留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

聚苯乙烯纳米塑料与铅胁迫对菠菜种子萌发和幼苗生长的影响

郭琳琳 俎敬美 王晶晶 谌柄旭

郭琳琳, 俎敬美, 王晶晶, 谌柄旭. 聚苯乙烯纳米塑料与铅胁迫对菠菜种子萌发和幼苗生长的影响[J]. 中国生态农业学报(中英文), 2023, 31(0): 1−9 doi: 10.12357/cjea.20220721
引用本文: 郭琳琳, 俎敬美, 王晶晶, 谌柄旭. 聚苯乙烯纳米塑料与铅胁迫对菠菜种子萌发和幼苗生长的影响[J]. 中国生态农业学报(中英文), 2023, 31(0): 1−9 doi: 10.12357/cjea.20220721
GUO L L, ZU J M, WANG J J, CHEN B X. Effects of the combination of polystyrene nanoplastics and Pb on seed germination and seedling growth of spinach (Spinacia oleracea L.)[J]. Chinese Journal of Eco-Agriculture, 2023, 31(0): 1−9 doi: 10.12357/cjea.20220721
Citation: GUO L L, ZU J M, WANG J J, CHEN B X. Effects of the combination of polystyrene nanoplastics and Pb on seed germination and seedling growth of spinach (Spinacia oleracea L.)[J]. Chinese Journal of Eco-Agriculture, 2023, 31(0): 1−9 doi: 10.12357/cjea.20220721

聚苯乙烯纳米塑料与铅胁迫对菠菜种子萌发和幼苗生长的影响

doi: 10.12357/cjea.20220721
基金项目: 沧州市重点研发计划指导项目(213109014)资助
详细信息
    通讯作者:

    郭琳琳, 主要从事生态毒理学、污染生态系研究。E-mail: 451630739@qq.com

  • 中图分类号: X503.231

Effects of the combination of polystyrene nanoplastics and Pb on seed germination and seedling growth of spinach (Spinacia oleracea L.)

Funds: The study was supported by the Key research and development plan guidance project of Cangzhou (213109014).
More Information
  • 摘要: 微塑料作为一种新型环境污染物, 对生物体和自然环境的负面影响受到广泛关注, 而微塑料与重金属复合污染对于蔬菜作物影响的研究却少有报道。为探讨聚苯乙烯纳米塑料(PSNPs)、铅(Pb)及其复合污染对菠菜种子萌发和幼苗生长的影响, 研究了菠菜种子和幼苗分别暴露于200~1600 mg∙L−1 PSNPs、5~100 mg∙L−1 Pb及其复合溶液后发芽率、发芽势、发芽指数、根长、芽长, 超氧化物歧化酶(SOD)和过氧化物酶(POD)活性, 及可溶性蛋白含量的变化。结果表明, 单一的PSNPs (≥400 mg∙L−1)胁迫会显著降低种子的发芽率、发芽势和发芽指数, 低浓度的PSNPs (200 mg∙L−1)胁迫显著促进菠菜种子根、芽的伸长, 高浓度(1600 mg∙L−1)的PSNPs胁迫显著抑制SOD、POD的活性, 不同浓度的PSNPs均会增加可溶性蛋白的含量, 但仅在800 mg∙L−1浓度组显著高于对照组。 单一的Pb (≥25 mg∙L−1)胁迫抑制菠菜种子的萌发, 降低SOD的活性, 而提高POD活性和可溶性蛋白的含量。PSNPs和Pb的复合污染表明, 相比于Pb单一胁迫, PSNPs与Pb复合污染对菠菜种子的萌发起拮抗作用, 降低了Pb单独胁迫对种子萌发的抑制作用; 而PSNPs-Pb复合污染对菠菜幼苗的影响主要是低浓度(200 mg∙L−1)PSNPs与Pb二者表现为协同作用, 高浓度(800 mg∙L−1) PSNPs与Pb复合污染加重了对菠菜幼苗的毒害, 主要表现为SOD和POD活性的显著降低。研究表明, PSNPs能够缓解Pb对菠菜种子萌发的抑制作用; 低浓度PSNPs (200 mg∙L−1)与Pb对菠菜幼苗的影响表现为协同作用, 而高浓度(800 mg∙L−1)PSNPs与Pb对菠菜幼苗主要表现为拮抗作用。
  • 表  1  单一聚苯乙烯纳米塑料或单一Pb对菠菜种子萌发及根长和芽长的影响

    Table  1.   Effects of polystyrene nanoplastics (PSNPs) or Pb on germination, and root length and shoot length of spinach seeds alone

    处理组
    Treatment
    发芽率
    Germination rate (%)
    发芽势
    Germination vigor (%)
    发芽指数
    Germination index
    根长
    Root length (cm)
    芽长
    Shoot length (cm)
    PSNPs浓度
    PSNPs concentration (mg∙L−1)
    0 77.50±9.57a 27.50±5.00a 5.30±0.46a 2.36±0.03b 2.5±0.07bc
    200 80.00±8.17a 22.50±5.00ab 5.39±0.32a 2.48±0.03a 2.65±0.04a
    400 32.50±9.57b 15.00±5.77bc 2.38±0.69b 2.40±0.08ab 2.58±0.03ab
    800 25.00±5.77b 12.50±5.00c 1.73±0.55bc 2.44±0.06ab 2.41±0.11c
    1600 20.00±8.17b 7.50±5.00c 1.42±0.49c 2.39±0.05b 2.44±0.09c
    Pb浓度
    Pb concentration (mg∙L−1)
    0 77.50±9.57a 27.50±9.57ab 5.30±0.46a 2.36±0.03b 2.50±0.07b
    5 50.00±8.17b 35.00±5.77a 4.55±0.62ab 2.60±0.11a 2.80±0.04a
    25 50.00±8.17b 22.50±9.57bc 3.81±0.71b 1.98±0.03c 2.54±0.05b
    50 27.50±9.57c 15.00±5.77cd 2.36±0.39c 1.60±0.11d 2.11±0.09c
    100 20.00±8.17c 7.50±9.57d 1.27±0.52d 1.50±0.04d 1.93±0.06d
      同列不同小写字母表示差异显著(P<0.05)。Different lowercase letters in the same column indicate significant differences (P<0.05).
    下载: 导出CSV

    表  2  聚苯乙烯纳米塑料与Pb复合对菠菜种子萌发以及根长、芽长的影响

    Table  2.   Effects of polystyrene nanoplastics (PSNPs) and Pb on seed germination, root length and bud length of spinach

    处理组
    Treatment
    发芽率
    Germination rate (%)
    发芽势
    Germination vigor (%)
    发芽指数
    Germination index
    根长
    Root length (cm)
    芽长
    Bud length (cm)
    空白对照 Control77.50±9.57a27.50±9.57c5.30±0.46b2.37±0.03c2.50±0.07c
    Pb550.00±8.17b35.00±5.77bc4.55±0.62b2.60±0.11b2.80±0.04a
    Pb5027.50±9.57c15.00±5.77d2.36±0.39c1.60±0.11e2.11±0.09e
    Pb5+PSNPs20070.00±8.17a50.00±8.17a6.46±0.79a2.68±0.07b2.79±0.03ab
    Pb5+PSNPs80072.50±9.57a17.50±5.00d4.42±0.64b2.25±0.08c2.33±0.10d
    Pb50+PSNPs20075.00±5.77a42.50±5.00ab6.27±0.34a3.71±0.17a2.69±0.05b
    Pb50+PSNPs80080.00±8.17a15.00±5.77d4.63±0.92b2.08±0.07d2.20±0.09e
      Pb5: 5 mg∙L−1铅溶液; Pb50: 50 mg∙L−1铅溶液; PSNPs200: 200 mg∙L−1聚苯乙烯纳米塑料悬浮液; PSNPs800: 800 mg∙L−1聚苯乙烯纳米塑料悬浮液。同列不同小写字母表示差异显著(P<0.05)。Pb5: 5 mg∙L−1 Pb; Pb50: 50 mg∙L−1 Pb; PSNPs200: 200 mg∙L−1 PSNPs; PSNPs800: 800 mg∙L−1 PSNPs. Different lowercase letters in the same column indicate significant differences (P<0.05).
    下载: 导出CSV

    表  3  单一聚苯乙烯纳米塑料或单一Pb对菠菜幼苗生理指标的影响

    Table  3.   Effects of polystyrene nanoplastics (PSNPs) or Pb on physiological indexes of spinach seedlings alone

    处理组
    Treatment
    超氧化物歧化酶
    superoxide dismutase (U·g−1)
    过氧化物酶
    peroxidase (U·g−1)
    可溶性蛋白
    Soluble protein (μg·g−1)
    PSNPs浓度
    PSNPs concentration (mg∙L−1)
    0 664.36±18.03a 85.00±5.18d 3.00±0.25b
    200 653.98±14.61a 117.60±4.18c 3.01±0.03b
    400 656.06±21.53a 155.00±5.09a 3.40±0.06b
    800 595.89±11.04b 138.50±7.10b 4.17±0.12a
    1600 562.30±15.08c 30.00±1.55e 3.32±0.36b
    Pb浓度
    Pb concentration (mg∙L−1)
    0 664.36±18.03a 85.00±5.18c 3.00±0.25b
    5 456.75±14.47b 127.50±7.55b 2.71±0.01c
    25 195.16±14.91c 366.25±10.44a 3.40±0.01a
    50 123.88±9.80d 140.00±11.53b 3.49±0.01a
    100 103.81±14.90d 132.50±9.17b 3.53±0.01a
      同列不同小写字母表示差异显著(P<0.05)。Different lowercase letters in the same column indicate significant differences (P<0.05).
    下载: 导出CSV

    表  4  聚苯乙烯纳米塑料与Pb复合对菠菜幼苗生理指标的影响

    Table  4.   Effects of polystyrene nanoplastics (PSNPs) and Pb on physiological indexes of spinach seedings

    处理
    Treatments
    超氧化物歧化酶
    Superoxide dismutase (U·g−1)
    过氧化物酶
    Peroxidase (U·g−1)
    可溶性蛋白
    Soluble protein (μg·g−1)
    空白对照 Control664.36±18.03a85.00±5.18d3.00±0.25bc
    Pb 5456.75±14.47b127.50±7.55c2.71±0.01c
    Pb 50123.88±9.80d140.00±11.53c3.49±0.01a
    Pb 5+PSNPs200269.90±15.38c510.00±24.98a2.61±0.30c
    Pb 5+PSNPs 800141.18±7.27d70.00±5.29d3.36±0.30ab
    Pb 50+PSNPs 200137.02±10.17d242.00±14.80b3.58±0.26a
    Pb 50+PSNPs 800128.97±6.22d62.00±3.61d1.90±0.19d
      Pb5: 5 mg∙L−1铅溶液; Pb50: 50 mg∙L−1铅溶液; PSNPs200: 200 mg∙L−1聚苯乙烯纳米塑料悬浮液; PSNPs800: 800 mg∙L−1聚苯乙烯纳米塑料悬浮液。同列不同小写字母表示差异显著(P<0.05)。Pb5: 5 mg∙L−1 Pb; Pb50: 50 mg∙L−1 Pb; PSNPs200: 200 mg∙L−1 PSNPs; PSNPs800: 800 mg∙L−1 PSNPs. Different lowercase letters in the same column indicate significant differences (P<0.05).
    下载: 导出CSV
  • [1] 王菡娟. 2050年全球塑料产量或达11亿吨——多方呼吁共同关注塑料污染[N]. 人民政协报, 2022-06-23(6)

    WANG H J. Global plastic production may reach 1.1 billion tons by 2050, raising concerns about plastic pollution[N]. CPPCC Daily, 2022-06-23(6)
    [2] RAZA U, TSZKI T M, HUAN C, et al. Microplastics interaction with terrestrial plants and its impacts on agriculture[J]. Journal of Environmental Quality, 2021, 50(5): 1024−1041 doi: 10.1002/jeq2.20264
    [3] 杨杰, 李连祯, 周倩, 等. 土壤环境中微塑料污染: 来源、过程及风险[J]. 土壤学报, 2021, 58(2): 281−298

    YANG J, LI L Z, ZHOU Q, et al. Microplastics contamination of soil environment: sources, processes and risks[J]. Acta Pedologica Sinica, 2021, 58(2): 281−298
    [4] ABEL D S M A, WERNER K, CHRISTIANE Z, et al. Microplastics as an emerging threat to terrestrial ecosystems[J]. Global Change Biology, 2018, 24(4): 1405−1416 doi: 10.1111/gcb.14020
    [5] 汤庆峰, 高峡, 李琴梅, 等. 农田土壤微塑料污染研究现状与问题思考[J]. 安徽农业科学, 2021, 49(15): 72−78,84 doi: 10.3969/j.issn.0517-6611.2021.15.020

    TANG Q F, GAO X, LI Q M, et al. Research status and existing problems of microplastic pollution in farmland soil[J]. Journal of Anhui Agricultural Sciences, 2021, 49(15): 72−78,84 doi: 10.3969/j.issn.0517-6611.2021.15.020
    [6] KELLIE B, BANU Ö. Microplastics and nanoplastics in the freshwater and terrestrial environment: a review[J]. Water, 2020, 12(9): 2633 doi: 10.3390/w12092633
    [7] PIGNATTELLI S, BROCCOLI A, RENZI M. Physiological responses of garden cress (L. sativum) to different types of microplastics[J]. Science of the Total Environment, 2020, 727(prepublish): 138609
    [8] ZHOU C, LU C, MAI L, et al. Response of rice (Oryza sativa L.) roots to nanoplastic treatment at seedling stage[J]. Journal of Hazardous Materials, 2021, 401: 123412 doi: 10.1016/j.jhazmat.2020.123412
    [9] VAN WEERT S, REDONDO-HASSELERHARM P E, DIEPENS N J, et al. Effects of nanoplastics and microplastics on the growth of sediment-rooted macrophytes[J]. The Science of the Total Environment, 2019, 654: 1040−1047 doi: 10.1016/j.scitotenv.2018.11.183
    [10] JIANG X, CHEN H, LIAO Y, et al. Ecotoxicity and genotoxicity of polystyrene microplastics on higher plant Vicia faba[J]. Environmental Pollution, 2019, b,250: 831−838
    [11] YU H, ZHANG X, HU J, et al. Ecotoxicity of polystyrene microplastics to submerged carnivorous Utricularia vulgaris plants in freshwater ecosystems[J]. Environmental Pollution, 2020, 265: 114830 doi: 10.1016/j.envpol.2020.114830
    [12] 赵宽, 万昕, 邢德科, 等. 低分子量有机酸对土壤有效磷及重金属释放影响的研究进展[J]. 土壤通报, 2022, 53(5): 1228−1236 doi: 10.19336/j.cnki.trtb.2021113002

    ZHAO K, WAN X, XING D K, et al. Research progress on effects of low molecular weight organic acids on release of available phosphorus and heavy metals in soil[J]. Chinese Journal of Soil Science, 2022, 53(5): 1228−1236 doi: 10.19336/j.cnki.trtb.2021113002
    [13] PAULA M, INMACULADA S, ANTONIO B, et al. Can microplastics influence the accumulation of Pb in tissues of blue crab?[J]. International Journal of Environmental Research and Public Health, 2021, 18(7): 3599 doi: 10.3390/ijerph18073599
    [14] YANG Z, ZHU L, LIU J, et al. Polystyrene microplastics increase Pb bioaccumulation and health damage in the Chinese mitten crab Eriocheir sinensis[J]. Science of Total Environment. 2022, 10(829): 154586
    [15] 刘玲, 洪婷婷, 胡倩男, 等. 微塑料与铅复合污染对水稻幼苗根系生长和氧化应激的影响[J]. 农业环境科学学报, 2021, 40(12): 2623−2633 doi: 10.11654/jaes.2021-0523

    LIU L, HONG T T, HU Q N, et al. Effects of the combination of microplastics and lead pollution on growth and oxidative responses of rice seedlings’roots[J]. Journal of Agro-Environment Science, 2021, 40(12): 2623−2633 doi: 10.11654/jaes.2021-0523
    [16] WANG F, ZHANG X, ZHANG S, et al. Effects of co-contamination of microplastics and Cd on plant growth and Cd accumulation[J]. Toxics, 2020, 8: 36 doi: 10.3390/toxics8020036
    [17] FARRAJI H, AZIZ H A, TAJUDDIN R M, et al. Optimization of Phytoremediation of Lead-contaminated Soil by Spinach (Spinacia oleracea L.)[J]. International Journal of Scientific Research in Knowledge, 2014, 2(10): 480−486 doi: 10.12983/ijsrk-2014-p0480-0486
    [18] GUNDUZ S, UYGUR FN, KAHRAMANOGLU I. Heavy metal Phytoremediation potentials of Lepidum sativum L., Lactuca sativa L., Spinacia oleracea L. and Raphanus sativus L.[J]. Herald Journal of Agriculture and Food Science Research, 2012, 1(1): 001−005
    [19] 王伟华, 姜黎. 四种钠盐胁迫对野榆钱菠菜种子萌发特性和幼苗生长的影响[J]. 中国草地学报, 2020, 42(6): 23−29 doi: 10.16742/j.zgcdxb.20190220

    WANG W H, JIANG L. Effects of sodium stress on seed germination and seedling growth of Atriplex aucheri[J]. Chinese Journal of Grassland, 2020, 42(6): 23−29 doi: 10.16742/j.zgcdxb.20190220
    [20] 王泽正, 杨亮, 李婕, 等. 微塑料和镉及其复合对水稻种子萌发的影响[J]. 农业环境科学学报, 2021, 40(1): 44−53 doi: 10.11654/jaes.2020-0560

    WANG Z Z, YANG L, LI J, et al. Single and combined effects of microplastics and cadmium on the germination characteristics of rice seeds[J]. Journal of Agro-Environment Science, 2021, 40(1): 44−53 doi: 10.11654/jaes.2020-0560
    [21] 宗海英, 刘君, 郭晓红, 等. 聚乙烯微塑料对花生幼苗镉吸收及生理特征的影响[J]. 农业环境科学学报, 2022, 41(7): 1400−1407 doi: 10.11654/jaes.2021-1446

    ZONG H Y, LIU J, GUO X H, et al. Effects of polyethylene microplastics on cadmium absorption and physiological characteristics of peanut seedling[J]. Journal of Agro-Environment Science, 2022, 41(7): 1400−1407 doi: 10.11654/jaes.2021-1446
    [22] BOSKER T, BOUWMAN L J, BRUN N R, et al. Microplastics accumulate on pores in seed capsule and delay germination and root growth of the terrestrial vascular plant Lepidium sativum[J]. Chemosphere, 2019, 226: 774−781 doi: 10.1016/j.chemosphere.2019.03.163
    [23] STEPHAN P, SAILA T, JUN K Y, et al. Ageing affects microplastic toxicity over time: effects of aged polycarbonate on germination, growth, and oxidative stress of Lepidium sativum[J]. Science of the Total Environment, 2021, 790: 148166 doi: 10.1016/j.scitotenv.2021.148166
    [24] 连加攀, 沈玫玫, 刘维涛. 微塑料对小麦种子发芽及幼苗生长的影响[J]. 农业环境科学学报, 2019, 38(4): 737−745

    LIAN J P, SHEN M M, LIU W T. Effects of microplastics on wheat seed germination and seedling growth[J]. Journal of Agro-Environment Science, 2019, 38(4): 737−745
    [25] 张彦, 窦明, 邹磊, 等. 不同微塑料赋存环境对小麦萌发与幼苗生长影响研究[J]. 中国环境科学, 2021, 41(8): 3867−3877 doi: 10.3969/j.issn.1000-6923.2021.08.044

    ZHANG Y, DOU M, ZOU L, et al. Effects of different microplastics occurrence environment on seed germination and seedling growth of wheat (Triticum aestivum L. )[J]. China Environmental Science, 2021, 41(8): 3867−3877 doi: 10.3969/j.issn.1000-6923.2021.08.044
    [26] 吴佳妮, 杨天志, 连加攀, 等. 聚苯乙烯纳米塑料(PSNPs)对大豆(Glycine max)种子发芽和幼苗生长的影响[J]. 环境科学学报, 2020, 40(12): 4581−4589

    WU J N, YANG T Z, LIAN J P, et al. Effects of polystyrene nanoplastics (PSNPs) on seed germination and seedling growth of soybean (Glycine max)[J]. Acta Scientiae Circumstantiae, 2020, 40(12): 4581−4589
    [27] LIAN J P, WU J N, XIONG H X, et al. Impact of polystyrene nanoplastics (PSNPs) on seed germination and seedling growth of wheat (Triticum aestivum L. )[J]. Journal of Hazardous Materials, 2020, 385: 121620 doi: 10.1016/j.jhazmat.2019.121620
    [28] GIORGETTI L, SPANÒ C, MUCCIFORA S, et al. Exploring the interaction between polystyrene nanoplastics and Allium cepa during germination: Internalization in root cells, induction of toxicity and oxidative stress[J]. Plant Physiology and Biochemistry, 2020, 149(C): 170−177
    [29] 刘晓红, 刘柳青青, 栗敏, 等. 不同粒径的聚乙烯微塑料对玉米和黄瓜种子发芽和幼苗生长的影响[J]. 生态环境学报, 2022, 31(6): 1263−1271 doi: 10.16258/j.cnki.1674-5906.2022.06.023

    LIU X H, LIU L, LI M, et al. Effects of polyethylene microplastics with different particle sizes on seed germination and seedling growth of maize and cucumber[J]. Ecology and Environment Sciences, 2022, 31(6): 1263−1271 doi: 10.16258/j.cnki.1674-5906.2022.06.023
    [30] GUO M, ZHAO F, TIAN L, et al. Effects of polystyrene microplastics on the seed germination of herbaceous ornamental plants[J]. Science of The Total Environment, 2022, 809: 151100 doi: 10.1016/j.scitotenv.2021.151100
    [31] BELLINGERI A, CASABIANCA S, CAPELLACCI S, et al. Impact of polystyrene nanoparticles on marine diatom Skeletonema marinoi chain assemblages and consequences on their ecological role in marine ecosystems[J]. Environmental Pollution, 2020, 262: 114268 doi: 10.1016/j.envpol.2020.114268
    [32] YIN L S, WEN X F, HUANG D L, et al. Interactions between microplastics/nanoplastics and vascular plants[J]. Environmental Pollution, 2021, 290: 117999 doi: 10.1016/j.envpol.2021.117999
    [33] NI'AM M I, YUNIATI R. Effect of lead (Pb) on seed germination of water spinach (Ipomoea aquatica Forsk)[J]. Journal of Physics Conference Series, 2021, 1725: 1−5
    [34] BENDAOUD SI AHMED K, AOUES A, KHAROUBI O, et al. Lead-induced changes in germination behavior, growth and inhibition of-aminolevulinic acid dehydratase activity in Raphanus sativus L.[J]. African Journal of Plant Science, 2020, 14(7): 254−261 doi: 10.5897/AJPS2019.1899
    [35] 杨文玲, 岳丹丹, 李冠杰, 等. 铅铬胁迫对小麦种子萌发及幼苗脯氨酸含量的影响[J]. 生物技术通报, 2015(12): 110−114 doi: 10.13560/j.cnki.biotech.bull.1985.2015.12.016

    YANG W L, YUE D D, LI G J, et al. The effects of lead and chromium stresses on seed germination and proline content in wheat seedlings[J]. Biotechnology Bulletin, 2015(12): 110−114 doi: 10.13560/j.cnki.biotech.bull.1985.2015.12.016
    [36] 高鸿鹏, 郑直, 刘超, 等. 镉铅胁迫对桑树种子萌发和幼苗生长以及重金属累积的影响[J]. 安徽农业科学, 2020, 48(11): 131−136 doi: 10.3969/j.issn.0517-6611.2020.11.039

    GAO H P, ZHENG Z, LIU C, et al. Effects of cadmium and lead stress on seed germination, seedling growth and heavy metal accumulation of mulberry[J]. Journal of Anhui Agricultural Sciences, 2020, 48(11): 131−136 doi: 10.3969/j.issn.0517-6611.2020.11.039
    [37] 张雅莉, 王林生. 铅胁迫对硬粒小麦种子萌发及幼苗生长的影响[J]. 山东农业科学, 2015, 47(3): 68−71 doi: 10.14083/j.issn.1001-4942.2015.03.019

    ZHANG Y L, WANG L S. Effects of Pb stress on seed germination and seedling growth of durum wheat[J]. Shandong Agricultural Sciences, 2015, 47(3): 68−71 doi: 10.14083/j.issn.1001-4942.2015.03.019
    [38] ZANGANEH R, JAMEI R, RAHMANI F. Pre- sowing seed treatment with salicylic acid and sodium hydrosulfide confers Pb toxicity tolerance in maize (Zea mays L. )[J]. Ecotoxicology and Environmental Safety, 2020, 206: 111392 doi: 10.1016/j.ecoenv.2020.111392
    [39] 林梅, 王湘平. 铅和镉胁迫对黄瓜种子萌发期间的毒害效应[J]. 湖南农业大学学报(自然科学版), 2012, 38(1): 41−45

    LIN M, WANG X P. Poison effect of Pb and Cd stress on cucumber seeds during the course of germination[J]. Journal of Hunan Agricultural University (Natural Sciences), 2012, 38(1): 41−45
    [40] BHARDWAJ P, CHATURVEDI AND P PRASAD A K. Effect of enhanced lead and cadmium in soil on physiological and biochemical attributes of Phaseolus vulgaris L.[J]. Nature and Science, 2009, 7(8): ■−■
    [41] 廖苑辰, 娜孜依古丽·加合甫别克, 李梅, 等. 微塑料对小麦生长及生理生化特性的影响[J]. 环境科学, 2019, 40(10): 4661−4667 doi: 10.13227/j.hjkx.201903113

    LIAO Y C, NAZYGUL JAHITBEK, LI M, et al. Effects of microplastics on the growth, physiology, and biochemical characteristics of wheat (Triticum aestivum)[J]. Environmental Science, 2019, 40(10): 4661−4667 doi: 10.13227/j.hjkx.201903113
    [42] 黄献培, 向垒, 郭静婕, 等. 聚苯乙烯微球对菜心种子及幼苗的毒性效应[J]. 农业环境科学学报, 2021, 40(5): 926−933 doi: 10.11654/jaes.2020-1473

    HUANG X P, XIANG L, GUO J J, et al. Toxicity of polystyrene microplastics on seeds and seedlings of Brassica campestris L.[J]. Journal of Agro-Environment Science, 2021, 40(5): 926−933 doi: 10.11654/jaes.2020-1473
    [43] 叶子琪, 蒋小峰, 汤其阳, 等. 聚乙烯微塑料对蚕豆幼苗的毒性效应[J]. 南京大学学报(自然科学), 2021, 57(3): 385−392

    YE Z Q, JIANG X F, TANG Q Y, et al. Toxic effects of polyethylene microplastics on higher plant Vicia faba[J]. Journal of Nanjing University (Natural Sciences), 2021, 57(3): 385−392
    [44] LIU S, WANG J, ZHU J, et al. The joint toxicity of polyethylene microplastic and phenanthrene to wheat seedlings[J]. Chemosphere. 2021, 282: 130967
    [45] 林琳, 旦增卓嘎, 吴玲玲. 铅、镉单一及复合胁迫对生菜幼苗抗氧化酶及亚细胞结构的毒性效应[J]. 生态毒理学报, 2022, 17(2): 337−348

    LIN L, DANZENGZHUOGA, WU L L. Toxicity of single and combined Pb and Cd stress on antioxidant enzymes and subcellular structure of lettuce[J]. Asian Journal of Ecotoxicology, 2022, 17(2): 337−348
    [46] 李玉婷, 李莎, 曹杰, 等. 微塑料对外生菌根真菌生长和抗氧化系统的影响[J]. 浙江农业学报, 2022, 34(5): 1049−1060 doi: 10.3969/j.issn.1004-1524.2022.05.20

    LI Y T, LI S, CAO J, et al. Effects of microplastics on growth and antioxidant system of ectomycorrhizal fungi[J]. Acta Agriculturae Zhejiangensis, 2022, 34(5): 1049−1060 doi: 10.3969/j.issn.1004-1524.2022.05.20
    [47] 王成伟, 刘禹, 宋正国, 等. 微塑料对DBP胁迫下生菜光合作用及品质的影响[J]. 农业环境科学学报, 2021, 40(3): 508−516 doi: 10.11654/jaes.2020-1134

    WANG C W, LIU Y, SONG Z G, et al. Effects of microplastics and DBP on photosynthesis and nutritional quality of lettuce[J]. Journal of Agro-Environment Science, 2021, 40(3): 508−516 doi: 10.11654/jaes.2020-1134
    [48] 王芳洲, 王友绍. Cu2+、Pb2+胁迫对秋茄幼苗可溶性蛋白和抗氧化酶活性的影响[J]. 生态科学, 2020, 39(4): 10−18

    WANG F Z, WANG Y S. Effects of Cu2+ and Pb2+ stresses on soluble protein content and activities of antioxidant enzymes in Kandelia obovata seedlings[J]. Ecological Science, 2020, 39(4): 10−18
    [49] 韩航, 陈顺钰, 薛凌云, 等. 铅胁迫对金丝草生长及生理生化的影响[J]. 草业学报, 2018, 27(4): 131−138 doi: 10.11686/cyxb2017357

    HAN H, CHEN S Y, XUE L Y, et al. Effects of lead stress on growth and physiology of Pogonatherum crinitum[J]. Acta Prataculturae Sinica, 2018, 27(4): 131−138 doi: 10.11686/cyxb2017357
    [50] WANG S, LI Q, HUANG S Z, et al. Single and combined effects of microplastics and lead on the freshwater algae Microcystis aeruginosa[J]. Ecotoxicology and Environmental Safety, 2021, 208: 111664 doi: 10.1016/j.ecoenv.2020.111664
  • 加载中
表(4)
计量
  • 文章访问数:  81
  • HTML全文浏览量:  30
  • PDF下载量:  7
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-09-21
  • 录用日期:  2022-12-27
  • 修回日期:  2023-01-09
  • 网络出版日期:  2023-02-07

目录

    /

    返回文章
    返回