留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

典型铅锌企业周边农田重金属富集植物筛选

何孟轲 郭俊娒 杨俊兴 郑国砥 陈同斌 孟晓飞 李玉峰 刘杰

何孟轲, 郭俊娒, 杨俊兴, 郑国砥, 陈同斌, 孟晓飞, 李玉峰, 刘杰. 典型铅锌企业周边农田重金属富集植物筛选[J]. 中国生态农业学报 (中英文), 2023, 31(0): 1−14 doi: 10.12357/cjea.20220711
引用本文: 何孟轲, 郭俊娒, 杨俊兴, 郑国砥, 陈同斌, 孟晓飞, 李玉峰, 刘杰. 典型铅锌企业周边农田重金属富集植物筛选[J]. 中国生态农业学报 (中英文), 2023, 31(0): 1−14 doi: 10.12357/cjea.20220711
HE M K, GUO J M, YANG J X, ZHENG G D, CHEN T B, MENG X F, LI Y F, LIU J. Screening of accumulating plants in farmland surrounding typical lead and zinc smelting enterprises[J]. Chinese Journal of Eco-Agriculture, 2023, 31(0): 1−14 doi: 10.12357/cjea.20220711
Citation: HE M K, GUO J M, YANG J X, ZHENG G D, CHEN T B, MENG X F, LI Y F, LIU J. Screening of accumulating plants in farmland surrounding typical lead and zinc smelting enterprises[J]. Chinese Journal of Eco-Agriculture, 2023, 31(0): 1−14 doi: 10.12357/cjea.20220711

典型铅锌企业周边农田重金属富集植物筛选

doi: 10.12357/cjea.20220711
基金项目: 国家自然科学基金(4227071531)、国家重点研究发展计划项目(2018YFC1802604)、人才培养质量建设-高水平人才交叉培养计划-实培计划项目(PXM2020_014207_000009)和中国科学院大学生创新实践训练计划(20224000892)资助
详细信息
    作者简介:

    何孟轲, 主要研究方向为资源利用与环境污染治理修复。E-mail: hemengke21@mails.ucas.ac.cn

    通讯作者:

    杨俊兴, 主要研究研方向为资源利用与环境污染治理修复。E-mail: yangajx@igsnrr.ac.cn

  • 中图分类号: X53

Screening of accumulating plants in farmland surrounding typical lead and zinc smelting enterprises

Funds: This study was supported by National Natural Science Foundation of China (4227071531), National Key R&D Program of China (2018YFC1802604), Personnel Training Quality Construction-Cross Training Plan for High-level Talents-Practical Training Program of Beijing, China (PXM2020_014207_000009) and Innovation Practice Training Program for College Students of Chinese Academy of Sciences (20224000892).
More Information
  • 摘要: 为探究有色金属企业周边农田重金属污染状况, 筛选修复与安全利用优势植物。本研究在河南省济源市某铅锌冶炼企业周边农田开展调查, 探明研究区土壤重金属污染特征, 并选用17种重金属富集植物, 开展田间试验, 比较其生物量、重金属含量、富集系数、提取量及去除率等, 建立适合研究区的土壤重金属污染植物修复技术模式。结果表明, 试验区土壤镉(Cd)、铅(Pb)存在超标情况, 超标率Cd>Pb, 污染物主要分布在0~20 cm耕作层, 属典型的轻中度Cd、Pb污染农田土壤。试验区主要农产品小麦籽粒Cd、Pb超标率为100%, 部分样品As超标, 玉米籽粒符合标准。17种富集植物生物量和对重金属的富集能力差异较大, 籽粒苋生物量最高, 达29 598 kg∙hm−2, 是遏蓝菜的46.6倍, 植物体内重金属Cd、Pb、As含量分别为2.90~30.90 mg∙kg−1、7.81~93.1 mg∙kg−1、3.76~22.9 mg∙kg−1。不同植物对土壤中重金属的去除率存在明显差异, 籽粒苋、冬油菜‘中油千斤旱’、向日葵‘S606’表现出良好的Cd、Pb提取修复潜力, 对土壤中Cd的去除率均高于1.90%。此外, 油菜和向日葵可进一步加工生产食用油、饲料或有机肥料, 实现边修复边生产, 应用前景较好。在研究区采用籽粒苋—冬油菜轮作和向日葵单作两种修复模式均能达到较高的修复效果, 具备一定的推广应用潜力。
  • 图  1  试验区不同深度土壤重金属含量分布特征

    图中红色参考线代表各重金属的风险筛选值, 根据GB 15618—2018中农用地重金属含量(pH>7.5), Cd的风险筛选值为0.6 mg∙kg−1, Pb的风险筛选值为170 mg∙kg−1, As的风险筛选值为25 mg∙kg−1。The red reference lines in the figure represent the risk screening values of each heavy metal. According to the heavy metal content of farmland in GB 15618-2018 (pH>7.5), the risk screening values of Cd, Pb, and As are 0.6 mg∙kg−1, 170 mg∙kg−1, and 25 mg∙kg−1, respectively.

    Figure  1.  Distribution characteristics of heavy metals contents at different depths in the study area

    图  2  不同富集植物的生物量

    序号P1~P17详见表1中富集植物; 不同小写字母表示差异显著(P<0.05)。P1−P17 referred to the numbers of accumulating plants in Table 1. Different lowercase letters meant significant difference at 0.05 level.

    Figure  2.  Biomass of different accumulating plants

    图  3  不同富集植物重金属含量

    序号P1~P17详见表1中富集植物; 不同小写字母表示差异显著(P<0.05)。P1−P17 referred to the numbers of accumulating plants in Table 1. Different lowercase letters meant significant difference at 0.05 level.

    Figure  3.  Cd、Pb and As content in different accumulating plants

    图  4  不同富集植物对重金属的综合生物富集指数(CBCI)

    序号P1~P17详见表1中富集植物。P1−P17 referred to the numbers of accumulating plants in Table 1.

    Figure  4.  Comprehensive bio-concentration index (CBCI) of heavy metals of different accumulating plants

    图  5  不同植物Cd、Pb和As提取量及去除率

    序号P1~P17详见表1中富集植物; 不同小写字母表示差异显著(P<0.05)。P1−P17 referred to the numbers of accumulating plants in Table 1. Different lowercase letters meant significant difference at 0.05 level.

    Figure  5.  Cd, Pb, and As extraction amount and removal efficiency of different plants

    图  6  不同植物Cd、Pb富集能力聚类热图

    序号P1~P17详见表1中富集植物。9项聚类指标(Index 1~Index9)分别为: 生物量、Cd含量、Pb含量、Cd富集系数、Pb富集系数、Cd提取量、Pb提取量、Cd去除率和Pb去除率。P1−P17 referred to the numbers of accumulating plants in Table 1. Index 1~Index 9 respectively represent: biomass, Cd content, Pb content, BCF of Cd, BCF of Pb, Cd extraction amount, Pb extraction amount, Cd removal efficiency, and Pb removal efficiency.

    Figure  6.  Clustering heat map of Cd、Pb accumulation capacity of different plants

    表  1  富集植物基本信息及种植条件

    Table  1.   Basic information of accumulating plants and planting conditions

    序号
    Number

    Species

    Family
    生活型
    Life form
    播种量
    Seeding rate (kg∙hm−2)
    定苗数量
    Singling density
    (×104∙hm−2)
    种植方式
    Planting way
    P1德国景天
    Phedimus hybridus ‘Immergrunchett’
    景天科
    Crassulaceae
    多年生草本植物
    Perennial herbs
    /25扦插
    Cuttage
    P2三七景天
    Sedum aizoon
    景天科
    Crassulaceae
    多年生草本植物
    Perennial herbs
    /12扦插
    Cuttage
    P3伴矿景天
    Sedum plumbizincicola
    景天科
    Crassulaceae
    多年生草本植物
    Perennial herbs
    /12扦插
    Cuttage
    P4印度芥菜
    Brassica juncea
    十字花科
    Brassicaceae
    一年生草本植物
    Annual herbs
    3012直播
    Sowing
    P5鬼针草
    Bidens pilosa
    菊科
    Asteraceae
    一年生草本植物
    Annual herbs
    157.5直播
    Sowing
    P6龙葵
    Solanum nigrum
    茄科
    Solanaceae
    一年生草本植物
    Annual herbs
    3012直播
    Sowing
    P7紫茉莉
    Mirabilis jalapa
    紫茉莉科
    Nyctaginaceae
    一年生草本植物
    Annual herbs
    153直播
    Sowing
    P8遏蓝菜
    Thlaspi arvense
    十字花科
    Brassicaceae
    一年生草本植物
    Annual herbs
    2.2512直播
    Sowing
    P9红叶甜菜
    Beta vulgaris
    藜科
    Chenopodiaceae
    二年生草本植物
    Biennial herbs
    7.56直播
    Sowing
    P10红苋菜
    Amaranthus caudatus
    苋科
    Amaranthaceae
    一年生草本植物
    Annual herbs
    7512直播
    Sowing
    P11籽粒苋
    Amaranthus hypochondriacus
    苋科
    Amaranthaceae
    一年生草本植物
    Annual herbs
    1512直播
    Sowing
    P12油菜‘早熟100天’
    Brassica napus ‘Zaoshu 100’
    十字花科
    Brassicaceae
    二年生草本植物
    Biennial herbs
    912直播
    Sowing
    P13油菜‘极旱98’
    Brassica napus ‘Jihan 98’
    十字花科
    Brassicaceae
    二年生草本植物
    Biennial herbs
    912直播
    Sowing
    P14油菜‘中油千斤旱’
    Brassica napus ‘Zhongyou 1000’
    十字花科
    Brassicaceae
    二年生草本植物
    Biennial herbs
    912直播
    Sowing
    P15向日葵‘S606’
    Helianthus annuus ‘S606’
    菊科
    Asteraceae
    一年生草本植物
    Annual herbs
    306直播
    Sowing
    P16向日葵‘桃之春’
    Helianthus annuus ‘Taozhichun’
    菊科
    Asteraceae
    一年生草本植物
    Annual herbs
    306直播
    Sowing
    P17向日葵‘三阳开泰’
    Helianthus annuus ‘Sanyangkaitai’
    菊科
    Asteraceae
    一年生草本植物
    Annual herbs
    306直播
    Sowing
    下载: 导出CSV

    表  2  塘石试验区表层土壤重金属含量

    Table  2.   Heavy metal content of topsoil in Tangshi experiment area

    CdPbAs
    平均值 Mean value (mg∙kg−1)2.22±0.28173.1±14.3318.38±1.85
    GB 15618—2018风险筛选值(pH>7.5) GB 15618—2018 risk screening values (pH>7.5)0.617025
    超标率 Standard-exceeding ratio (%)10054.20
    单因子污染指数 Single factor pollution3.711.020.74
    下载: 导出CSV

    表  3  塘石试验区小麦、玉米籽粒中重金属含量

    Table  3.   Heavy metal content in wheat and corn grain in Tangshi experiment area

    籽粒
    Seed
    品种
    Cultivar
    CdPbAs
    含量
    Content
    (mg∙kg−1)
    超标率
    Exceeding rate (%)
    含量
    Content
    (mg∙kg−1)
    超标率
    Exceeding rate (%)
    含量
    Content
    (mg∙kg−1)
    超标率
    Exceeding rate (%)
    小麦 Wheat矮抗58 Aikang 580.26±0.051000.53±0.131000.61±0.08 75
    洛麦23 Luomai 230.29±0.061000.77±0.231000.62±0.17100
    玉米 Maize郑单 958 Zhengdan 9580.01±0 00.11±0.02 0 0.1±0.01 0
    《食品安全国家标准 食品中污染物限量》
    National Food Safety Standards (GB 2762—2017)
    0.10.20.5
    下载: 导出CSV

    表  4  不同植物重金属富集系数

    Table  4.   Bioconcentration factor of different plants

    植物 Plant富集系数 Bioconcentration factor
    CdPbAs
    德国景天 Phedimus hybridus ‘Immergrunchett’8.88±0.22b0.11±0.01hi0.46±0.03cde
    三七景天 Sedum aizoon2.56±0.26fg0.11±0.02hi0.60±0.11cd
    伴矿景天 Sedum plumbizincicola13.92±1.54a0.30±0.01d0.52±0.09cd
    印度芥菜 Brassica juncea2.32±0.19fg0.14±0.02gh0.26±0.02efg
    鬼针草 Bidens pilosa3.15±0.31efg0.24±0.02def0.43±0.05def
    龙葵 Solanum nigrum5.72±1.22cd0.22±0.06ef0.65±0.16c
    紫茉莉 Mirabilis jalapa1.31±0.12g0.07±0.02hi0.25±0.02fg
    遏蓝菜 Thlaspi arvense6.97±1.64bc0.05±0.01i0.20±0.05g
    红叶甜菜 Beta vulgaris2.75±0.42fg0.19±0.01fg0.26±0.03fg
    红苋菜 Amaranthus caudatus1.55±0.05g0.07±0.01hi0.25±0.05fg
    籽粒苋 Amaranthus hypochondriacus3.98±0.35def0.19±0.01fg1.24±0.10a
    油菜(早熟100天)
    Brassica napus (Zaoshu 100)
    2.18±0.17fg0.29±0.03de0.26±0.02efg
    油菜(极旱98)
    Brassica napus (Jihan 98)
    2.88±1.08fg0.45±0.04bc0.44±0.01def
    油菜(中油千斤旱)
    Brassica napus (Zhongyou 1000)
    2.28±0.57fg0.48±0.02ab0.41±0.06defg
    向日葵(S606)
    Helianthus annuus (S606)
    5.31±0.27cde0.54±0.02a1.24±0.06a
    向日葵(桃之春)
    Helianthus annuus (Taozhichun)
    4.21±0.08def0.45±0.002bc1.16±0.04ab
    向日葵(三阳开泰)
    Helianthus annuus (Sanyangkaitai)
    6.81±0.28bc0.40±0.02c0.97±0.01b
      同列不同字母表示差异显著( P<0.05)。Different lowercase letters in the same column meant significant difference at P<0.05 level.
    下载: 导出CSV

    表  5  富集植物对Cd污染土壤的修复效果比较

    Table  5.   Comparison of phytoremediation efficiency of Cd hyperaccumulators

    植物
    Plant
    种植模式
    Planting mode
    种植时间
    Planting time
    (d)
    土壤pH
    Soil pH
    土壤全Cd
    Total Cd
    (mg·kg−1)
    地上部Cd含量
    Shoot Cd content
    (mg·kg−1)
    地上部生物量
    Shoot biomass
    (g·株−1)
    修复后土壤
    Cd含量
    Cd content after remediation (mg·kg−1)
    修复效率
    Efficiency
    (%)
    参考文献
    References
    德国景天
    Phedimus hybridus 'Immergrunchett'
    盆栽试验
    Pot
    306.83254.462.30//[34]
    三七景天
    Sedum spetabilis
    盆栽试验
    Pot
    1007.822017.055.50//[35]
    伴矿景天
    Sedum plumbizincicola
    田间试验
    Field
    606.900.6547.0016.180.5513.7[36]
    印度芥菜
    Brassica juncea
    盆栽试验
    Pot
    908.12.23.184.31/0.20[37]
    印度芥菜
    Brassica juncea
    盆栽试验
    Pot
    908.087.4914.895.95/0.40[37]
    鬼针草
    Bidens pilosa
    盆栽试验
    Pot
    606.782.5711.9010.50//[38]
    三叶鬼针草
    Bidens pilosa
    盆栽实验
    Pot
    1807.5~8.21.2499/10.1140.8617/[39]
    三叶鬼针草
    Bidens pilosa
    盆栽实验
    Pot
    1807.5~8.212.0332/7.78210.0206/[39]
    三叶鬼针草
    Bidens pilosa
    盆栽试验
    Pot
    908.102.2010.4412.81/2.40[37]
    三叶鬼针草
    Bidens pilosa
    盆栽试验
    Pot
    908.087.4928.0312.76/1.59[37]
    龙葵
    Solanum nigrum
    盆栽试验
    Pot
    608.571.8318.601.48//[40]
    龙葵
    Solanum nigrum
    田间试验
    Field
    608.341.573.341.50/0.67[41]
    龙葵
    Solanum nigrum
    田间试验
    Field
    606.483.8941.393.07/1.59[41]
    紫茉莉
    Mirabilis jalapa
    盆栽试验
    Pot
    906.505.010.363.71//[42]
    紫茉莉
    Mirabilis jalapa
    盆栽实验
    Pot
    1807.5~8.21.1467/2.9341.0425/[39]
    紫茉莉
    Mirabilis jalapa
    盆栽实验
    Pot
    1807.5~8.212.5605/3.96811.1547/[39]
    遏蓝菜
    Noccaea caerulescens
    田间试验
    Field
    1807.61.917.744.45//[43]
    红叶甜菜
    Beta vulgaris
    盆栽试验
    Pot
    606.211.5516.4424.94//[44]
    红苋菜
    Amaranthus mangostanus
    盆栽试验
    Pot
    605.092.811.831.28//[45]
    苋菜
    Amaranthus mangostanus
    盆栽试验
    Pot
    608.571.831.211.99//[40]
    籽粒苋
    Amaranthus hypochondriacus
    田间试验
    Field
    608.341.572.072.02/0.27[41]
    籽粒苋
    Amaranthus hypochondriacus
    田间试验
    Field
    606.483.8922.592.50/1.45[41]
    下载: 导出CSV
  • [1] CAI L M, WANG Q S, LUO J, et al. Heavy metal contamination and health risk assessment for children near a large Cu-smelter in central China[J]. Science of the Total Environment, 2019(650): 725−733
    [2] 陈劲松, 张颖, 蒲生彦. 某炼铁厂遗留场地重金属污染空间分布特征及风险评价[J]. 安全与环境工程, 2021, 28(3): 162−169

    CHEN J S, ZHANG Y, PU S Y. Spatial distribution characteristics and risk assessment of heavy metal pollution in a legacy site of an iron-making plant[J]. Safety and Environmental Engineering, 2021, 28(3): 162−169
    [3] 田美玲, 钟雪梅, 张云霞, 等. 矿业活动影响区稻田土壤和稻米中重金属含量及健康风险[J]. 环境科学, 2018, 39(6): 2919−2926

    TIAN M L, ZHONG X M, ZHANG Y X, et al. Concentrations and health risk assessments of heavy metal contents in soil and rice of mine contaminated areas[J]. Environmental Science, 2018, 39(6): 2919−2926
    [4] SARWAR N, IMRAN M, SHAHEEN M R, et al. Phytoremediation strategies for soils contaminated with heavy metals: modifications and future perspectives[J]. Chemosphere, 2017, 171: 710−721 doi: 10.1016/j.chemosphere.2016.12.116
    [5] RAI P K, LEE S S, ZHANG M, et al. Heavy metals in food crops: health risks, fate, mechanisms, and management[J]. Environment International, 2019, 125: 365−385 doi: 10.1016/j.envint.2019.01.067
    [6] ALI H, KHAN E, SAJAD M A. Phytoremediation of heavy metals—concepts and applications[J]. Chemosphere, 2013, 91(7): 869−881 doi: 10.1016/j.chemosphere.2013.01.075
    [7] 郭松明, 余海波, 袁龙义. 近20年我国重金属超积累植物种质资源筛选研究进展[J]. 生态毒理学报, 2022, 17(2): 96−108

    GUO S M, YU H B, YUAN L Y. Research progress of screening of germplasm resources of heavy metal hyperaccumulator in recent 20 years in China[J]. Asian Journal of Ecotoxicology, 2022, 17(2): 96−108
    [8] 谢运河, 纪雄辉, 吴家梅, 等. 镉砷污染土壤“三高”富集植物筛选与修复成本分析[J]. 环境科学与技术, 2020, 43(S1): 116−121

    XIE Y H, JI X H, WU J M, et al. The “three highs” hyperaccumulators screening and repair cost analysis of cadmium and arsenic contaminate soil[J]. Environmental Science & Technology, 2020, 43(S1): 116−121
    [9] 郭嘉航, 李亚兰, 杨云, 等. 不同活化剂强化超富集植物鬼针草吸收Cd的比较分析[J]. 安徽农业大学学报, 2022, 49(3): 483−490

    GUO J H, LI Y L, YANG Y, et al. Comparative analysis of different activators for enhancing Cd absorption from the contaminated soil by hyperaccumulator Bidens pilosa[J]. Journal of Anhui Agricultural University, 2022, 49(3): 483−490
    [10] REEVES R D, BAKER A J M, JAFFRÉ T, et al. A global database for plants that hyperaccumulate metal and metalloid trace elements[J]. New Phytologist, 2018, 218(2): 407−411 doi: 10.1111/nph.14907
    [11] WEI S H, ZHOU Q X, KOVAL P V. Flowering stage characteristics of cadmium hyperaccumulator Solanum nigrum L. and their significance to phytoremediation[J]. Science of the Total Environment, 2006, 369(1/2/3): 441−446
    [12] GONG Y Y, ZHAO D Y, WANG Q L. An overview of field-scale studies on remediation of soil contaminated with heavy metals and metalloids: technical progress over the last decade[J]. Water Research, 2018, 147: 440−460 doi: 10.1016/j.watres.2018.10.024
    [13] ADESODUN J K, ATAYESE M O, AGBAJE T A, et al. Phytoremediation potentials of sunflowers (Tithonia diversifolia and Helianthus annuus) for metals in soils contaminated with zinc and lead nitrates[J]. Water, Air, and Soil Pollution, 2010, 207(1/2/3/4): 195−201
    [14] ALABOUDI K A, AHMED B, BRODIE G. Phytoremediation of Pb and Cd contaminated soils by using sunflower (Helianthus annuus) plant[J]. Annals of Agricultural Sciences, 2018, 63(1): 123−127 doi: 10.1016/j.aoas.2018.05.007
    [15] NAKAMURA S I, WONGKAEW A, NAKAI Y J, et al. Foliar-applied glutathione activates zinc transport from roots to shoots in oilseed rape[J]. Plant Science, 2019, 283: 424−434 doi: 10.1016/j.plantsci.2018.10.018
    [16] REN X M, GUO S J, TIAN W, et al. Effects of plant growth-promoting bacteria (PGPB) inoculation on the growth, antioxidant activity, Cu uptake, and bacterial community structure of rape (Brassica napus L.) grown in Cu-contaminated agricultural soil[J]. Frontiers in Microbiology, 2019, 10: 1455 doi: 10.3389/fmicb.2019.01455
    [17] 济源产城融合示范区发展改革和统计局. 2021年济源国民经济和社会发展统计公报[EB/OL]. (2022-03-29) [2022-09-10]. http://fgw.jiyuan.gov.cn/14186/17304/20647/t829953.html

    Development, Reform and Statistics Bureau of Jiyuan Production-City Integration Demonstration Zone. Statistical bulletin of Jiyuan national economic and social development in 2021[EB/OL]. (2022-03-29) [2022-09-10]. http://fgw.jiyuan.gov.cn/14186/17304/20647/t829953.html
    [18] XING W Q, ZHENG Y L, SCHECKEL K G, et al. Spatial distribution of smelter emission heavy metals on farmland soil[J]. Environmental Monitoring and Assessment, 2019, 191(2): 115 doi: 10.1007/s10661-019-7254-1
    [19] XING W Q, ZHANG H Y, SCHECKEL K G, et al. Heavy metal and metalloid concentrations in components of 25 wheat (Triticum aestivum) varieties in the vicinity of lead smelters in Henan Province, China[J]. Environmental Monitoring and Assessment, 2015, 188(1): 1−10
    [20] QIU K Y, XING W Q, SCHECKEL K G, et al. Temporal and seasonal variations of As, Cd and Pb atmospheric deposition flux in the vicinity of lead smelters in Jiyuan, China[J]. Atmospheric Pollution Research, 2016, 7(1): 170−179 doi: 10.1016/j.apr.2015.09.003
    [21] 河南省人民政府. 关于印发河南省清洁土壤行动计划的通知[EB/OL]. (2017-4-28) [2022-09-10]. http://www.henan.gov.cn/2017/05-15/239729.html

    Henan Provincial People’s Government. Notice on printing and distributing the action plan of clean soil in Henan Province[EB/OL]. (2017-4-28) [2022-09-10]. http://www.henan.gov.cn/2017/05-15/239729.html
    [22] 全国土壤普查办公室. 中国土壤普查技术[M]. 北京: 农业出版社, 1992: 111–112

    Nationwide Soil Survey Office. Chinese Soil Census Technology[M]. Beijing: China Agriculture Press, 1992: 111–112
    [23] 鲍士旦. 土壤农化分析[M]. 3版. 北京: 中国农业出版社, 2000

    BAO S D. Soil and Agricultural Chemistry Analysis[M]. Beijing: China Agriculture Press, 2000
    [24] 殷永超, 吉普辉, 宋雪英, 等. 龙葵(Solanum nigrum L.)野外场地规模Cd污染土壤修复试验[J]. 生态学杂志, 2014, 33(11): 3060−3067

    YIN Y C, JI P H, SONG X Y, et al. Field experiment on phytoremediation of cadmium contaminated soils using Solanum nigrum L[J]. Chinese Journal of Ecology, 2014, 33(11): 3060−3067
    [25] 杨艳, 吴攀, 李学先, 等. 贵州织金县贯城河上游煤矿区富硒高镉土壤重金属的分布特征及生态风险评价[J]. 生态学杂志, 2018, 37(6): 1797−1806

    YANG Y, WU P, LI X X, et al. Distribution and ecological risk assessment of heavy metals in selenium-rich soil with high cadmium content of coal mining area in upper reaches of Guancheng River in Zhijin County, Guizhou[J]. Chinese Journal of Ecology, 2018, 37(6): 1797−1806
    [26] ZHAO X L, LIU J F, XIA X L, et al. The evaluation of heavy metal accumulation and application of a comprehensive bio-concentration index for woody species on contaminated sites in Hunan, China[J]. Environmental Science and Pollution Research, 2014, 21(7): 5076−5085 doi: 10.1007/s11356-013-2393-3
    [27] 屈吉鸿, 梁奇, 胡亚男, 等. 济源某铅锌产业区土壤重金属空间变异特征及污染评价[J]. 华北水利水电大学学报(自然科学版), 2016, 37(2): 47−51

    QU J H, LIANG Q, HU Y N, et al. Spatial variability and pollution evaluation of heavy metals in the soil in a lead and zinc industry district in Jiyuan[J]. Journal of North China University of Water Resources and Electric Power (Natural Science Edition), 2016, 37(2): 47−51
    [28] 宋高峰. 济源市有色金属产业发展研究[J]. 中国金属通报, 2018(5): 23−24

    SONG G F. Research on the development of nonferrous metals industry in Jiyuan City[J]. China Metal Bulletin, 2018(5): 23−24
    [29] 李姣姣, 赵学强, 王嘉林, 等. 废旧电器拆解场地周边污染区土壤-植物系统重金属积累特征和生态风险[J]. 生态学杂志, 2022, 41(12): 2432–24391

    LI J J, ZHAO X Q, WANG J L, et al. Accumulation and ecological risk of heavy metals in soil-plant system of the contaminated area around the E-waste dismantling site[J]. 2022, 41(12): 2432–24391
    [30] 成永霞, 赵宗生, 王亚洲, 等. 河南省某铅冶炼厂附近农田土壤重金属污染特征[J]. 土壤通报, 2014, 45(6): 1505−1510

    CHENG Y X, ZHAO Z S, WANG Y Z, et al. Soil heavy metals pollution in the farmland near a lead smelter in Henan Province[J]. Chinese Journal of Soil Science, 2014, 45(6): 1505−1510
    [31] MAESTRI E, MARMIROLI M, VISIOLI G, et al. Metal tolerance and hyperaccumulation: costs and trade-offs between traits and environment[J]. Environmental and Experimental Botany, 2010, 68(1): 1−13 doi: 10.1016/j.envexpbot.2009.10.011
    [32] DENG T H B, VAN DER ENT A, TANG Y T, et al. Nickel hyperaccumulation mechanisms: a review on the current state of knowledge[J]. Plant and Soil, 2018, 423(1/2): 1−11
    [33] BOTHE H, SŁOMKA A. Divergent biology of facultative heavy metal plants[J]. Journal of Plant Physiology, 2017, 219: 45−61 doi: 10.1016/j.jplph.2017.08.014
    [34] 关海燕. 三种景天属植物对Cd、Pb胁迫的响应及富集特征研究[D]. 北京: 北京林业大学, 2019

    GUAN H Y. Response and accumulation of 3 sedums to cadmium and lead stress[D]. Beijing: Beijing Forestry University, 2019
    [35] 王珊, 白瑞琴. 重金属镉对两种景天的生长和积累研究[J]. 北方园艺, 2016(7): 60−65

    WANG S, BAI R Q. Study on growth and accumulation of two Sedum under cadmium stress[J]. Northern Horticulture, 2016(7): 60−65
    [36] 吴佳玲, 陈喆, 游少鸿, 等. 硫肥对伴矿景天修复镉污染土壤的影响[J]. 农业环境科学学报, 2022, 41(6): 1241−1250

    WU J L, CHEN Z, YOU S H, et al. Phytoremediation efficiency of cadmium-contaminated arable land by planted Sedum plumbizincicola with sulfur fertilization[J]. Journal of Agro-Environment Science, 2022, 41(6): 1241−1250
    [37] 刘沙沙, 李兵, 冯翔, 等. 3种植物对镉污染土壤修复的试验研究[J]. 中国农学通报, 2018, 34(22): 103−108

    LIU S S, LI B, FENG X, et al. Three kinds of plants: remediation on soil contaminated by cadmium[J]. Chinese Agricultural Science Bulletin, 2018, 34(22): 103−108
    [38] 张云霞, 周浪, 肖乃川, 等. 鬼针草(Bidens pilosa L. )对镉污染农田的修复潜力[J]. 生态学报, 2020, 40(16): 5805−5813

    ZHANG Y X, ZHOU L, XIAO N C, et al. Remediation potential of B. Pilosa L. in cadmium-contaminated farmland[J]. Acta Ecologica Sinica, 2020, 40(16): 5805−5813
    [39] 韩少华, 黄沈发, 唐浩, 等. 3种植物对Cd污染农田土壤的修复效果比较试验研究[J]. 环境污染与防治, 2012, 34(12): 22−25,30

    HAN S H, HUANG S F, TANG H A, et al. comparative study on the performance of 3 plants for remediation of cadmium contaminated farmland soil[J]. Environmental Pollution & Control, 2012, 34(12): 22−25,30
    [40] 游梦, 邹茸, 王丽, 等. 不同富集植物与小麦间作对镉吸收转运的影响[J]. 中国土壤与肥料, 2022(4): 201−208

    YOU M, ZOU R, WANG L, et al. Effects of intercropping different accumulators with wheat on Cd absorption and transport under Cd stress[J]. Soil and Fertilizer Sciences in China, 2022(4): 201−208
    [41] 龙玉梅, 刘杰, 傅校锋, 等. 4种Cd超富集/富集植物修复性能的比较[J]. 江苏农业科学, 2019, 47(8): 296−300

    LONG Y M, LIU J, FU X F, et al. Comparative study on remediation performance of 4 kinds of Cd hyperaccumulators[J]. Jiangsu Agricultural Sciences, 2019, 47(8): 296−300
    [42] 陈苏, 陈宁, 晁雷, 等. 土霉素、镉复合污染土壤的植物-微生物联合修复实验研究[J]. 生态环境学报, 2015, 24(9): 1554−1559

    CHEN S, CHEN N, CHAO L, et al. The experimental study of polluted soils with oxytetracycline and cadmium by plant microbial remediation[J]. Ecology and Environmental Sciences, 2015, 24(9): 1554−1559
    [43] 郑瑞伦, 石东, 刘文菊, 等. 两种能源草田间条件下对镉和锌的吸收累积[J]. 环境科学, 2021, 42(3): 1158−1165

    ZHENG R L, SHI D, LIU W J, et al. Uptake and accumulation of cadmium and zinc by two energy grasses: a field experiment[J]. Environmental Science, 2021, 42(3): 1158−1165
    [44] 陈璘涵, 曾红远, 葛一陈, 等. 2种轮作模式对镉污染土壤修复潜力的比较[J]. 环境工程学报, 2017, 11(6): 3873−3878

    CHEN L H, ZENG H Y, GE Y C, et al. Comparison of remediation potential for two crop rotation patterns on Cd contaminated soils[J]. Chinese Journal of Environmental Engineering, 2017, 11(6): 3873−3878
    [45] 刘桂华, 胡岗, 秦松, 等. 贵州典型酸性黄壤中3种叶菜类蔬菜对Cd累积特性及低累积品种筛选[J]. 安全与环境学报, 2018, 18(1): 396−401

    LIU G H, HU G, QIN S, et al. On the Cd accumulation risk features in the 3 leaf vegetables in the typical acid brown soil of Guizhou and the corresponding choice for better lower accumulated cultivars instead[J]. Journal of Safety and Environment, 2018, 18(1): 396−401
    [46] 王泓博, 苟文贤, 吴玉清, 等. 重金属污染土壤修复研究进展: 原理与技术[J]. 生态学杂志, 2021, 40(8): 2277−2288

    WANG H B, GOU W X, WU Y Q, et al. Progress in remediation technologies of heavy metals contaminated soil: principles and technologies[J]. Chinese Journal of Ecology, 2021, 40(8): 2277−2288
    [47] CAO X R, LUO J P, WANG X Z, et al. Responses of soil bacterial community and Cd phytoextraction to a Sedum alfredii-oilseed rape (Brassica napus L. and Brassica juncea L.) intercropping system[J]. Science of the Total Environment, 2020, 723: 138152 doi: 10.1016/j.scitotenv.2020.138152
    [48] CAO X R, WANG X Z, TONG W B, et al. Distribution, availability and translocation of heavy metals in soil-oilseed rape (Brassica napus L.) system related to soil properties[J]. Environmental Pollution (Barking, Essex: 1987), 2019, 252(Pt A): 733–741
    [49] GONG X M, HUANG D L, LIU Y G, et al. Pyrolysis and reutilization of plant residues after phytoremediation of heavy metals contaminated sediments: for heavy metals stabilization and dye adsorption[J]. Bioresource Technology, 2018, 253: 64−71 doi: 10.1016/j.biortech.2018.01.018
    [50] ZHOU J W, ZHOU T, LI Z, et al. Differences in phytoextraction by the cadmium and zinc hyperaccumulator Sedum plumbizincicola in greenhouse, polytunnel and field conditions[J]. International Journal of Phytoremediation, 2018, 20(14): 1400−1407 doi: 10.1080/15226514.2018.1488808
    [51] 赵冰, 沈丽波, 程苗苗, 等. 麦季间作伴矿景天对不同土壤小麦—水稻生长及锌镉吸收性的影响[J]. 应用生态学报, 2011, 22(10): 2725−2731

    ZHAO B, SHEN L B, CHENG M M, et al. Effects of intercropping Sedum plumbizincicola in wheat growth season under wheat-rice rotation on the crops growth and their heavy metals uptake from different soil types[J]. Chinese Journal of Applied Ecology, 2011, 22(10): 2725−2731
    [52] ZEHRA A, SAHITO Z A, TONG W B, et al. Assessment of sunflower germplasm for phytoremediation of lead-polluted soil and production of seed oil and seed meal for human and animal consumption[J]. Journal of Environmental Sciences (China), 2020, 87: 24−38 doi: 10.1016/j.jes.2019.05.031
    [53] 张慧敏, 鲍广灵, 周晓天, 等. 严格管控类耕地特定农作物重金属安全性评估[J]. 中国农学通报, 2022, 38(3): 52−58 doi: 10.11924/j.issn.1000-6850.casb2021-0209

    ZHANG H M, BAO G L, ZHOU X T, et al. Safety assessment of heavy metals in specific crops of strictly controlled farmland[J]. Chinese Agricultural Science Bulletin, 2022, 38(3): 52−58 doi: 10.11924/j.issn.1000-6850.casb2021-0209
    [54] 王敏捷, 盛光遥, 王锐. 土壤重金属污染修复植物处置技术进展[J]. 农业资源与环境学报, 2021, 38(2): 151−159

    WANG M J, SHENG G Y, WANG R. Progress in disposal technologies for plants polluted with heavy metals after phytoextraction[J]. Journal of Agricultural Resources and Environment, 2021, 38(2): 151−159
  • 加载中
图(6) / 表(5)
计量
  • 文章访问数:  27
  • HTML全文浏览量:  6
  • PDF下载量:  2
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-09-16
  • 录用日期:  2023-02-09
  • 网络出版日期:  2023-02-16

目录

    /

    返回文章
    返回