤溶液和水体中水溶性有机碳的比色测定[J]. 中国环境科学, 2002, 22(5): 433−437

    ZHAN X H, ZHOU L X. Colorimetric determination of dissolved organic carbon in soil solution and water environment[J]. China Environmental Science, 2002, 22(5): 433−437
    [18] HU H D, SHI Y J, LIAO K W, et al. Effect of temperature on the characterization of soluble microbial products in activated sludge system with special emphasis on dissolved organic nitrogen[J]. Water Research, 2019, 162: 87−94 doi: 10.1016/j.watres.2019.06.034
    [19] NISHIJIMA W, SPEITEL G E Jr. Fate of biodegradable dissolved organic carbon produced by ozonation on biological activated carbon[J]. Chemosphere, 2004, 56(2): 113−119 doi: 10.1016/j.chemosphere.2004.03.009
    [20] 程艳, 胡霞, 杜加强, 等. 西北内陆河城区段入河水体CDOM三维荧光光谱特征[J]. 中国环境科学, 2018, 38(7): 2680−2690

    CHENG Y, HU X, DU J Q, et al. Characteristics of three-dimensional fluorescence on CDOM of the sewage into city segment of a typical northwest inland river[J]. China Environmental Science, 2018, 38(7): 2680−2690
    [21] 周石磊, 张艺冉, 黄廷林, 等. 周村水库主库区水体热分层形成过程中沉积物间隙水DOM的光谱演变特征[J]. 环境科学, 2018, 39(12): 5451−5463

    ZHOU S L, ZHANG Y R, HUANG T L, et al. Spectral evolution characteristics of DOM in sediment interstitial water during the formation stage of thermal stratification in the main reservoir area of the Zhoucun reservoir[J]. Environmental Science, 2018, 39(12): 5451−5463
    [22] NILOY N M, HAQUE M M, TAREQ S M. Characteristics, sources, and seasonal variability of dissolved organic matter (DOM) in the Ganges River, Bangladesh[J]. Environmental Processes, 2021, 8(2): 593−613 doi: 10.1007/s40710-021-00499-y
    [23] HELMS J R, STUBBINS A, RITCHIE J D, et al. Erratum: Absorption spectral slopes and slope ratios as indicators of molecular weight, source, and photobleaching of chromophoric dissolved organic matter[J]. Limnology and Oceanography, 2009, 54(3): 1023 doi: 10.4319/lo.2009.54.3.1023
    [24] MAIE N, PARISH K J, WATANABE A, et al. Chemical characteristics of dissolved organic nitrogen in an oligotrophic subtropical coastal ecosystem[J]. Geochimica et Cosmochimica Acta, 2006, 70(17): 4491−4506 doi: 10.1016/j.gca.2006.06.1554
    [25] OHNO T. Fluorescence inner-filtering correction for determining the humification index of dissolved organic matter[J]. Environmental Science & Technology, 2002, 36(4): 742−746
    [26] HUGUET A, VACHER L, RELEXANS S, et al. Properties of fluorescent dissolved organic matter in the Gironde Estuary[J]. Organic Geochemistry, 2009, 40(6): 706−719 doi: 10.1016/j.orggeochem.2009.03.002
    [27] STEDMON C A, BRO R. Characterizing dissolved organic matter fluorescence with parallel factor analysis: a tutorial[J]. Limnology and Oceanography: Methods, 2008, 6(11): 572−579 doi: 10.4319/lom.2008.6.572
    [28] 林子深, 黄廷林, 李凯, 等. 李家河水库上游水体溶解性有机物组分与来源[J]. 中国环境科学, 2020, 40(3): 1275−1283 doi: 10.3969/j.issn.1000-6923.2020.03.039

    LIN Z S, HUANG T L, LI K, et al. Dissolved organic matter components and sources in upstream of Lijiahe Reservoir[J]. China Environmental Science, 2020, 40(3): 1275−1283 doi: 10.3969/j.issn.1000-6923.2020.03.039
    [29] DALMAGRO H, LATHUILLIÈRE M, SALLO F, et al. Streams with riparian forest buffers versus impoundments differ in discharge and DOM characteristics for pasture catchments in southern Amazonia[J]. Water, 2019, 11(2): 390 doi: 10.3390/w11020390
    [30] AMARAL V, ROMERA-CASTILLO C, FORJA J. Submarine mud volcanoes as a source of chromophoric dissolved organic matter to the deep waters of the Gulf of Cádiz[J]. Scientific Reports, 2021, 11: 3200 doi: 10.1038/s41598-021-82632-3
    [31] AMARAL V, ROMERA-CASTILLO C, FORJA J. Dissolved organic matter in the gulf of Cádiz: distribution and drivers of chromophoric and fluorescent properties[J]. Frontiers in Marine Science, 2020, 7: 126 doi: 10.3389/fmars.2020.00126
    [32] HAN Z L, XIAO M, YUE F J, et al. Seasonal variations of dissolved organic matter by fluorescent analysis in a typical river catchment in Northern China[J]. Water, 2021, 13(4): 494 doi: 10.3390/w13040494
    [33] YAMASHITA Y, CORY R M, NISHIOKA J, et al. Fluorescence characteristics of dissolved organic matter in the deep waters of the Okhotsk Sea and the northwestern North Pacific Ocean[J]. Deep Sea Research Part II: Topical Studies in Oceanography, 2010, 57(16): 1478−1485 doi: 10.1016/j.dsr2.2010.02.016
    [34] 刘堰杨, 秦纪洪, 孙辉. 川西高海拔河流中溶解性有机质(DOM)紫外-可见光吸收光谱特征[J]. 环境科学学报, 2018, 38(9): 3662−3671

    LIU Y Y, QIN J H, SUN H. UV-VIS spectral characteristics of dissolved organic matter (DOM) of the natural alpine rivers in the western Sichuan Province[J]. Acta Scientiae Circumstantiae, 2018, 38(9): 3662−3671
    [35] 梁俭, 江韬, 卢松, 等. 淹水条件下三峡库区典型消落带土壤释放DOM的光谱特征: 紫外-可见吸收光谱[J]. 环境科学, 2016, 37(7): 2496−2505

    LIANG J, JIANG T, LU S, et al. Spectral characteristics of dissolved organic matter (DOM) releases from soils of typical water-level fluctuation zones of Three Gorges Reservoir areas: UV-vis spectrum[J]. Environmental Science, 2016, 37(7): 2496−2505
    [36] 冯伟莹, 朱元荣, 吴丰昌, 等. 太湖水体溶解性有机质荧光特征及其来源解析[J]. 环境科学学报, 2016, 36(2): 475−482

    FENG W Y, ZHU Y R, WU F C, et al. The fluorescent characteristics and sources of dissolved organic matter in water of Tai Lake, China[J]. Acta Scientiae Circumstantiae, 2016, 36(2): 475−482
    [37] 赵海超, 王炯琪, 李璠, 等. 种植模式对土壤溶解性有机质光谱特征的影响[J]. 江苏农业科学, 2022, 50(2): 232−239

    ZHAO H C, WANG J Q, LI F, et al. Effects of planting patterns on spectral characteristics of dissolved organic matter in soil[J]. Jiangsu Agricultural Sciences, 2022, 50(2): 232−239
    [38] BAI H C, JIANG Z M, HE M J, et al. Relating Cd2+ binding by humic acids to molecular weight: a modeling and spectroscopic study[J]. Journal of Environmental Sciences, 2018, 70: 154−165 doi: 10.1016/j.jes.2017.11.028
    [39] 霍丽娟, 王美玲, 赵慧超, 等. 不同组成有机质对土壤中砷迁移行为的影响[J]. 地球与环境, 2022, 50(2): 184−191

    HUO L J, WANG M L, ZHAO H C, et al. Effects of natural organic matter with different composition on the mobility of arsenic in soil[J]. Earth and Environment, 2022, 50(2): 184−191
    [40] 严保华, 许亮清, 杨宗英, 等. 小龙虾稻田无环沟养殖试验[J]. 科学养鱼, 2022(4): 34−35

    YAN B H, XU L Q, YANG Z Y, et al. Experiment of Procambarus clarkii culture in paddy fields without canal[J]. Scientific Fish Farming, 2022(4): 34−35
    [41] 陈佳, 李忠武, 金昌盛, 等. 不同淹水环境下湖泊沉积物DOM的特征与来源[J]. 环境科学, 2022, 43(9): 4566−4575 doi: 10.13227/j.hjkx.202112090

    CHEN J, LI Z W, JIN C S, et al. Characteristics and sources of DOM in lake sediments under different inundation environments[J]. Environmental Science, 2022, 43(9): 4566−4575 doi: 10.13227/j.hjkx.202112090
    [42] 李帅东, 姜泉良, 黎烨, 等. 环滇池土壤溶解性有机质(DOM)的光谱特征及来源分析[J]. 光谱学与光谱分析, 2017, 37(5): 1448−1454

    LI S D, JIANG Q L, LI Y, et al. Spectroscopic characteristics and sources of dissolved organic matter from soils around Dianchi Lake, Kunming[J]. Spectroscopy and Spectral Analysis, 2017, 37(5): 1448−1454
    [43] WU M, LI P F, LI G L, et al. The chemodiversity of paddy soil dissolved organic matter is shaped and homogenized by bacterial communities that are orchestrated by geographic distance and fertilizations[J]. Soil Biology and Biochemistry, 2021, 161: 108374 doi: 10.1016/j.soilbio.2021.108374
    [44] LI X M, CHEN Q L, HE C, et al. Organic carbon amendments affect the chemodiversity of soil dissolved organic matter and its associations with soil microbial communities[J]. Environmental Science & Technology, 2019, 53(1): 50−59
  • 加载中
图(8) / 表(1)
计量
  • 文章访问数:  66
  • HTML全文浏览量:  35
  • PDF下载量:  5
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-08-03
  • 录用日期:  2022-11-03
  • 修回日期:  2022-11-15
  • 网络出版日期:  2022-11-25

目录

    /

    返回文章
    返回