留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

生物有机肥配施化肥对生菜生长和土壤环境的影响

张庆 胡春胜 刘彬彬 张玉铭 董文旭 李晓欣 刘秀萍 王晶 张睿媛 吴坤燕 吴洁

张庆, 胡春胜, 刘彬彬, 张玉铭, 董文旭, 李晓欣, 刘秀萍, 王晶, 张睿媛, 吴坤燕, 吴洁. 生物有机肥配施化肥对生菜生长和土壤环境的影响[J]. 中国生态农业学报 (中英文), 2023, 31(0): 1−17 doi: 10.12357/cjea.20220642
引用本文: 张庆, 胡春胜, 刘彬彬, 张玉铭, 董文旭, 李晓欣, 刘秀萍, 王晶, 张睿媛, 吴坤燕, 吴洁. 生物有机肥配施化肥对生菜生长和土壤环境的影响[J]. 中国生态农业学报 (中英文), 2023, 31(0): 1−17 doi: 10.12357/cjea.20220642
ZHANG Q, HU C S, LIU B B, ZHANG Y M, DONG W X, LI X X, LIU X P, WANG J, ZHANG R Y, WU K Y, WU J. Influence of combined application of bioorganic fertilizer and chemical fertilizer on lettuce growth and soil environment[J]. Chinese Journal of Eco-Agriculture, 2023, 31(0): 1−17 doi: 10.12357/cjea.20220642
Citation: ZHANG Q, HU C S, LIU B B, ZHANG Y M, DONG W X, LI X X, LIU X P, WANG J, ZHANG R Y, WU K Y, WU J. Influence of combined application of bioorganic fertilizer and chemical fertilizer on lettuce growth and soil environment[J]. Chinese Journal of Eco-Agriculture, 2023, 31(0): 1−17 doi: 10.12357/cjea.20220642

生物有机肥配施化肥对生菜生长和土壤环境的影响

doi: 10.12357/cjea.20220642
基金项目: 国家重点研发计划项目(2021YFD1700901)和中国科学院战略性先导科技专项子课题(XDA26040103)资助
详细信息
    作者简介:

    张庆, 主要研究方向为微生物与土壤碳氮循环。E-mail: zhangqing13612217@163.com

    通讯作者:

    胡春胜, 主要研究方向为农田生态系统碳、氮、水循环及土壤生态过程。E-mail: cshu@sjziam.ac.cn

  • 中图分类号: S154.36

Influence of combined application of bioorganic fertilizer and chemical fertilizer on lettuce growth and soil environment

Funds: This study was supported by the National Key Research and Development Program of China (2021YFD1700901) and the Strategic Priority Research Program of the Chinese Academy of Sciences (XDA26040103).
More Information
  • 摘要: 不合理施肥导致土壤退化和产出下降, 废弃物处理则关系到环境和资源可持续发展。生物有机肥在植物促生和土壤培肥方面优势突出, 有利于资源高效利用、减施化肥和蔬菜产业发展。本研究通过向中药渣有机肥中分别接种地衣芽孢杆菌、解淀粉芽孢杆菌、巨大芽孢杆菌后发酵制备试验用生物有机肥, 开展生菜温室盆栽试验, 探究不同生物有机肥配施化肥对生菜生长和土壤环境的影响。设置6处理, 分别为3种生物有机肥替代80%化肥氮处理[地衣芽孢杆菌+中药渣有机肥+化肥(B1H)、解淀粉芽孢杆菌+中药渣有机肥+化肥(B2H)、巨大芽孢杆菌+中药渣有机肥+化肥(B4H)]、1种有机肥替代80%化肥氮处理[中药渣有机肥+化肥(H)]和单施化肥处理(CF)以及不施肥处理(CK)。测定和分析收获期生物量和品质等生菜生长指标以及理化性质和细菌多样性等土壤环境指标。结果发现: 各施肥处理对生菜综合增产提质效果以及对土壤养分环境的综合改善效果排序均为B4H>B2H>B1H>H>CF>CK, 与H相比, B4H的生菜地上部鲜重以及叶绿素、维生素C和可溶性糖含量分别提高10.69%、17.77%、47.54%和10.95%, 硝酸盐含量降低52.00%, 土壤有效磷(AP)、速效钾(AK)、微生物量碳(MBC)和水溶性有机碳(DOC)含量分别提高47.57%、10.98%、35.54%和16.10%, 根际土细菌物种丰富度和多样性也分别提高7.68%和0.85%。土壤AP、AK和AN是生菜生长的主要影响因子, pH、AP和AK则是土壤细菌群落的主要调控因子, 土壤中这些关键因子对优化施肥的响应间接调节了生菜生长和土壤环境。施肥有助于提高生菜根际土细菌Alpha多样性, 较高的根际土细菌Alpha多样性对生菜生长表现出促进作用。总的来说, B4H对生菜生长和土壤环境的改善效果最佳, 可通过大田试验对其促生培肥功效和环境效应作进一步探究。本研究为蔬菜和生物有机肥产业发展提供了新的理论支持, 有利于绿色可持续发展战略实施。
  • 图  1  生物有机肥配施化肥对生菜地上部鲜重(A)、地下部鲜重(B)、地上部叶绿素含量(C)、地上部维生素C含量(D)、地上部可溶性糖含量(E)和地上部硝酸盐含量(F)的影响

    B1H: 地衣芽孢杆菌+中药渣有机肥+化肥; B2H: 解淀粉芽孢杆菌+中药渣有机肥+化肥; B4H: 巨大芽孢杆菌+中药渣有机肥+化肥; H: 中药渣有机肥+化肥; CF: 单施化肥; CK: 不施肥。不同小写字母表示处理间差异显著(P<0.05)。B1H: Bacillus licheniformis + Chinese medicinal residue organic fertilizer + chemical fertilizer; B2H: B. amyloliquefaciens + Chinese medicinal residue organic fertilizer + chemical fertilizer; B4H: B. megaterium + Chinese medicinal residue organic fertilizer + chemical fertilizer; H: Chinese medicinal residue organic fertilizer + chemical fertilizer; CF: chemical fertilizer; CK: no fertilizer. Different lowercase letters indicate significant differences at P<0.05 level among treatments.

    Figure  1.  Effect of combined application of bioorganic fertilizer and chemical fertilizer on shoot fresh weight (A), root fresh weight (B), shoot chlorophyll content (C), shoot vitamin C content (D), shoot soluble sugar content (E), shoot nitrate content (F) of lettuce

    图  2  生物有机肥配施化肥下生菜根际土(A)和非根际土(B)细菌群落主坐标分析

    B1H: 地衣芽孢杆菌+中药渣有机肥+化肥; B2H: 解淀粉芽孢杆菌+中药渣有机肥+化肥; B4H: 巨大芽孢杆菌+中药渣有机肥+化肥; H: 中药渣有机肥+化肥; CF: 单施化肥; CK: 不施肥; R2: 变异解释度; P: 置换检验P值。B1H: Bacillus licheniformis + Chinese medicinal residue organic fertilizer + chemical fertilizer; B2H: B. amyloliquefaciens + Chinese medicinal residue organic fertilizer + chemical fertilizer; B4H: B. megaterium + Chinese medicinal residue organic fertilizer + chemical fertilizer; H: Chinese medicinal residue organic fertilizer + chemical fertilizer; CF: chemical fertilizer; CK: no fertilizer. R2: explanation degree of variation; P: permutation test P value.

    Figure  2.  Principal coordinate analysis for bacterial community in rhizosphere (A) and bulk (B) soils of lettuce under combined application of bioorganic fertilizer and chemical fertilizer

    图  3  生物有机肥配施化肥下生菜根际土(A)和非根际土(B)优势细菌门(相对丰度前10)组成

    B1H: 地衣芽孢杆菌+中药渣有机肥+化肥; B2H: 解淀粉芽孢杆菌+中药渣有机肥+化肥; B4H: 巨大芽孢杆菌+中药渣有机肥+化肥; H: 中药渣有机肥+化肥; CF: 单施化肥; CK: 不施肥。B1H: Bacillus licheniformis + Chinese medicinal residue organic fertilizer + chemical fertilizer; B2H: B. amyloliquefaciens + Chinese medicinal residue organic fertilizer + chemical fertilizer; B4H: B. megaterium + Chinese medicinal residue organic fertilizer + chemical fertilizer; H: Chinese medicinal residue organic fertilizer + chemical fertilizer; CF: chemical fertilizer; CK: no fertilizer.

    Figure  3.  Composition of the dominant bacterial phyla (relative abundance top 10) in rhizosphere (A) and bulk (B) soils of lettuce under combined application of bioorganic fertilizer and chemical fertilizer

    图  4  生物有机肥配施化肥下生菜根际土(A)和非根际土(B)优势细菌属(相对丰度前15)组成

    B1H: 地衣芽孢杆菌+中药渣有机肥+化肥; B2H: 解淀粉芽孢杆菌+中药渣有机肥+化肥; B4H: 巨大芽孢杆菌+中药渣有机肥+化肥; H: 中药渣有机肥+化肥; CF: 单施化肥; CK: 不施肥。B1H: Bacillus licheniformis + Chinese medicinal residue organic fertilizer + chemical fertilizer; B2H: B. amyloliquefaciens + Chinese medicinal residue organic fertilizer + chemical fertilizer; B4H: B. megaterium + Chinese medicinal residue organic fertilizer + chemical fertilizer; H: Chinese medicinal residue organic fertilizer + chemical fertilizer; CF: chemical fertilizer; CK: no fertilizer.

    Figure  4.  Composition of the dominant bacterial genera (relative abundance top 15) in rhizosphere (A) and bulk (B) soils of lettuce under combined application of bioorganic fertilizer and chemical fertilizer

    图  5  生物有机肥配施化肥下生菜收获期根际土(A)和非根际土(B)细菌群落Chao1指数和根际土(C)和非根际土(D)细菌群落香农指数

    B1H: 地衣芽孢杆菌+中药渣有机肥+化肥; B2H: 解淀粉芽孢杆菌+中药渣有机肥+化肥; B4H: 巨大芽孢杆菌+中药渣有机肥+化肥; H: 中药渣有机肥+化肥; CF: 单施化肥; CK: 不施肥。不同小写字母表示处理间差异显著(P<0.05)。B1H: Bacillus licheniformis + Chinese medicinal residue organic fertilizer + chemical fertilizer; B2H: B. amyloliquefaciens + Chinese medicinal residue organic fertilizer + chemical fertilizer; B4H: B. megaterium + Chinese medicinal residue organic fertilizer + chemical fertilizer; H: Chinese medicinal residue organic fertilizer + chemical fertilizer; CF: chemical fertilizer; CK: no fertilizer. Different lowercase letters indicate significant differences at P<0.05 level among treatments.

    Figure  5.  Chao1 index of bacterial community in rhizosphere (A) and bulk (B) soil and Shannon index of bacterial community in rhizosphere (C) and bulk (D) soils of lettuce at harvest under combined application of bioorganic fertilizer and chemical fertilizer

    图  6  生物有机肥配施化肥下生菜根际(A)和非根际(B)土壤细菌群落组间差异贡献标志物种(门水平和属水平)

    B1H: 地衣芽孢杆菌+中药渣有机肥+化肥; B2H: 解淀粉芽孢杆菌+中药渣有机肥+化肥; B4H: 巨大芽孢杆菌+中药渣有机肥+化肥; H: 中药渣有机肥+化肥; CF: 单施化肥; CK: 不施肥。B1H: Bacillus licheniformis + Chinese medicinal residue organic fertilizer + chemical fertilizer; B2H: B. amyloliquefaciens + Chinese medicinal residue organic fertilizer + chemical fertilizer; B4H: B. megaterium + Chinese medicinal residue organic fertilizer + chemical fertilizer; H: Chinese medicinal residue organic fertilizer + chemical fertilizer; CF: chemical fertilizer; CK: no fertilizer.

    Figure  6.  Biomarkers contributing to bacterial community differentiation at phylum and genus level among treatments in lettuce rhizosphere (A) and bulk (B) soils

    图  7  土壤理化性质与生菜地上部鲜重(A)、地下部鲜重(B)、地上部叶绿素含量(C)、地上部维生素C含量(D)、地上部可溶性糖含量(E)、地上部硝酸盐含量(F)之间的随机森林分析

    AN: 碱解氮; AK: 速效钾; 硝态氮; MBC: 微生物量碳; AP: 有效磷; DOC: 水溶性有机碳; EDV: 变量解释度; Inc MSE: 增加的误差平方均值。AN: alkali hydrolyzed nitrogen; AK: rapidly available potassium; MBC: microbial biomass carbon; AP: available phosphorus; DOC: water dissolved carbon; EDV: explanation degree of variable; Inc MSE: increase of mean square of error.

    Figure  7.  Random Forest analysis of soil physical and chemical properties with the shoot fresh weight (A), root fresh weight (B), shoot chlorophyll content (C), shoot vitamin C content (D), shoot soluble sugar content (E), shoot nitrate content (F) of lettuce

    图  9  生菜根际土(A)和非根际土(B)的细菌标志物种、Chao1指数和Shannon指数与土壤理化性质之间的皮尔森相关性

    *: P<0.05; **: P<0.01; ***: P<0.001。TOC: 总有机碳; DOC: 水溶性有机碳; MBC: 微生物量碳; AN: 碱解氮; MBN: 微生物量氮; AP: 有效磷; AK: 速效钾; NC: 负相关; PC: 正相关。TOC: total organic carbon; DOC: water dissolved carbon; MBC: microbial biomass carbon; AN: alkali hydrolyzed nitrogen; MBN: microbial biomass nitrogen; AP: available phosphorus; AK: rapidly available potassium; NC: negatively correlated; PC: positively correlated.

    Figure  9.  Pearson correlation between soil physicochemical properties and biomarkers, Chao1 index, Shannon index of rhizosphere soil (A) and bulk soil (B) of lettuce

    图  10  生菜生长指标与根际土(A)和非根际土(B)细菌标志物种、Chao1指数和Shannon指数之间的皮尔森相关性

    *: P<0.05; **: P<0.01; ***: P<0.001。Shoot: 地上部鲜重; Root: 地下部鲜重; SPAD: 叶绿素含量; Vc: 维生素C含量; SS:可溶性糖含量; Nitrate: 硝酸盐含量; NC: 负相关; PC: 正相关。Shoot: shoot fresh weight; Root: root fresh weight; SPAD: chlorophyll content; Vc: vitamin C content; SS: soluble sugar content; Nitrate: nitrate content; NC: negatively correlated; PC: positively correlated.

    Figure  10.  Pearson correlation between biomarkers, Chao1 index, Shannon index of rhizosphere (A) and bulk (B) soils and growth indicators of lettuce

    图  8  生菜生长指标与土壤理化性质之间的皮尔森相关性

    *: P<0.05; **: P<0.01; ***: P<0.001。AN: 碱解氮; AK: 速效钾; MBC: 微生物量碳; AP: 有效磷; DOC: 水溶性有机碳; Shoot: 地上部鲜重; Root: 地下部鲜重; SPAD: 叶绿素含量; Vc: 维生素C含量; SS:可溶性糖含量; Nitrate: 硝酸盐含量含量; NC: 负相关; PC: 正相关。AN: alkali hydrolyzed nitrogen; AK: rapidly available potassium; MBC: microbial biomass carbon; AP: available phosphorus; DOC: water dissolved carbon; Shoot: shoot fresh weight; Root: root fresh weight; SPAD: chlorophyll content; Vc: vitamin C content; SS: soluble sugar content; Nitrate: nitrate content; NC: negatively correlated; PC: positively correlated.

    Figure  8.  Pearson correlation between soil physicochemical properties and growth indicators of lettuce

    表  1  生物有机肥配施化肥对土壤理化性质的影响

    Table  1.   Soil physical and chemical properties under combined application of bioorganic fertilizer and chemical fertilizer

    理化性质
    Physical and chemical properties
    B1HB2HB4HHCFCK
    pH8.26±0.02a8.29±0.01a8.19±0.01b8.07±0.04d8.09±0.04cd8.13±0.03c
    总有机碳
    Total organic carbon (g∙kg−1)
    10.93±0.24ab11.08±0.36ab10.86±0.32ab11.16±0.40a10.32±0.63b10.31±0.48b
    水溶性有机碳
    Water dissolved organic carbon (mg∙kg−1)
    65.54±8.02ab56.08±1.41bc73.20±12.16a63.05±3.56ab41.94±1.20d44.94±4.64cd
    微生物量碳
    Microbial biomass carbon (mg∙kg−1)
    423.81±13.23a471.01±38.92a451.67±33.65a333.23±18.82b337.77±8.26b265.86±26.77c
    碱解氮
    Alkali-hydrolyzale nitrogen (mg∙kg-1)
    123.27±5.39ab129.25±9.80a127.01±7.87ab117.54±3.02b96.87±2.62c100.11±4.48c
    硝态氮
    Nitrate nitrogen (mg∙kg−1)
    14.91±2.20c13.98±1.10c15.81±1.41c28.09±1.99b62.30±3.19a28.81±3.05b
    铵态氮
    Ammonium nitrogen (mg∙kg−1)
    0.22±0.09a0.24±0.23a0.27±0.21a0.25±0.04a0.26±0.08a0.32±0.19a
    微生物量氮
    Microbial biomass nitrogen (mg∙kg−1)
    136.67±18.22a62.49±2.93c63.17±4.28c70.45±5.09c24.69±6.81d102.59±6.32b
    有效磷
    Available phosphorus (mg∙kg−1)
    181.80±12.73a189.75±5.69a181.06±27.75a122.69±6.34b5.61±0.75c7.50±1.30c
    速效钾
    Rapidly available potassium (mg∙kg−1)
    322.27±29.85a327.93±8.90a305.83±5.25ab275.57±25.63b157.63±2.37c161.13±11.72c
      B1H: 地衣芽孢杆菌+中药渣有机肥+化肥; B2H: 解淀粉芽孢杆菌+中药渣有机肥+化肥; B4H: 巨大芽孢杆菌+中药渣有机肥+化肥; H: 中药渣有机肥+化肥; CF: 单施化肥; CK: 不施肥。数据为平均值±标准差。同行不同小写字母表示处理间差异显著(P<0.05)。B1H: Bacillus licheniformis + Chinese medicinal residue organic fertilizer + chemical fertilizer; B2H: B. amyloliquefaciens + Chinese medicinal residue organic fertilizer + chemical fertilizer; B4H: B. megaterium + Chinese medicinal residue organic fertilizer + chemical fertilizer; H: Chinese medicinal residue organic fertilizer + chemical fertilizer; CF: chemical fertilizer; CK: no fertilizer. Values are means ± standard error. Different lowercase letters within a row indicate significant differences at P<0.05 level.
    下载: 导出CSV

    表  2  各施肥措施对生菜生长和土壤肥力的综合促进效果评价

    Table  2.   Evaluation of comprehensive promotion effect of various fertilization measures on lettuce growth and soil fertility

    处理
    Treatment
    秩和比综合评价参数 Parameters of rank-sum ratio comprehensive evaluation
    概率单位 ProbitRSR拟合值 RSR fitted valueRSR排名 RSR ranking分档等级 Grade of classification
    生菜生长
    Lettuce growth
    土壤肥力
    Soil fertility
    生菜生长
    Lettuce growth
    土壤肥力
    Soil fertility
    生菜生长
    Lettuce growth
    土壤肥力
    Soil fertility
    生菜生长
    Lettuce growth
    土壤肥力
    Soil fertility
    B1H5.435.430.620.593344
    B2H5.975.970.740.632255
    B4H6.736.730.910.701166
    H5.005.000.520.554444
    CF4.574.030.420.465633
    CK4.034.570.300.516533
      B1H: 地衣芽孢杆菌+中药渣有机肥+化肥; B2H: 解淀粉芽孢杆菌+中药渣有机肥+化肥; B4H: 巨大芽孢杆菌+中药渣有机肥+化肥; H: 中药渣有机肥+化肥; CF: 单施化肥; CK: 不施肥; RSR: 秩和比。生菜生长和土壤肥力的线性回归模型拟合度(R2)分别为0.907和0.833、显著性(P)分别为0.003和0.011。B1H: Bacillus licheniformis + Chinese medicinal residue organic fertilizer + chemical fertilizer; B2H: B. amyloliquefaciens + Chinese medicinal residue organic fertilizer + chemical fertilizer; B4H: B. megaterium + Chinese medicinal residue organic fertilizer + chemical fertilizer; H: Chinese medicinal residue organic fertilizer + chemical fertilizer; CF: chemical fertilizer; CK: no fertilizer; RSR: rank-sum ratio. Fitting degrees (R2) of Linear regression model of lettuce growth and soil fertility are 0.907 and 0.833, respectively; significances (P) of that are 0.003 and 0.011, respectively.
    下载: 导出CSV

    表  3  生菜根际和非根际土壤细菌群落与环境因子的相关性

    Table  3.   Relationship between bacterial community and environmental factors at in lettuce rhizosphere and bulk soils

    环境因子
    Environmental factor
    根际土 Rhizosphere soil非根际土 Bulk soil
    门水平 Phylum level属水平 Genus level门水平 Phylum level属水平 Genus level
    pH0.59**0.66**0.80**0.38*
    总有机碳 Total organic carbon0.200.42*0.290.55**
    水溶性有机碳 Water dissolved organic carbon0.200.63**0.39*0.47*
    微生物量碳 Microbial biomass carbon0.71**0.81**0.86**0.27
    碱解氮 Alkali-hydrolyzale nitrogen0.310.78**0.61**0.66**
    硝态氮 Nitrate nitrogen0.100.46**0.55**0.64**
    铵态氮 Ammonium nitrogen0.090.100.020.12
    微生物量氮 Microbial biomass nitrogen0.150.050.55**0.72**
    有效磷 Available phosphorus0.46**0.91**0.75**0.70**
    速效钾 Rapidly available potassium0.45*0.93**0.74**0.69**
      *: P<0.05; **: P<0.01.
    下载: 导出CSV
  • [1] JIN S Q, ZHOU F. Zero growth of chemical fertilizer and pesticide use: China’s objectives, progress and challenges[J]. Journal of Resources and Ecology, 2018, 9(sp1): 50−58 doi: 10.5814/j.issn.1674-764x.2018.01.006
    [2] SAVCI S. An agricultural pollutant: chemical fertilizer[J]. International Journal of Environmental Science and Development, 2012: 73−80
    [3] SHARMA B, VAISH B, MONIKA, et al. Recycling of organic wastes in agriculture: an environmental perspective[J]. International Journal of Environmental Research, 2019, 13(2): 409−429 doi: 10.1007/s41742-019-00175-y
    [4] LU Q, LI C L. Comprehensive utilization of Chinese medicine residues for industry and environment protection: turning waste into treasure[J]. Journal of Cleaner Production, 2021, 279: 123856 doi: 10.1016/j.jclepro.2020.123856
    [5] 宁川川, 王建武, 蔡昆争. 有机肥对土壤肥力和土壤环境质量的影响研究进展[J]. 生态环境学报, 2016, 25(1): 175−181

    NING C C, WANG J W, CAI K Z. The effects of organic fertilizers on soil fertility and soil environmental quality: a review[J]. Ecology and Environmental Sciences, 2016, 25(1): 175−181
    [6] SYED S, WANG X X, PRASAD T N V K V, et al. Bio-organic mineral fertilizer for sustainable agriculture: current trends and future perspectives[J]. Minerals, 2021, 11(12): 1336 doi: 10.3390/min11121336
    [7] LIN W W, LIN M H, ZHOU H Y, et al. The effects of chemical and organic fertilizer usage on rhizosphere soil in tea orchards[J]. PLoS One, 2019, 14(5): e0217018 doi: 10.1371/journal.pone.0217018
    [8] GUO J K, MUHAMMAD H, LV X, et al. Prospects and applications of plant growth promoting rhizobacteria to mitigate soil metal contamination: a review[J]. Chemosphere, 2020, 246: 125823 doi: 10.1016/j.chemosphere.2020.125823
    [9] HU Z M, JI L F, WAN Q, et al. Short-term effects of bio-organic fertilizer on soil fertility and bacterial community composition in tea plantation soils[J]. Agronomy, 2022, 12(9): 2168 doi: 10.3390/agronomy12092168
    [10] LI W X, ZHANG F Y, CUI G H, et al. Effects of bio-organic fertilizer on soil fertility, microbial community composition, and potato growth[J]. ScienceAsia, 2021, 47(3): 347 doi: 10.2306/scienceasia1513-1874.2021.039
    [11] ZHENG X F, ZHU Y J, WANG Z R, et al. Effects of a novel bio-organic fertilizer on the composition of rhizobacterial communities and bacterial wilt outbreak in a continuously mono-cropped tomato field[J]. Applied Soil Ecology, 2020, 156: 103717 doi: 10.1016/j.apsoil.2020.103717
    [12] GAO C H, EL-SAWAH A M, ALI D F I, et al. The integration of bio and organic fertilizers improve plant growth, grain yield, quality and metabolism of hybrid maize (Zea mays L.)[J]. Agronomy, 2020, 10(3): 319 doi: 10.3390/agronomy10030319
    [13] SAXENA A K, KUMAR M, CHAKDAR H, et al. Bacillus species in soil as a natural resource for plant health and nutrition[J]. Journal of Applied Microbiology, 2020, 128(6): 1583−1594 doi: 10.1111/jam.14506
    [14] ASARI S, TARKOWSKÁ D, ROLČÍK J, et al. Analysis of plant growth-promoting properties of Bacillus[J]. Planta, 2017, 245(1): 15−30 doi: 10.1007/s00425-016-2580-9
    [15] 王波, 沈其荣, 赖涛, 等. 不同铵硝比营养液对生菜生长发育影响的研究[J]. 土壤学报, 2007, 44(3): 561−565

    WANG B, SHEN Q R, LAI T, et al. Effects of NH4+-N/NO3-N ratio in nutrient solution on growth of lettuce in hydroponics[J]. Acta Pedologica Sinica, 2007, 44(3): 561−565
    [16] FENG N X, LIANG Q F, FENG Y X, et al. Improving yield and quality of vegetable grown in PAEs-contaminated soils by using novel bioorganic fertilizer[J]. Science of the Total Environment, 2020, 739: 139883 doi: 10.1016/j.scitotenv.2020.139883
    [17] JIN N, JIN L, WANG S Y, et al. Reduced chemical fertilizer combined with bio-organic fertilizer affects the soil microbial community and yield and quality of lettuce[J]. Frontiers in Microbiology, 2022, 13: 863325 doi: 10.3389/fmicb.2022.863325
    [18] YE L, ZHAO X, BAO E C, et al. Bio-organic fertilizer with reduced rates of chemical fertilization improves soil fertility and enhances tomato yield and quality[J]. Scientific Reports, 2020, 10: 177 doi: 10.1038/s41598-019-56954-2
    [19] MIRANSARI M. Soil microbes and the availability of soil nutrients[J]. Acta Physiologiae Plantarum, 2013, 35(11): 3075−3084 doi: 10.1007/s11738-013-1338-2
    [20] 俞元春, 何晟, 李炳凯, 等. 杉林土壤溶解有机碳吸附及影响因素分析[J]. 南京林业大学学报(自然科学版), 2005, 29(2): 15−18

    YU Y C, HE S, LI B K, et al. The dissolved organic carbon (DOC) adsorption and its influence factor on the soil of Chinese fir plantation[J]. Journal of Nanjing Forestry University, 2005, 29(2): 15−18
    [21] 刘子刚, 卢海博, 赵海超, 等. 旱作区春玉米秸秆还田方式对土壤微生物量碳氮磷及酶活性的影响[J]. 西北农业学报, 2022, 31(2): 183−192 doi: 10.7606/j.issn.1004-1389.2022.02.007

    LIU Z G, LU H B, ZHAO H C, et al. Effects of methods for spring maize straw-returning to field on soil microbial biomass C, N, P and enzyme activities in dry farming area[J]. Acta Agriculturae Boreali-Occidentalis Sinica, 2022, 31(2): 183−192 doi: 10.7606/j.issn.1004-1389.2022.02.007
    [22] MAHAJAN N C, MRUNALINI K, PRASAD K S K, et al. Soil quality indicators, building soil organic matter and microbial derived inputs to soil organic matter under conservation agriculture ecosystem: a review[J]. International Journal of Current Microbiology and Applied Sciences, 2019, 8(2): 1859−1879 doi: 10.20546/ijcmas.2019.802.218
    [23] 陈芬, 余高, 张红丽, 等. 中药渣生物有机肥对Hg-Cd复合污染土壤重金属、微生物量碳氮含量及酶活性的影响[J]. 河南农业科学, 2021, 50(7): 66−75

    CHEN F, YU G, ZHANG H L, et al. Effects of bio-organic fertilizer made from Chinese traditional herb residues on the content of heavy metals, microbial biomass carbon and nitrogen and enzyme activity in Hg and Cd compound contaminated soil[J]. Journal of Henan Agricultural Sciences, 2021, 50(7): 66−75
    [24] ZECHMEISTER-BOLTENSTERN S, KEIBLINGER K M, MOOSHAMMER M, et al. The application of ecological stoichiometry to plant-microbial-soil organic matter transformations[J]. Ecological Monographs, 2015, 85(2): 133−155 doi: 10.1890/14-0777.1
    [25] DI GIOIA F, GONNELLA M, BUONO V, et al. Agronomic, physiological and quality response of romaine and red oak-leaf lettuce to nitrogen input[J]. Italian Journal of Agronomy, 2017, 12(1): 806
    [26] BARGAZ A, LYAMLOULI K, CHTOUKI M, et al. Soil microbial resources for improving fertilizers efficiency in an integrated plant nutrient management system[J]. Frontiers in Microbiology, 2018, 9: 1606 doi: 10.3389/fmicb.2018.01606
    [27] WILPISZESKI R L, AUFRECHT J A, RETTERER S T, et al. Soil aggregate microbial communities: towards understanding microbiome interactions at biologically relevant scales[J]. Applied and Environmental Microbiology, 2019, 85(14): e00324−19
    [28] SHI R, WANG S, XIONG B J, et al. Application of bioorganic fertilizer on Panax notoginseng improves plant growth by altering the rhizosphere microbiome structure and metabolism[J]. Microorganisms, 2022, 10(2): 275 doi: 10.3390/microorganisms10020275
    [29] ZHAO J, LIU J, LIANG H, et al. Manipulation of the rhizosphere microbial community through application of a new bio-organic fertilizer improves watermelon quality and health[J]. PLoS One, 2018, 13(2): e0192967 doi: 10.1371/journal.pone.0192967
    [30] KÖNIG S, VOGEL H J, HARMS H, et al. Physical, chemical and biological effects on soil bacterial dynamics in microscale models[J]. Frontiers in Ecology and Evolution, 2020, 8: 53 doi: 10.3389/fevo.2020.00053
    [31] TRABELSI D, MHAMDI R. Microbial inoculants and their impact on soil microbial communities: a review[J]. BioMed Research International, 2013, 2013: 863240
    [32] 熊悯梓, 钞亚鹏, 赵盼, 等. 不同生境马铃薯根际土壤细菌多样性分析[J]. 微生物学报, 2020, 60(11): 2434−2449

    XIONG M Z, CHAO Y P, ZHAO P, et al. Comparison of bacterial diversity in rhizosphere soil of potato in different habitats[J]. Acta Microbiologica Sinica, 2020, 60(11): 2434−2449
    [33] 黄穗萍, 金德才, 李其利, 等. 香蕉根际及非根际土壤细菌群落特征及共性规律研究[J]. 南方农业学报, 2022, 53(5): 1253−1262

    HUANG S P, JIN D C, LI Q L, et al. Study on the characteristics and common rule of bacteria community in banana rhizosphere and non-rhizosphere soil[J]. Journal of Southern Agriculture, 2022, 53(5): 1253−1262
    [34] DINCĂ L C, GRENNI P, ONET C, et al. Fertilization and soil microbial community: a review[J]. Applied Sciences, 2022, 12(3): 1198 doi: 10.3390/app12031198
    [35] VAN NULAND M E, WOOLIVER R C, PFENNIGWERTH A A, et al. Plant-soil feedbacks: connecting ecosystem ecology and evolution[J]. Functional Ecology, 2016, 30(7): 1032−1042 doi: 10.1111/1365-2435.12690
    [36] CHAPARRO J M, SHEFLIN A M, MANTER D K, et al. Manipulating the soil microbiome to increase soil health and plant fertility[J]. Biology and Fertility of Soils, 2012, 48(5): 489−499 doi: 10.1007/s00374-012-0691-4
    [37] 孙薇, 钱勋, 付青霞, 等. 生物有机肥对秦巴山区核桃园土壤微生物群落和酶活性的影响[J]. 植物营养与肥料学报, 2013, 19(5): 1224−1233

    SUN W, QIAN X, FU Q X, et al. Effects of bio-organic fertilizer on soil microbial community and enzymes activities in walnut orchards of the Qinling-Bashan Region[J]. Journal of Plant Nutrition and Fertilizer, 2013, 19(5): 1224−1233
    [38] 张明宇, 刘高峰, 李小龙, 等. 施用生物有机肥对烟草根际土壤微生物区系的影响[J]. 河南农业大学学报, 2020, 54(2): 317−325

    ZHANG M Y, LIU G F, LI X L, et al. Effects of bio-organic fertilizer on the microflora in plant rhizosphere soil and bacterial wilt control of tobacco[J]. Journal of Henan Agricultural University, 2020, 54(2): 317−325
    [39] SHARMA P, KUMAR T, YADAV M, et al. Plant-microbe interactions for the sustainable agriculture and food security[J]. Plant Gene, 2021, 28: 100325 doi: 10.1016/j.plgene.2021.100325
    [40] LIU S B, HE F K, KUZYAKOV Y, et al. Nutrients in the rhizosphere: a meta-analysis of content, availability, and influencing factors[J]. Science of the Total Environment, 2022, 826: 153908 doi: 10.1016/j.scitotenv.2022.153908
    [41] 王莹, 史振声, 王志斌, 等. 植物对氨基酸的吸收利用及氨基酸在农业中的应用[J]. 中国土壤与肥料, 2008(1): 6−11 doi: 10.3969/j.issn.1673-6257.2008.01.002

    WANG Y, SHI Z S, WANG Z B, et al. Absorption and utilization of amino acids by plant and application of amino acids on agiculture[J]. Soil and Fertilizer Sciences in China, 2008(1): 6−11 doi: 10.3969/j.issn.1673-6257.2008.01.002
    [42] YANG X, FENG L, ZHAO L, et al. Effect of glycine nitrogen on lettuce growth under soilless culture: a metabolomics approach to identify the main changes occurred in plant primary and secondary metabolism[J]. Journal of the Science of Food and Agriculture, 2018, 98(2): 467−477 doi: 10.1002/jsfa.8482
    [43] NEINA D. The role of soil pH in plant nutrition and soil remediation[J]. Applied and Environmental Soil Science, 2019, 2019: 1−9
    [44] YADAV N, NATH YADAV A. Actinobacteria for sustainable agriculture[J]. Journal of Applied Biotechnology & Bioengineering, 2019, 6(1): 38−41
    [45] BRUTO M, PRIGENT-COMBARET C, MULLER D, et al. Analysis of genes contributing to plant-beneficial functions in plant growth-promoting rhizobacteria and related Proteobacteria[J]. Scientific Reports, 2014, 4: 6261 doi: 10.1038/srep06261
    [46] SINGH J S, KUMAR A, RAI A N, et al. Cyanobacteria: a precious bio-resource in agriculture, ecosystem, and environmental sustainability[J]. Frontiers in Microbiology, 2016, 7: 529
    [47] LÓPEZ-MONDÉJAR R, ALGORA C, BALDRIAN P. Lignocellulolytic systems of soil bacteria: a vast and diverse toolbox for biotechnological conversion processes[J]. Biotechnology Advances, 2019, 37(6): 107374 doi: 10.1016/j.biotechadv.2019.03.013
    [48] PUOPOLO G, TOMADA S, PERTOT I. The impact of the omics era on the knowledge and use of Lysobacter species to control phytopathogenic micro-organisms[J]. Journal of Applied Microbiology, 2018, 124(1): 15−27 doi: 10.1111/jam.13607
    [49] 陈德乐, 王兴祥, 张亚楠, 等. 持续施用生物有机肥对花生产量和根际细菌群落的影响[J]. 土壤, 2021, 53(3): 537−544 doi: 10.13758/j.cnki.tr.2021.03.013

    CHEN D L, WANG X X, ZHANG Y N, et al. Effect of persistent application of bioorganic fertilizer on peanut yield and rhizosphere bacterial community[J]. Soils, 2021, 53(3): 537−544 doi: 10.13758/j.cnki.tr.2021.03.013
    [50] YAO F, YANG S, WANG Z R, et al. Microbial taxa distribution is associated with ecological trophic cascades along an elevation gradient[J]. Frontiers in Microbiology, 2017, 8: 2071 doi: 10.3389/fmicb.2017.02071
  • 加载中
图(10) / 表(3)
计量
  • 文章访问数:  60
  • HTML全文浏览量:  26
  • PDF下载量:  10
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-07-18
  • 录用日期:  2022-08-18
  • 网络出版日期:  2023-02-10

目录

    /

    返回文章
    返回