留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

优化施肥对小麦-玉米轮作体系产量、养分平衡与生态环境效益的影响

杨慧敏 杨云马 黄少辉 杨文方 邢素丽 杨军方 贾良良

杨慧敏, 杨云马, 黄少辉, 杨文方, 邢素丽, 杨军方, 贾良良. 优化施肥对小麦-玉米轮作体系产量、养分平衡与生态环境效益的影响[J]. 中国生态农业学报 (中英文), 2022, 30(0): 1−11 doi: 10.12357/cjea.20220606
引用本文: 杨慧敏, 杨云马, 黄少辉, 杨文方, 邢素丽, 杨军方, 贾良良. 优化施肥对小麦-玉米轮作体系产量、养分平衡与生态环境效益的影响[J]. 中国生态农业学报 (中英文), 2022, 30(0): 1−11 doi: 10.12357/cjea.20220606
YANG H M, YANG Y M, HUANG S H, YANG W F, XING S L, YANG J F, JIA L L. Effects of optimized fertilization on yield, nutrient balance, and eco-environmental benefits in wheat-maize rotation system[J]. Chinese Journal of Eco-Agriculture, 2022, 30(0): 1−11 doi: 10.12357/cjea.20220606
Citation: YANG H M, YANG Y M, HUANG S H, YANG W F, XING S L, YANG J F, JIA L L. Effects of optimized fertilization on yield, nutrient balance, and eco-environmental benefits in wheat-maize rotation system[J]. Chinese Journal of Eco-Agriculture, 2022, 30(0): 1−11 doi: 10.12357/cjea.20220606

优化施肥对小麦-玉米轮作体系产量、养分平衡与生态环境效益的影响

doi: 10.12357/cjea.20220606
基金项目: 国家重点研发计划项目(2021YFD1901005)、河北省农林科学院基本科研业务费项目(2021130201)和河北省玉米产业体系项目(HBCT2018020204)资助
详细信息
    作者简介:

    杨慧敏, 主要从事农田养分管理。E-mail: yanghm0213@163.com

    通讯作者:

    杨军方, 主要从事养分资源管理研究, E-mail: linsky4316@163.com

    贾良良, 主要从事农田养分管理研究, E-mail: jiall990@126.com

  • 中图分类号: S36

Effects of optimized fertilization on yield, nutrient balance, and eco-environmental benefits in wheat-maize rotation system

Funds: This research was supported by the National Key Research and Development Program of China (2021YFD1901005), the Basic Research Funds of Hebei Academy of Agriculture and Forestry Sciences (2021130201) and the Hebei Maize Industry System Project (HBCT2018020204).
More Information
  • 摘要: 小麦-玉米轮作是华北平原主要的种植模式, 对保障我国粮食安全起着关键作用。本文系统研究了不施肥(CK)、优化施肥(OPT)和农户习惯施肥(FP)方式连续8年对小麦-玉米轮作体系产量、养分平衡、温室气体排放和经济效益的影响。结果表明, 小麦季、玉米季和周年轮作中, OPT较FP产量分别提高4.3%、5.3%和4.8%; 氮肥偏生产力分别提高39.1%、31.7%和35.9%; 磷肥偏生产力分别提高39.1%、40.4%和39.8%; 钾肥偏生产力分别降低47.8%、47.3%和47.6%; 温室气体排放量分别降低21.7%、21.1%和21.4%; 温室气体排放强度分别降低27.0%、27.5%和27.3%; 净收益分别提高11.2%、11.4%和11.3%, 农业生产成本分别降低3.7%、2.1%和3.1%, 环境修复成本分别降低28.4%、17.3%和22.1%。周年轮作中, OPT较FP氮素盈余量降低105 kg·hm−2 (46.3%); 磷素盈余量降低48 kg·hm−2 (53.3%); 钾素从亏缺1 kg·hm−2变为盈余59 kg·hm−2, 满足了作物生长需求。连续8年, OPT较FP土壤有机质含量提高5.3%, 速效钾提高12.3%, 有效磷降低27.8%。综上所述, 与农户习惯施肥(FP)相比, 优化施肥(OPT)具有高产、高收益以及环境友好的优势, 为华北平原小麦-玉米轮作体系高效绿色生产提供了科学依据。
  • 图  1  不同施肥处理下小麦-玉米轮作体系的土壤养分平衡

    不同小写字母表示处理间周年养分平衡差异显著(P<0.05)。Different lowercase letters mean significant differences in annual nutrient balance among treatments (P<0.05).

    Figure  1.  Soil nutrient balance of wheat-maize rotation system under different treatments

    图  2  不同施肥处理下的小麦-玉米轮作体系的土壤养分含量

    不同小写字母表示各处理及起始值间差异显著(P<0.05)。CK、OPT和FP为试验结束时不同处理的数值。Different lowercase letters mean significant differences among treatments and experimental initial value (P<0.05). CK, OPT and FP represent the values of treatment CK, OPT and FP at the end of experiment.

    Figure  2.  Soil nutrients contents of wheat-maize rotation system under different treatments

    图  3  不同施肥处理下小麦-玉米轮作体系的温室气体排放量(GHG)及排放强度(GHGI)

    ***表示在P<0.001水平显著。*** means significant effects at P<0.001 probability level.

    Figure  3.  Greenhouse gas emmisons (GHG) and intensity of greenhouse gas emissions (GHGI) of wheat-maize rotation system under different treatments

    图  4  不同施肥处理下小麦-玉米轮作体系的经济效益

    **、***分别表示在P<0.01、P<0.001水平显著。** and *** mean significant difference at P<0.01 and P<0.001 probability levels, respectively.

    Figure  4.  Economic benefits of wheat-maize rotation system under different treatments

    表  1  不同处理的施肥量

    Table  1.   Fertilization rates of the different treatments

    处理
    Treatment
    小麦 Wheat玉米 Maize
    NP2O5K2ONP2O5K2O
    kg·hm−2 
    下载: 导出CSV

    表  2  投入农业生产资料及氮损失的碳排放系数

    Table  2.   Carbon emission factors of different agricultural materials input and nitrogen loss

    项目
    Item
    碳排放系数 Carbon emission factor数据来源
    Data source
    小麦 Wheat玉米 Maize
    氮肥 Nitrogen fertilizer4.96 kg(CO2 eq)·kg−1[17]
    磷肥 Phosphorus fertilizer1.14 kg(CO2 eq)·kg−1[17]
    钾肥 Potassium fertilizer0.66 kg(CO2 eq)·kg−1[17]
    种子 Seed1.22 kg(CO2 eq)·kg−1[17]
    农药 Pesticide6.58 kg(CO2 eq)·kg−1[17]
    柴油 Diesel oil3.44 kg(CO2 eq)·L−1[17]
    电力 Electricity0.92 kg(CO2 eq)·kW·h−1[17]
    NH3挥发 NH3 volatilization2.69+0.069×N1)7.98+0.099×N[18]
    NO3淋溶 NO3 leaching3.63×e0.0080×N10.7×e0.0060×N[18]
    N2O直接排放 N2O directly emissions0.50×e0.0032×N0.99×e0.0047×N[18]
    N2O间接排放 N2O indirectly emissions1%×NH3-N2)+1.1%×NO3-N3)1%×NH3-N +1.1%×NO3-N[19]
      1) N: 氮肥施用量; 2) NH3-N: NH3挥发; 3) NO3-N: NO3淋溶。1) N: application amount of nitrogen; 2) NH3-N: NH3 volatilization; 3) NO3-N: NO3 leaching.
    下载: 导出CSV

    表  3  不同施肥处理下的小麦-玉米轮作体系的产量及其稳定性

    Table  3.   Yields and yield stability of wheat-maize rotation system under different treatments

    年份
    Year
    处理
    Treatment
    产量 Yield (kg·hm−2)产量稳定性指数 Stability index产量可持续性指数 Sustainable yield index
    小麦
    Wheat
    玉米
    Maize
    周年
    Year-round
    小麦
    Wheat
    玉米
    Maize
    周年
    Year-round
    小麦
    Wheat
    玉米
    Maize
    周年
    Year-round
    2013—2014CK7045±496b6702±835b13 747±1059b0.140.250.150.760.640.74
    OPT8613±163a8669±320a17 282±379a0.040.070.040.920.840.91
    FP7969±314ab8073±385ab16 042±80a0.080.100.010.870.800.98
    2014—2015CK5558±127b6608±392c12 165±471c0.050.120.080.920.810.86
    OPT7795±296a9455±299a17 251±541a0.080.060.060.840.860.86
    FP7530±106a8184±362b15 714±376b0.030.090.050.930.820.91
    2015—2016CK3301±278b5690±333b8992±600b0.170.120.130.700.810.81
    OPT10 357±292a7940±286a18 297±434a0.060.070.050.910.860.91
    FP10 302±285a7523±377a17 825±578a0.060.100.060.890.930.88
    2016—2017CK3272±122b6179±427b9450±462b0.070.140.100.860.740.81
    OPT7729±417a7631±278a15 360±632a0.110.070.080.790.840.82
    FP7332±241a7113±353ab14 446±544a0.070.100.080.880.820.89
    2017—2018CK2981±174c6724±332a9705±487b0.120.100.100.790.850.85
    OPT6590±122a7579±246a14 169±240a0.040.070.030.940.890.93
    FP5841±241b7559±317a13 401±367a0.080.080.050.850.840.88
    2018—2019CK3005±532b7188±532a10 193±522b0.350.150.100.450.700.80
    OPT8031±483a7356±388a15 388±542a0.120.110.070.780.830.84
    FP7663±160a7195±417a14 858±390a0.040.120.050.910.790.92
    2019—2020CK3297±438b8036±433a11 334±590b0.270.110.100.550.790.81
    OPT8541±232a9024±249a17 565±468a0.050.060.050.900.880.90
    FP8484±101a9000±224a17 484±201a0.020.050.020.960.910.96
    2020—2021CK3998±149b7138±229a11 137±308b0.070.060.060.830.860.90
    OPT9370±326a7609±188a16 979±328a0.070.050.040.860.900.92
    FP9111±242a7312±316a16 424±295a0.050.090.040.900.830.92
    年均
    Average
    CK4057±268b6783±188b10 840±325b0.16±0.03a0.13±0.03a0.10±0.01a0.73±0.06b0.78±0.03b0.82±0.02b
    OPT8378±214a8158±159a16 536±275a0.07±0.01b0.07±0.01b0.05±0.01b0.87±0.02a0.86±0.01a0.89±0.01a
    FP8029±232a7745±152a15 774±280a0.05±0.01b0.09±0.01b0.05±0.01b0.90±0.01a0.84±0.02a0.92±0.01a
      同列不同小写字母表示同一年度不同处理间差异显著(P<0.05)。Different lowercase letters mean significant differences among treatments for the same year (P<0.05).
    下载: 导出CSV

    表  4  不同施肥处理下的小麦-玉米轮作体系的偏生产力

    Table  4.   Partial factor productivity of wheat-maize rotation system under different treatments

    年份
    Year
    处理
    Treatment
    氮肥偏生产力 Nitrogen partial factor productivity磷肥偏生产力 Phosphate partial factor productivity钾肥偏生产力 Potassium partial factor productivity
    小麦
    Wheat
    P>T玉米
    Maize
    P>T周年
    Year-round
    P>T小麦
    Wheat
    P>T玉米
    Maize
    P>T周年
    Year-round
    P>T小麦
    Wheat
    P>T玉米
    Maize
    P>T周年
    Year-round
    P>T
    kg·kg−1 
      P>T为OPT和FP处理的配对法t检验结果。P>T is the probability of a significance of difference between OPT and FP based on paired t-test.
    下载: 导出CSV
  • [1] GAO F, LI B, REN B Z, et al. Effects of residue management strategies on greenhouse gases and yield under double cropping of winter wheat and summer maize[J]. Science of the Total Environment, 2019, 687: 1138−1146 doi: 10.1016/j.scitotenv.2019.06.146
    [2] ZHANG Y T, WANG H Y, LEI Q L, et al. Optimizing the nitrogen application rate for maize and wheat based on yield and environment on the Northern China Plain[J]. Science of the Total Environment, 2018, 618: 1173−1183 doi: 10.1016/j.scitotenv.2017.09.183
    [3] CUI Z L, YUE S C, WANG G L, et al. In-season root-zone N management for mitigating greenhouse gas emission and reactive N losses in intensive wheat production[J]. Environmental Science & Technology, 2013, 47(11): 6015−6022
    [4] MA Q, YU W T, JIANG C M, et al. The influences of mineral fertilization and crop sequence on sustainability of corn production in northeastern China[J]. Agriculture, Ecosystems & Environment, 2012, 158: 110−117
    [5] SCHRODER J, ZHANG H L, GIRMA K, et al. Soil acidification from long‐term use of nitrogen fertilizers on winter wheat[J]. Soil Science Society of America Journal, 2011, 75: 957−964 doi: 10.2136/sssaj2010.0187
    [6] 王乐政, 华方静, 曹鹏鹏, 等. 氮磷钾配施对红小豆干物质积累、产量和效益的影响[J]. 核农学报, 2019, 33(10): 2058−2067 doi: 10.11869/j.issn.100-8551.2019.10.2058

    WANG L Z, HUA F J, CAO P P, et al. Effect of nitrogen, phosphorus and potassium combined application on dry matter accumulation, yield and economic benefits of adzuki bean[J]. Journal of Nuclear Agricultural Sciences, 2019, 33(10): 2058−2067 doi: 10.11869/j.issn.100-8551.2019.10.2058
    [7] 黄晓萌, 刘晓燕, 串丽敏, 等. 优化施肥下长江流域冬小麦产量及肥料增产效应[J]. 中国农业科学, 2020, 53(17): 3541−3552 doi: 10.3864/j.issn.0578-1752.2020.17.011

    HUANG X M, LIU X Y, CHUAN L M, et al. Effects of yield and fertilization on yield increase of winter wheat in Yangtze valley under optimized fertilization[J]. Scientia Agricultura Sinica, 2020, 53(17): 3541−3552 doi: 10.3864/j.issn.0578-1752.2020.17.011
    [8] 包菡, 傅建伟, 张雷, 等. 不同施肥方式对玉米产量和农田氮磷淋溶流失的影响[J]. 北方农业学报, 2021, 49(4): 57−61 doi: 10.12190/j.issn.2096-1197.2021.04.09

    BAO H, FU J W, ZHANG L, et al. The effects of different fertilization methods on maize yield and nitrogen and phosphorus leaching loss in farmland[J]. Journal of Northern Agriculture, 2021, 49(4): 57−61 doi: 10.12190/j.issn.2096-1197.2021.04.09
    [9] 庞津雯, 王钰皓, 刘畅, 等. 不同施肥量对旱作沟垄集雨种植农田土壤水分及玉米产量的影响[J]. 植物营养与肥料学报, 2021, 27(5): 826−836 doi: 10.11674/zwyf.20510

    PANG J W, WANG Y H, LIU C, et al. Effects of fertilization on soil moisture and maize yield in rainfed farmland with ridge mulching-furrow planting system[J]. Journal of Plant Nutrition and Fertilizers, 2021, 27(5): 826−836 doi: 10.11674/zwyf.20510
    [10] 赵营, 周涛, 郭鑫年, 等. 优化施肥对春小麦产量、氮素利用及氮平衡的影响[J]. 干旱地区农业研究, 2011, 29(6): 119−124

    ZHAO Y, ZHOU T, GUO X N, et al. Effect of optimum fertilization on spring wheat yield, N utilization and apparent N balance[J]. Agricultural Research in the Arid Areas, 2011, 29(6): 119−124
    [11] JIANG Z H, ZHONG Y M, YANG J P, et al. Effect of nitrogen fertilizer rates on carbon footprint and ecosystem service of carbon sequestration in rice production[J]. Science of the Total Environment, 2019, 670: 210−217 doi: 10.1016/j.scitotenv.2019.03.188
    [12] BHANDARI M, MA Y, MEN M X, et al. Response of winter wheat yield and soil N2O emission to nitrogen fertilizer reduction and nitrapyrin application in North China Plain[J]. Communications in Soil Science and Plant Analysis, 2020, 51(4): 554−565 doi: 10.1080/00103624.2020.1718687
    [13] 蔡闻佳, 惠婧璇, 赵梦真, 等. 温室气体减排的健康协同效应: 综述与展望[J]. 城市与环境研究, 2019, 6(1): 76−94

    CAI W J, HUI J X, ZHAO M Z, et al. Ancillary health impacts of GHG mitigation: a review of the current status and future prospects[J]. Urban and Environmental Studies, 2019, 6(1): 76−94
    [14] 吴良泉, 武良, 崔振岭, 等. 中国小麦区域氮磷钾肥推荐用量及肥料配方研究[J]. 中国农业大学学报, 2019, 24(11): 30−40 doi: 10.11841/j.issn.1007-4333.2019.11.04

    WU L Q, WU L, CUI Z L, et al. Optimal regional nitrogen, phosphorus, potassium rates recommendations and special fertilizer formulae study for wheat in China[J]. Journal of China Agricultural University, 2019, 24(11): 30−40 doi: 10.11841/j.issn.1007-4333.2019.11.04
    [15] 吴良泉, 武良, 崔振岭, 等. 中国玉米区域氮磷钾肥推荐用量及肥料配方研究[J]. 土壤学报, 2015, 52(4): 802−817 doi: 10.11766/trxb201409230480

    WU L Q, WU L, CUI Z L, et al. Basic NPK fertilizer recommendation and fertilizer formula for maize production regions in China[J]. Acta Pedologica Sinica, 2015, 52(4): 802−817 doi: 10.11766/trxb201409230480
    [16] 鲍士旦. 土壤农化分析[M]. 3版. 北京: 中国农业出版社, 2000: 30–34, 81–83, 106–108, 264–270

    BAO S D. Soil and Agricultural Chemistry Analysis[M]. Third version. Beijing: China Agriculture Press, 2000: 30–34, 81–83, 106–108, 264–270
    [17] HUANG S H, DING W C, JIA L L, et al. Cutting environmental footprints of maize systems in China through Nutrient Expert Management[J]. Journal of Environmental Management, 2021, 282: 111956 doi: 10.1016/j.jenvman.2021.111956
    [18] CUI Z L, ZHANG H Y, CHEN X P, et al. Pursuing sustainable productivity with millions of smallholder farmers[J]. Nature, 2018, 555(7696): 363−366 doi: 10.1038/nature25785
    [19] IPCC. 2019 Refinement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories[R]. Japan: Task Force on National Greenhouse Gas Inventories, 2019: Volume 4, chapter 11
    [20] HUANG S H, HE P, JIA L L, et al. Improving nitrogen use efficiency and reducing environmental cost with long-term nutrient expert management in a summer maize-winter wheat rotation system[J]. Soil & Tillage Research, 2021, 213: 105117
    [21] 马红梅, 曹寒冰, 谢英荷, 等. 晋南黄土旱塬小麦养分投入与化肥减施经济环境效应评价[J]. 中国农业科学, 2021, 54(13): 2804−2817 doi: 10.3864/j.issn.0578-1752.2021.13.010

    MA H M, CAO H B, XIE Y H, et al. Evaluation on fertilizer application and its economic-environmental benefits associated with fertilizer reduction potential for dryland wheat in loess plateau of southern Shanxi Province[J]. Scientia Agricultura Sinica, 2021, 54(13): 2804−2817 doi: 10.3864/j.issn.0578-1752.2021.13.010
    [22] 王丹丹, 李岚涛, 韩本高, 等. 养分专家系统推荐施肥对冬小麦产量、养分转运及肥料利用的影响[J]. 中国生态农业学报(中英文), 2020, 28(11): 1692−1702

    WANG D D, LI L T, HAN B G, et al. Effects of Nutrient Expert Recommended Fertilization on winter wheat yield, nutrient accumulation, transportation, and utilization[J]. Chinese Journal of Eco-Agriculture, 2020, 28(11): 1692−1702
    [23] 牛新胜, 张宏彦. 华北平原冬小麦-夏玉米生产肥料管理现状分析[J]. 耕作与栽培, 2010(5): 1−4 doi: 10.3969/j.issn.1008-2239.2010.05.001

    NIU X S, ZHANG H Y. Analysis on current situation of fertilizer management of winter wheat-summer maize in Northern China Plain[J]. Tillage and Cultivation, 2010(5): 1−4 doi: 10.3969/j.issn.1008-2239.2010.05.001
    [24] 河北省2021年度气候公报[EB/OL]. 河北省气象局, [2022-01-17]. http://he.cma.gov.cn/qxfw/qhfx/qhgb/202201/t20220117_4427650.html

    Hebei Province 2021 annual climate bulletin [EB/OL]. Hebei Meteorological Service, [2022-1-17]. http://he.cma.gov.cn/qxfw/qhfx/qhgb/202201/t20220117_4427650.html
    [25] 河北省2016年度气候公报[EB/OL]. 河北省气象局, [2017-01-13]. http://he.cma.gov.cn/qxfw/qhfx/qhgb/201904/t20190403_272044.html

    Hebei Province 2016 annual climate bulletin [EB/OL]. Hebei Meteorological Service, [2017-01-13]. http://he.cma.gov.cn/qxfw/qhfx/qhgb/201904/t20190403_272044.html
    [26] 门明新, 李新旺, 许皞. 长期施肥对华北平原潮土作物产量及稳定性的影响[J]. 中国农业科学, 2008, 41(8): 2339−2346 doi: 10.3864/j.issn.0578-1752.2008.08.017

    MEN M X, LI X W, XU H. Effects of long-term fertilization on crop yields and stability[J]. Scientia Agricultura Sinica, 2008, 41(8): 2339−2346 doi: 10.3864/j.issn.0578-1752.2008.08.017
    [27] 刘艳妮, 马臣, 于昕阳, 等. 基于不同降水年型渭北旱塬小麦–土壤系统氮素表观平衡的氮肥用量研究[J]. 植物营养与肥料学报, 2018, 24(3): 569−578 doi: 10.11674/zwyf.17374

    LIU Y N, MA C, YU X Y, et al. Nitrogen application rate for keeping nitrogen balance in wheat–soil system in Weibei rainfed areas under different rainfall years[J]. Journal of Plant Nutrition and Fertilizers, 2018, 24(3): 569−578 doi: 10.11674/zwyf.17374
    [28] 王乐. 长期施肥下华北土壤化学肥力指标和作物产量演变及影响因素分析[D]. 北京: 中国农业科学院, 2020: 23–26

    WANG L. Analysis of soil chemical fertility index and crop yield evolution and influencing factors in North China under long-term fertilization[D]. Beijing: Chinese Academy of Agricultural Sciences, 2020: 23–26
    [29] ZHANG Q S, LI T Y, YIN Y L, et al. Targeting hotspots to achieve sustainable nitrogen management in China’s smallholder-dominated cereal production[J]. Agronomy, 2021, 11(3): 557 doi: 10.3390/agronomy11030557
    [30] CHEN X P, CUI Z L, FAN M S, et al. Producing more grain with lower environmental costs[J]. Nature, 2014, 514(7523): 486−489 doi: 10.1038/nature13609
    [31] 巨晓棠, 谷保静. 氮素管理的指标[J]. 土壤学报, 2017, 54(2): 281−296 doi: 10.11766/trxb201609150320

    JU X T, GU B J. Indexes of nitrogen management[J]. Acta Pedologica Sinica, 2017, 54(2): 281−296 doi: 10.11766/trxb201609150320
    [32] 张珂珂, 郭斗斗, 宋晓, 等. 长期不同施肥下潮土磷素演变特征及其对磷盈亏的响应[J]. 中国土壤与肥料, 2022(1): 112−121 doi: 10.11838/sfsc.1673-6257.20543

    ZHANG K K, GUO D D, SONG X, et al. Evolution characteristics of soil phosphorus and its response to soil phosphorus balance in fluvo-aquic soil under long-term fertilization[J]. Soil and Fertilizer Sciences in China, 2022(1): 112−121 doi: 10.11838/sfsc.1673-6257.20543
    [33] 贾良良, 韩宝文, 刘孟朝, 等. 河北省潮土长期定位施钾和秸秆还田对农田土壤钾素状况的影响[J]. 华北农学报, 2014, 29(5): 207−212 doi: 10.7668/hbnxb.2014.05.035

    JIA L L, HAN B W, LIU M C, et al. The effects of long term K fertilization and straw recycling on soil K status in fluvo-aquic soil of Hebei Province[J]. Acta Agriculturae Boreali-Sinica, 2014, 29(5): 207−212 doi: 10.7668/hbnxb.2014.05.035
    [34] 习斌. 典型农田土壤磷素环境阈值研究——以南方水旱轮作和北方小麦玉米轮作为例[D]. 北京: 中国农业科学院, 2014: 63

    XI B. Study on the environment threshold of soil Olsen-P in farmland — Case of southern paddy-upland rotation and northern wheat and maize rotation[D]. Beijing: Chinese Academy of Agricultural Sciences, 2014: 63
    [35] 李秋梅, 陈新平, 张福锁, 等. 冬小麦-夏玉米轮作体系中磷钾平衡的研究[J]. 植物营养与肥料学报, 2002, 8(2): 152−156 doi: 10.3321/j.issn:1008-505X.2002.02.004

    LI Q M, CHEN X P, ZHANG F S, et al. Study on balance of phosphorus and potassium in winter wheat and summer maize rotation system[J]. Plant Natrition and Fertilizen Science, 2002, 8(2): 152−156 doi: 10.3321/j.issn:1008-505X.2002.02.004
    [36] 贾良良, 黄少辉, 刘克桐, 等. 太行山前平原农田基础地力对夏玉米产量的影响及培肥目标[J]. 中国土壤与肥料, 2021(3): 340−346 doi: 10.11838/sfsc.1673-6257.20117

    JIA L L, HUANG S H, LIU K T, et al. Effect of inherent soil fertility on summer maize yield and the goal of improving basic soil fertility in the Taihang Mountain pediment plain[J]. Soil and Fertilizer Sciences in China, 2021(3): 340−346 doi: 10.11838/sfsc.1673-6257.20117
    [37] 葛玮健, 常艳丽, 刘俊梅, 等. 土娄土区长期施肥对小麦-玉米轮作体系钾素平衡与钾库容量的影响[J]. 植物营养与肥料学报, 2012, 18(3): 629−636 doi: 10.11674/zwyf.2012.11347

    GE W J, CHANG Y L, LIU J M, et al. Potassium balance and pool as influenced by long-term fertilization under continuous winter wheat-summer maize cropping system in a manural loess soil[J]. Plant Nutrition and Fertilizer Science, 2012, 18(3): 629−636 doi: 10.11674/zwyf.2012.11347
    [38] NELSON R, HELLWINCKEL C, BRANDT C, et al. Energy use and carbon dioxide emissions from cropland production in the United States, 1990–2004[J]. Journal of Environmental Quality, 2009, 38(2): 418−425 doi: 10.2134/jeq2008.0262
    [39] HILLIER J, WHITTAKER C, DAILEY G, et al. Greenhouse gas emissions from four bioenergy crops in England and Wales: integrating spatial estimates of yield and soil carbon balance in life cycle analyses[J]. GCB-Bioenergy, 2009, 1(4): 267−281
    [40] CHEN H X, LIU J J, ZHANG A F, et al. Effects of straw and plastic film mulching on greenhouse gas emissions in Loess Plateau, China: a field study of 2 consecutive wheat-maize rotation cycles[J]. Science of the Total Environment, 2017, 579: 814−824 doi: 10.1016/j.scitotenv.2016.11.022
    [41] HE G, WANG Z H, LI S X, et al. Plastic mulch: Tradeoffs between productivity and greenhouse gas emissions[J]. Journal of Cleaner Production, 2018, 172: 1311−1318 doi: 10.1016/j.jclepro.2017.10.269
    [42] ZHAN A, ZOU C Q, YE Y L, et al. Estimating on-farm wheat yield response to potassium and potassium uptake requirement in China[J]. Field Crops Research, 2016, 191: 13−19 doi: 10.1016/j.fcr.2016.04.001
    [43] 王良, 刘元元, 钱欣, 等. 单季麦秸还田促进小麦-玉米周年碳效率和经济效益协同提高[J]. 中国农业科学, 2022, 55(2): 350−364 doi: 10.3864/j.issn.0578-1752.2022.02.010

    WANG L, LIU Y Y, QIAN X, et al. The single season wheat straw returning to promote the synergistic improvement of carbon efficiency and economic benefit in wheat-maize double cropping system[J]. Scientia Agricultura Sinica, 2022, 55(2): 350−364 doi: 10.3864/j.issn.0578-1752.2022.02.010
    [44] XIA L L, TI C P, LI B L, et al. Greenhouse gas emissions and reactive nitrogen releases during the life-cycles of staple food production in China and their mitigation potential[J]. Science of the Total Environment, 2016, 556: 116−125 doi: 10.1016/j.scitotenv.2016.02.204
    [45] JU X T, XING G X, CHEN X P, et al. Reducing environmental risk by improving N management in intensive Chinese agricultural systems[J]. Proceedings of the National Academy of Sciences, 2009, 106(9): 3041−3046 doi: 10.1073/pnas.0813417106
  • 加载中
图(4) / 表(4)
计量
  • 文章访问数:  203
  • HTML全文浏览量:  89
  • PDF下载量:  38
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-08-05
  • 录用日期:  2022-09-25
  • 修回日期:  2022-09-22
  • 网络出版日期:  2022-10-09

目录

    /

    返回文章
    返回