留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

黄土高原紫花苜蓿地土壤AMF群落结构及其组装机制

高瑞 罗珠珠 何仁元 牛伊宁 刘家鹤 蔡立群 海龙

高瑞, 罗珠珠, 何仁元, 牛伊宁, 刘家鹤, 蔡立群, 海龙. 黄土高原紫花苜蓿地土壤AMF群落结构及其组装机制[J]. 中国生态农业学报 (中英文), 2023, 31(0): 1−10 doi: 10.12357/cjea.20220697
引用本文: 高瑞, 罗珠珠, 何仁元, 牛伊宁, 刘家鹤, 蔡立群, 海龙. 黄土高原紫花苜蓿地土壤AMF群落结构及其组装机制[J]. 中国生态农业学报 (中英文), 2023, 31(0): 1−10 doi: 10.12357/cjea.20220697
GAO R, LUO Z Z, HE R Y, NIU Y N, LIU J H, CAI L Q, HAI L. Soil AMF community structure and assembly mechanism of medical sativa field in Loess Plateau[J]. Chinese Journal of Eco-Agriculture, 2023, 31(0): 1−10 doi: 10.12357/cjea.20220697
Citation: GAO R, LUO Z Z, HE R Y, NIU Y N, LIU J H, CAI L Q, HAI L. Soil AMF community structure and assembly mechanism of medical sativa field in Loess Plateau[J]. Chinese Journal of Eco-Agriculture, 2023, 31(0): 1−10 doi: 10.12357/cjea.20220697

黄土高原紫花苜蓿地土壤AMF群落结构及其组装机制

doi: 10.12357/cjea.20220697
基金项目: 国家自然科学基金项目(31860364, 32160526)、甘肃省科技计划项目(21JR7RA830)和甘肃省中央财政引导地方科技发展专项(ZCYD-2021-16)资助
详细信息
    作者简介:

    高瑞, 主要研究方向为土壤生态。E-mail: 1449324079@qq.com

    通讯作者:

    罗珠珠, 主要研究方向为土壤生态。E-mail: luozz@gsau.edu.cn

  • 中图分类号: S154.3

Soil AMF community structure and assembly mechanism of medical sativa field in Loess Plateau

Funds: This study was supported by the National Natural Science Foundation of China (31860364, 32160526), the Science and Technology Plan Program of Gansu Province (21JR7RA830), and the Special Program for Local Science and Technology Development Guided by Central Government of Gansu Province (ZCYD-2021-16).
More Information
  • 摘要: 为揭示多年种植紫花苜蓿对土壤丛枝菌根真菌(AMF)群落结构和多样性的影响, 本研究通过布设在黄土高原半干旱区的田间试验, 基于2019年(L2019)、2012(L2012)年和2003年(L2003)建植的紫花苜蓿田, 以农田玉米为对照, 采用高通量测序和PCR技术, 结合分子生态网络研究不同种植年限紫花苜蓿地土壤AMF群落组成和丰度, 并基于零模型揭示了土壤AMF群落的组装过程。结果表明: 黄绵土区AMF属于球囊菌门的1纲4目7科7属, 球囊霉属、类球囊霉属和多孢囊霉属为紫花苜蓿地和农田土壤共有类群, 且均以球囊霉属(65.15%~99.12%)为优势属, 其主要贡献了不同处理分组中土壤AMF群落结构的改变。长期种植紫花苜蓿使和平囊霉属和无梗囊霉属消亡, 但促生了双型囊霉属和盾巨孢囊霉属, 其中双型囊霉属相对丰度表现为L2019处理显著高于其他处理(P<0.05)。网络关联分析发现, 高丰度的球囊霉属和类球囊霉属之间呈现负相关, 而低丰度的和平囊霉属和无梗囊霉属之间呈现正相关。基于零模型的AMF群落组装结果表明, 农田与L2019处理由确定性过程主导(66.67%), L2012和L2003处理由随机性过程主导(100%), 这表明长期种植紫花苜蓿形成稳定的土壤环境使其随机性过程增加, 利于维持人工草地生态系统功能的可持续性和稳定性。
  • 图  1  不同处理土壤丛枝菌根真菌(AMF)群落多样性指数

    Farmland、L2019、L2012、L2003分别表示农田、2019年建植紫花苜蓿、2012 年建植紫花苜蓿和2003年建植紫花苜蓿。Farmland, L2019, L2012, and L2003 denote farmland and Medicago sativa fields planted in 2019, 2012, and 2003, respectively.

    Figure  1.  Diversity indexes of arbuscular mycorrhizal fungi (AMF) community under different treatments

    图  2  不同处理土壤丛枝菌根真菌(AMF)群落主坐标分析

    Farmland、L2019、L2012、L2003分别表示农田、2019年建植紫花苜蓿、2012 年建植紫花苜蓿和2003年建植紫花苜蓿。Farmland, L2019, L2012, and L2003 denote farmland and Medicago sativa fields planted in 2019, 2012, and 2003, respectively.

    Figure  2.  Principal co-ordinates analysis (PcoA) of abundance of soil arbuscular mycorrhizal fungi (AMF) communities under different treatments

    图  3  不同处理土壤丛枝菌根真菌(AMF)属水平群落结构(A)和双型囊霉属相对丰度(B)

    Farmland、L2019、L2012、L2003分别表示农田、2019年建植紫花苜蓿、2012 年建植紫花苜蓿和2003年建植紫花苜蓿。*表示处理间差异显著(P<0.05)。Farmland, L2019, L2012, and L2003 denote farmland and Medicago sativa fields planted in 2019, 2012, and 2003, respectively. * indicate significant among treatments at P<0.05.

    Figure  3.  Relative abundance of soil arbuscular mycorrhizal fungi (AMF) community at the genus level (A) and relative abundance of Ambispora (B) under different treatments

    图  4  农田和紫花苜蓿地丛枝菌根真菌(AMF)属的关联网络图

    红线表明正相关, 绿线表明负相关。Red line represents positive correlation. Green line represents negative correlation.

    Figure  4.  Associated network of arbuscular mycorrhizal fungi (AMF) genus in farmland and Medicago sativa fields

    图  5  不同处理方式下土壤丛枝菌根真菌(AMF)群落与土壤理化因子冗余分析

    Farmland、L2019、L2012、L2003分别表示农田、2019年建植紫花苜蓿、2012 年建植紫花苜蓿和2003年建植紫花苜蓿。Glomus, Paraglomus, Diversispora, Scutellospora, Ambispora, Acaulospora and pacispora分别表示球囊霉属、类球囊霉属、多孢囊霉属、盾巨孢囊属、双型囊霉属、无梗囊霉属和平囊霉属。Farmland, L2019, L2012, and L2003 denote farmland and Medicago sativa fields planted in 2019, 2012, and 2003, respectively.

    Figure  5.  Redundancy analysis (RDA) of abundance of soil arbuscular mycorrhizal fungi (AMF) communities and soil physicochemical properties under different treatments

    图  6  不同处理土壤丛枝菌根真菌(AMF)群落组装生态过程

    Farmland、L2019、L2012、L2003分别表示农田、2019年建植紫花苜蓿、2012 年建植紫花苜蓿和2003年建植紫花苜蓿。Stochasticity: 随机性过程; Dil: 扩散限制; Hod: 同质性扩散; Und: 非主导过程; Determinism: 确定性过程; Hes: 异质性选择; Hos: 同质性选择。Farmland, L2019, L2012, and L2003 denote farmland and Medicago sativa fields planted in 2019, 2012, and 2003, respectively. Dil: dispersal limitation; Hod: homogenizing dispersal; Und: undominated processes; Hes: heterogeneous selection; Hos: homogeneous selection.

    Figure  6.  Ecological processes governing abundance of soil arbuscular mycorrhizal fungi (AMF) community assembly under different treatments

    表  1  不同处理土壤基本理化性状及对丛枝菌根真菌(AMF)基因丰度

    Table  1.   Soil physicochemical properties and abundance of arbuscular mycorrhizal fungi (AMF) gene under different treatments

    指标 IndexFarmlandL2019L2012L2003
    土壤水分 Soil water (%)15.65±0.76a8.76±0.46b8.72±0.34b9.62±0.13b
    容重 Bulk Density (g∙cm−3)1.18±0.01a1.21±0.01a1.23±0.02a1.24±0.03a
    有机碳 Organic carbon (g∙kg−1)10.50±0.20b9.83±0.21b9.89±0.05b11.49±0.32a
    全氮 Total nitrogen (g∙kg−1)0.92±0.03b0.77±0.02c0.85±0.05bc1.11±0.05a
    硝态氮 Nitrate nitrogen (mg∙kg−1)23.14±0.33a13.93±0.07c12.35±0.07d14.85±0.08b
    全磷 Total phosphorus (g∙kg−1)0.99±0.01a0.93±0.01b0.86±0.03c0.82±0.01c
    速效磷 Available phosphorus (mg∙kg−1)6.21±0.05a5.02±0.15b3.92±0.13c3.54±0.09d
    速效钾 Available potassium (mg∙kg−1)223.00±11.14a222.00±2.89a228.67±7.06a229.33±0.88a
    pH8.38±0.03a8.49±0.01a8.47±0.04a8.45±0.03a
    AMF基因丰度Abundance of AMF gene [×104 copy∙g−1(dry soil)]1.15±0.01bc1.02±0.00c1.26±0.04b1.50±0.08a
      数据为平均值±标准误(n=3), 同行不同小写字母表示不同处理间差异显著(P<0.05), Farmland、L2019、L2012和L2003分别表示农田、2019年建植紫花苜蓿、2012年建植紫花苜蓿和2003年建植紫花苜蓿。Data in table are mean ± standard error (n=3). Different lowercase letters in the same line indicate significant difference among different treatments (P<0.05). Farmland, L2019, L2012, and L2003 denote farmland and Medicago sativa fields planted in 2019, 2012, and 2003, respectively.
    下载: 导出CSV

    表  2  丛枝菌根真菌(AMF)基因丰度与土壤理化因子相关分析

    Table  2.   Correlation analysis of abundance of arbuscular mycorrhizal fungi (AMF) gene abundance and environmental factors

    AMFSWBDOCTNNO3-NTPAPAKpH
    AMF 1.000
    SW 0.105 1.000
    BD 0.298 −0.495 1.000
    OC 0.522 0.522 0.165 1.000
    TN 0.789** 0.474 0.023 0.786** 1.000
    NO3-N 0.007 0.888** −0.488 0.648* 0.523 1.000
    TP −0.711** 0.438 −0.627* −0.202 −0.304 0.529 1.000
    AP −0.774** 0.326 −0.560 −0.263 −0.397 0.396 0.961** 1.000
    AK 0.462 −0.042 0.229 0.109 0.305 −0.112 −0.385 −0.392 1.000
    pH −0.102 −0.615* 0.456 −0.252 −0.515 −0.566 −0.327 −0.322 0.162 1.000
      **: P<0.01; *: P<0.05. 表中AMF、SW、BD、OC、TN、NO3-N、TP、AP、AK、pH 分别表示AMF基因丰度、土壤水分、容重、有机碳、全氮、硝态氮、全磷、速效磷、速效钾、pH。In the table, AMF, SW, BD, SOC, TN, NO3-N, TP, AP, AK, pH are abundance of AMF gene, soil water, bulk Density, organic carbon, total nitrogen, nitrate nitrogen, total phosphorus, available phosphorus, available potassium, pH.
    下载: 导出CSV

    表  3  不同处理方式间丛枝菌根真菌(AMF)群落组成差异的优势属贡献率

    Table  3.   Contribution rates of dominant genus to abundance of arbuscular mycorrhizal fungi (AMF) community compositions under different treatment

    % 
    分组
    Group
    球囊霉属
    Glomus
    类球囊霉属
    Paraglomus
    多孢囊霉属
    Diversispora
    盾巨孢囊霉属
    Scutellospora
    双型囊霉属
    Ambispora
    无梗囊霉属
    Acaulospora
    和平囊霉属
    pacispora
    Farmland vs L201948.085.271.230.000.930.180.18
    Farmland vs L201249.001.910.561.390.350.270.27
    Farmland vs L200349.182.640.641.140.060.270.26
    L2019 vs L201249.166.061.530.990.740.000.00
    L2019 vs L200349.265.641.320.840.960.000.00
    L2012 vs L200340.5727.445.5021.194.450.000.00
      Farmland、L2019、L2012、L2003分别表示农田、2019年建植紫花苜蓿、2012 年建植紫花苜蓿和2003年建植紫花苜蓿。Farmland, L2019, L2012, and L2003 denote farmland and Medicago sativa fields planted in 2019, 2012, and 2003, respectively.
    下载: 导出CSV

    表  4  土壤理化因子与土壤丛枝菌根真菌(AMF)群落最近分类单元指数(βNTI)的Mantel分析

    Table  4.   Mantel tests of soil physicochemical properties and Beta Nearest Taxon Index (βNTI) of soil arbuscular mycorrhizal fungi (AMF) community

    因子 FactorβNTI
    rP
    SW−0.1260.818
    BD−0.1310.846
    OC0.1090.198
    TN−0.1020.754
    NO3-N−0.0710.651
    TP−0.0560.627
    AP−0.1240.843
    AK−0.0320.518
    pH0.0990.242
    下载: 导出CSV
  • [1] PAN S, WANG Y, QIU Y P, et al. Nitrogen-induced acidification, not N-nutrient, dominates suppressive N effects on arbuscular mycorrhizal fungi[J]. Global Change Biology, 2020, 26(11): 6568−6580 doi: 10.1111/gcb.15311
    [2] LUKAS S, GATTINGER A, MEIER M, et al. Improving crop yield and nutrient use eficiency via biofertilization — A global Meta-analysis[J]. Frontiers in Plant Science, 2018, 8(12): 2204
    [3] VOLPIN H, PHILLIPS D A. Respiratory elicitors from Rhizobium meliloti affect intact alfalfa roots[J]. Plant Physiology, 1998, 116(2): 777−783 doi: 10.1104/pp.116.2.777
    [4] MASSA N, CESARO P, TODESCHINI V, et al. Selected autochthonous rhizobia, applied in combination with AM fungi, improve seed quality of common bean cultivated in reduced fertilization condition[J]. Applied Soil Ecology, 2020, 148: 103507 doi: 10.1016/j.apsoil.2020.103507
    [5] 赵丹丹, 李涛, 赵之伟. 丛枝菌根真菌-豆科植物-根瘤菌共生体系的研究进展[J]. 生态学杂志, 2006, 25(3): 327−333 doi: 10.3321/j.issn:1000-4890.2006.03.020

    ZHAO D D, LI T, ZHAO Z W. Research advances in arbuscular mycorrhizal fungi-legumes-rhizobia symbiosis[J]. Chinese Journal of Ecology, 2006, 25(3): 327−333 doi: 10.3321/j.issn:1000-4890.2006.03.020
    [6] ABD-ALLA M H, ELSADEK EL-ENANY A W, ALLAM NAFADY N, et al. Synergistic interaction of Rhizobium leguminosarum bv. viciae and arbuscular mycorrhizal fungi as a plant growth promoting biofertilizers for faba bean (Vicia faba L. ) in alkaline soil[J]. Microbiological Research, 2014, 169(1): 49−58 doi: 10.1016/j.micres.2013.07.007
    [7] 李元敬, 刘智蕾, 何兴元, 等. 丛枝菌根共生体的氮代谢运输及其生态作用[J]. 应用生态学报, 2013, 24(3): 861−868

    LI Y J, LIU Z L, HE X Y, et al. Nitrogen metabolism and translocation in arbuscular mycorrhizal symbiote and its ecological implications[J]. Chinese Journal of Applied Ecology, 2013, 24(3): 861−868
    [8] CHALK P M, DE F SOUZA R, URQUIAGA S, et al. The role of arbuscular mycorrhiza in legume symbiotic performance[J]. Soil Biology and Biochemistry, 2006, 38(9): 2944−2951 doi: 10.1016/j.soilbio.2006.05.005
    [9] 伏云珍, 马琨, 崔慧珍, 等. 间作作物种间相互作用对马铃薯根际土壤丛枝菌根真菌的影响[J]. 生态学杂志, 2021, 40(1): 131−139 doi: 10.13292/j.1000-4890.202101.030

    FU Y Z, MA K, CUI H Z, et al. Effects of interspecific interactions between intercropping crops on arbuscular mycorrhizal fungi in potato rhizosphere soil in the intercropping system[J]. Chinese Journal of Ecology, 2021, 40(1): 131−139 doi: 10.13292/j.1000-4890.202101.030
    [10] LEIBOLD M A, MCPEEK M A. Coexistence of the niche and neutral perspectives in community ecology[J]. Ecology, 2006, 87(6): 1399−1410 doi: 10.1890/0012-9658(2006)87[1399:COTNAN]2.0.CO;2
    [11] 柴宇星. 祁连山阴阳坡丛枝菌根真菌多样性及群落构建机制研究[D]. 兰州: 兰州大学, 2018

    CHAI Y X. The species diversity and community assembly of arbuscular mycorrhizal fungi in Qilianshan Mountains on a northwest-facing slope and a southeast-facing slope[D]. Lanzhou: Lanzhou University, 2018
    [12] VÁLYI K, MARDHIAH U, RILLIG M C, et al. Community assembly and coexistence in communities of arbuscular mycorrhizal fungi[J]. The ISME Journal, 2016, 10(10): 2341−2351 doi: 10.1038/ismej.2016.46
    [13] 李洁, 李杏春, 郭良栋. 真菌群落构建机制研究进展[J]. 菌物学报, 2023, 42(1): 13–25 http://kns.cnki.net/kcms/detail/11.5180.Q.20221122.1836.008.html

    LI J, LI X C, GUO L D. Research progress on community assembly mechanisms of fungi[J]. Mycosystema, 2023, 42(1): 13–25
    [14] 倪红, 杨宪龙, 王刚, 等. 施氮及添加硝化抑制剂对苜蓿草地N2O排放的影响[J]. 中国生态农业学报(中英文), 2020, 28(3): 317−327

    NI H, YANG X L, WANG G, et al. Effects of nitrogen application and nitrification inhibitor addition on N2O emissions in Medicago sativa L. grassland[J]. Chinese Journal of Eco-Agriculture, 2020, 28(3): 317−327
    [15] 江影舟, 南志标, 王丽佳. 基于钻石模型理论的甘肃省苜蓿产业竞争力分析[J]. 草业科学, 2016, 33(4): 813−820 doi: 10.11829/j.issn.1001-0629.2015-0363

    JIANG Y Z, NAN Z B, WANG L J. Competitiveness of alfalfa industry in Gansu Province — a diamond model[J]. Pratacultural Science, 2016, 33(4): 813−820 doi: 10.11829/j.issn.1001-0629.2015-0363
    [16] WANG L L, XIE J H, LUO Z Z, et al. Forage yield, water use efficiency, and soil fertility response to alfalfa growing age in the semiarid Loess Plateau of China[J]. Agricultural Water Management, 2021, 243: 106415 doi: 10.1016/j.agwat.2020.106415
    [17] RECORBET G, CALABRESE S, BALLIAU T, et al. Proteome adaptations under contrasting soil phosphate regimes of Rhizophagus irregularis engaged in a common mycorrhizal network[J]. Fungal Genetics and Biology, 2021, 147: 103517 doi: 10.1016/j.fgb.2021.103517
    [18] ZHANG L, FENG G, DECLERCK S. Signal beyond nutrient, fructose, exuded by an arbuscular mycorrhizal fungus triggers phytate mineralization by a phosphate solubilizing bacterium[J]. The ISME Journal, 2018, 12(10): 2339−2351 doi: 10.1038/s41396-018-0171-4
    [19] ZHANG L, FAN J Q, DING X D, et al. Hyphosphere interactions between an arbuscular mycorrhizal fungus and a phosphate solubilizing bacterium promote phytate mineralization in soil[J]. Soil Biology and Biochemistry, 2014, 74: 177−183 doi: 10.1016/j.soilbio.2014.03.004
    [20] 杨文莹, 孙露莹, 宋凤斌, 等. 陆地农业生态系统丛枝菌根真菌物种多样性研究进展[J]. 应用生态学报, 2019, 30(11): 3971−3979

    YANG W Y, SUN L Y, SONG F B, et al. Research advances in species diversity of arbuscular mycorrhizal fungi in terrestrial agro-ecosystem[J]. Chinese Journal of Applied Ecology, 2019, 30(11): 3971−3979
    [21] 张旭红, 朱永官, 王幼珊, 等. 不同施肥处理对丛枝菌根真菌生态分布的影响[J]. 生态学报, 2006, 26(9): 3081−3087 doi: 10.3321/j.issn:1000-0933.2006.09.038

    ZHANG X H, ZHU Y G, WANG Y S, et al. Effect of long-term fertilization on the diversity and distribution of arbuscular mycorrhiza fungi in Northeast China[J]. Acta Ecologica Sinica, 2006, 26(9): 3081−3087 doi: 10.3321/j.issn:1000-0933.2006.09.038
    [22] WILLIAMS A, MANOHARAN L, ROSENSTOCK N P, et al. Long-term agricultural fertilization alters arbuscular mycorrhizal fungal community composition and barley (Hordeum vulgare) mycorrhizal carbon and phosphorus exchange[J]. The New Phytologist, 2017, 213(2): 874−885 doi: 10.1111/nph.14196
    [23] 鲍士旦. 土壤农化分析[M]. 3版. 北京: 中国农业出版社, 2000

    BAO S D. Soil and Agricultural Chemistry Analysis[M]. 3rd ed. Beijing: China Agriculture Press, 2000.
    [24] STEGEN J C, LIN X J, FREDRICKSON J K, et al. Quantifying community assembly processes and identifying features that impose them[J]. The ISME Journal, 2013, 7(11): 2069−2079 doi: 10.1038/ismej.2013.93
    [25] 刘润进, 李晓林. 丛枝菌根及其应用[M]. 北京: 科学出版社, 2000

    LIU R J, LI X L. Application of Arbuscular Mycorrhizal [M]. Beijing: Science Press, 2000
    [26] WU M N, QIN H L, CHEN Z, et al. Effect of long-term fertilization on bacterial composition in rice paddy soil[J]. Biology and Fertility of Soils, 2011, 47(4): 397−405 doi: 10.1007/s00374-010-0535-z
    [27] URCOVICHE R C, GAZIM Z C, DRAGUNSKI D C, et al. Plant growth and essential oil content of Mentha crispa inoculated with arbuscular mycorrhizal fungi under different levels of phosphorus[J]. Industrial Crops and Products, 2015, 67: 103−107 doi: 10.1016/j.indcrop.2015.01.016
    [28] 吴强盛, 夏仁学, 邹英宁. 柑橘丛枝菌根真菌生长与根际有效磷和磷酸酶活性的相关性[J]. 应用生态学报, 2006, 17(4): 4685−4689 doi: 10.3321/j.issn:1001-9332.2006.04.025

    WU Q S, XIA R X, ZOU Y N. Arbuscular mycorrhizal fungal growth on citrus roots and its correlations with soil available phosphorus content and phosphatase activity[J]. Chinese Journal of Applied Ecology, 2006, 17(4): 4685−4689 doi: 10.3321/j.issn:1001-9332.2006.04.025
    [29] 王永明, 范洁群, 石兆勇. 中国丛枝菌根真菌分子多样性[J]. 微生物学通报, 2018, 45(11): 2399−2408 doi: 10.13344/j.microbiol.china.171093

    WANG Y M, FAN J Q, SHI Z Y. Molecular diversity of arbuscular mycorrhizal fungal in China[J]. Microbiology China, 2018, 45(11): 2399−2408 doi: 10.13344/j.microbiol.china.171093
    [30] 薛壮壮, 冯童禹, 王超, 等. 土地利用方式对酸性红壤丛枝菌根真菌群落的影响[J]. 土壤, 2022, 54(4): 733−739 doi: 10.13758/j.cnki.tr.2022.04.010

    XUE Z Z, FENG T Y, WANG C, et al. Effects of land-use patterns on arbuscular mycorrhizal fungi community in acidic red soil[J]. Soils, 2022, 54(4): 733−739 doi: 10.13758/j.cnki.tr.2022.04.010
    [31] 彭岳林, 杨敏娜, 蔡晓布. 西藏高原针茅草地土壤因子对丛枝菌根真菌物种多样性的影响[J]. 应用生态学报, 2010, 21(5): 1258−1263 doi: 10.13287/j.1001-9332.2010.0192

    PENG Y L, YANG M N, CAI X B. Influence of soil factors on species diversity of arbuscular mycorrhizal (AM) fungi in Stipa steppe of Tibet Plateau[J]. Chinese Journal of Applied Ecology, 2010, 21(5): 1258−1263 doi: 10.13287/j.1001-9332.2010.0192
    [32] 高威, 王连峰, 贾仲君. 长期不同施肥模式对农田黑土微生物群落构建的影响[J]. 生态与农村环境学报, 2021, 37(11): 1437−1448 doi: 10.19741/j.issn.1673-4831.2020.0807

    GAO W, WANG L F, JIA Z J. Changes in community assembly of microbiomes in black soil under distinct scenarios of long-term field fertilization[J]. Journal of Ecology and Rural Environment, 2021, 37(11): 1437−1448 doi: 10.19741/j.issn.1673-4831.2020.0807
    [33] FENG Y Z, GUO Z Y, ZHONG L H, et al. Balanced fertilization decreases environmental filtering on soil bacterial community assemblage in North China[J]. Frontiers in Microbiology, 2017, 8: 2376 doi: 10.3389/fmicb.2017.02376
    [34] ZHANG B G, ZHANG J, LIU Y, et al. Biogeography and ecological processes affecting root-associated bacterial communities in soybean fields across China[J]. Science of the Total Environment, 2018, 627: 20−27 doi: 10.1016/j.scitotenv.2018.01.230
    [35] JIAO S, LU Y H. Soil pH and temperature regulate assembly processes of abundant and rare bacterial communities in agricultural ecosystems[J]. Environmental Microbiology, 2020, 22(3): 1052−1065 doi: 10.1111/1462-2920.14815
    [36] KNELMAN J E, NEMERGUT D R. Changes in community assembly may shift the relationship between biodiversity and ecosystem function[J]. Frontiers in Microbiology, 2014, 5: 424
    [37] GRAHAM E, STEGEN J. Dispersal-based microbial community assembly decreases biogeochemical function[J]. Processes, 2017, 5(4): 65 doi: 10.3390/pr5040065
    [38] OLIVERES S, VAN DER PLAS F, MANNING P, et al. Biodiversity at multiple trophic levels is needed for ecosystem multifunctionality[J]. Nature, 2016, 536(7617): 456−459 doi: 10.1038/nature19092
  • 加载中
图(6) / 表(4)
计量
  • 文章访问数:  99
  • HTML全文浏览量:  43
  • PDF下载量:  10
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-09-10
  • 录用日期:  2022-12-27
  • 修回日期:  2023-01-27
  • 网络出版日期:  2023-02-07

目录

    /

    返回文章
    返回