留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

滨海滩涂不同覆盖度下盐地碱蓬生长特征及土壤呼吸速率变化

李永涛 王振猛 魏海霞 周健 王莉莉 张军 吕兴军 杨庆山 王元波

李永涛, 王振猛, 魏海霞, 周健, 王莉莉, 张军, 吕兴军, 杨庆山, 王元波. 滨海滩涂不同覆盖度下盐地碱蓬生长特征及土壤呼吸速率变化[J]. 中国生态农业学报 (中英文), 2023, 31(3): 478−486 doi: 10.12357/cjea.20220727
引用本文: 李永涛, 王振猛, 魏海霞, 周健, 王莉莉, 张军, 吕兴军, 杨庆山, 王元波. 滨海滩涂不同覆盖度下盐地碱蓬生长特征及土壤呼吸速率变化[J]. 中国生态农业学报 (中英文), 2023, 31(3): 478−486 doi: 10.12357/cjea.20220727
LI Y T, WANG Z M, WEI H X, ZHOU J, WANG L L, ZHANG J, LYU X J, YANG Q S, WANG Y B. Growth characteristics and soil respiration rates with different coverages of Suaeda salsa at coastal beaches[J]. Chinese Journal of Eco-Agriculture, 2023, 31(3): 478−486 doi: 10.12357/cjea.20220727
Citation: LI Y T, WANG Z M, WEI H X, ZHOU J, WANG L L, ZHANG J, LYU X J, YANG Q S, WANG Y B. Growth characteristics and soil respiration rates with different coverages of Suaeda salsa at coastal beaches[J]. Chinese Journal of Eco-Agriculture, 2023, 31(3): 478−486 doi: 10.12357/cjea.20220727

滨海滩涂不同覆盖度下盐地碱蓬生长特征及土壤呼吸速率变化

doi: 10.12357/cjea.20220727
基金项目: 黄河三角洲土地利用安全野外科学观测研究站开放基金(YWZ2022-06)和山东省黄河三角洲生态环境重点实验室开放基金项目(2022KFJJ02)资助
详细信息
    作者简介:

    李永涛, 主要研究方向为盐碱地生态修复。E-mail: lkylyt@163.com

    通讯作者:

    杨庆山, 主要研究方向为盐碱地生态修复, E-mail: 15315050868@163.com

    王元波, 主要研究方向为盐碱地生态修复, E-mail: 67597208@qq.com

  • 中图分类号: S156.4

Growth characteristics and soil respiration rates with different coverages of Suaeda salsa at coastal beaches

Funds: This study was supported by the Open Fund of the Field Scientific Observation and Research Station of Land Use Safety in the Yellow River Delta (YWZ2022-06) and the Open Research Fund of Shandong Provincial Key Laboratory of Eco-Environmental Science for the Yellow River Delta (2022KFJJ02).
More Information
  • 摘要: 为探究不同覆盖度下盐地碱蓬的生长特征及土壤呼吸速率变化规律, 以黄河三角洲滨海滩涂典型的盐地碱蓬群落为研究对象, 选取滩涂裸地区、低覆盖区、中覆盖区和高覆盖区4种样地, 研究了不同覆盖度下盐地碱蓬的植株生长、根系分布及土壤呼吸速率变化间的差异。结果表明: 盐地碱蓬不同覆盖区土壤的理化性质和植被生长状况差异明显, 与滩涂裸地相比, 盐地碱蓬不同覆盖区土壤含盐量和容重降低, 土壤孔隙度和养分增加。盐地碱蓬的生长指标与覆盖度呈正相关, 生物量、株高及分支数均随覆盖度的提高显著增加(P<0.05)。其中, 盐地碱蓬地下部分生物量主要集中在0~20 cm表层土壤中, 呈现浅层化分布; 且均以2~5 mm粗度根系为主, 分别占低、中和高覆盖区地下生物量的72.53%、59.72%和39.30%。细根的根长、表面积、根尖数、分支数和交叉数均随覆盖度的提高而逐步增大, 且不同覆盖区之间差异显著(P<0.05)。不同覆盖区内土壤呼吸速率表现为高覆盖区>中覆盖区>低覆盖区>裸地区, 并具有明显的日变化, 呈现出低-高-低的单峰曲线, 最大值出现在12:00—14:00。相关性分析表明, 土壤含盐量与盐地碱蓬各生长指标呈显著或极显著负相关, 是主要限制因子, 而土壤呼吸速率与植株各生长指标均呈极显著正相关。本研究结果可为黄河三角洲滨海滩涂植被恢复与生态修复提供理论依据。
  • 图  1  不同覆盖度下盐地碱蓬的植株(a)和根系(b)形态

    LCA: 低覆盖区; MCA: 中覆盖区; HCA: 高覆盖区。LCA: low-coverage area; MCA: medium-coverage area; HCA: high-coverage area.

    Figure  1.  Phenotypes of Suaeda salsa plant (a) and root (b) grown in areas with different coverage rates

    表  1  不同盐地碱蓬覆盖度下样地土壤理化性质

    Table  1.   Soil physiochemical properties of sample plots with different coverage rates of Suaeda salsa

    指标 Index样地 Sampling plot
    NCALCAMCAHCA
    含盐量 Salt content (g∙kg−1)16.29±1.49a12.72±2.28b10.04±1.64c10.26±2.11bc
    容重 Bulk density (g∙cm−3)1.67±0.14a1.62±0.13ab1.53±0.18c1.42±0.15d
    含水量 Soil water content (%)21.40±3.51b19.50±2.47c19.14±3.09c23.27±2.92a
    总孔隙度 Total porosity (%)32.31±3.06c34.44±1.47c41.52±1.75b47.03±2.08a
    有机质 Organic matter (g∙kg−1)1.27±0.12d2.64±0.23c3.17±0.27b3.92±0.18a
    总氮 Total nitrogen (g∙kg−1)0.12±0.02c0.17±0.04b0.19±0.04b0.26±0.05a
    总磷 Total phosphorus (g∙kg−1)0.34±0.04b0.36±0.06b0.48±0.06a0.52±0.07a
      NCA: 裸地区; LCA: 低覆盖区; MCA: 中覆盖区; HCA: 高覆盖区。同行不同小写字母表示不同样地之间差异显著(P<0.05)。NCA: no coverage area; LCA: low-coverage area; MCA: medium-coverage area; HCA: high-coverage area. Different lowercase letters in the same line indicate significant differences among different sample plots (P<0.05).
    下载: 导出CSV

    表  2  不同覆盖度下盐地碱蓬的生长状况

    Table  2.   Growth status of Suaeda salsa in areas with different coverage rates

    样地
    Sampling plot
    株高
    Height (cm)
    生物量 Biomass (g∙m−2)分支数
    Branches
    密度
    Plant density (plants∙m−2)
    根深
    Root depth (cm)
    地上部分 Aboveground地下部分 Belowground
    NCA
    LCA 26.84±2.03c 131.43±14.02c 24.17±3.11c 1.81±0.13c 77.33±14.57b 8.78±0.32c
    MCA 35.95±2.28b 248.77±16.45b 42.18±2.74b 2.27±0.19b 106.67±13.20a 11.03±0.53b
    HCA 47.92±2.54a 575.37±20.44a 79.47±3.48a 3.58±0.23a 97.33±11.14a 15.56±0.58a
      NCA: 裸地区; LCA: 低覆盖区; MCA: 中覆盖区; HCA: 高覆盖区。同列不同小写字母表示不同样地之间差异显著(P<0.05)。NCA: no coverage area; LCA: low-coverage area; MCA: medium-coverage area; HCA: high-coverage area. Different lowercase letters in the same column indicate significant differences among different sample plots (P<0.05).
    下载: 导出CSV

    表  3  不同覆盖度下盐地碱蓬各径级根系生物量分布特征

    Table  3.   Root biomass and distribution characteristics of each diameter class of Suaeda salsa in areas with different coverage rates

    样地 Sampling plot根系生物量 Root biomass (g)
    >5 mm2~5 mm˂2 mm总量 Total
    NCA
    LCA 0.20±0.08Cc 17.53±2.32Ac 6.44±1.10Bc 24.17±3.11c
    MCA 5.33±1.15Cb 25.19±1.63Ab 11.66±1.08Bb 42.18±2.74b
    HCA 29.22±1.56Aa 31.23±0.53Aa 19.02±1.04Ba 79.47±3.48a
      NCA: 裸地区; LCA: 低覆盖区; MCA: 中覆盖区; HCA: 高覆盖区。同行不同大写字母表示不同径级根系间差异显著, 同列不同小写字母表示不同样地间差异显著(P<0.05)。NCA: no coverage area; LCA: low-coverage area; MCA: medium-coverage area; HCA: high-coverage area. Different capital letters in the same line indicate significant differences among roots of different diameter classes. Different lowercase letters in the same column indicate significant differences among sample plots (P<0.05).
    下载: 导出CSV

    表  4  不同覆盖度下盐地碱蓬细根的生长特征

    Table  4.   Growth characteristics of fine roots of Suaeda salsa in areas with different coverage rates

    样地
    Sampling plot
    根长
    Root length (cm)
    表面积
    Surface area (cm2)
    根体积
    Root volume (cm3)
    平均直径
    Average diameter (mm)
    根尖数
    Tips number
    分支数
    Branch number
    交叉数
    Cross number
    NCA
    LCA 462.26±32.90c 26.42±3.75c 0.12±0.03b 0.18±0.02ab 1859±112.53c 4299±123.71c 435±26.89c
    MCA 786.97±67.41b 40.04±3.97b 0.17±0.02b 0.16±0.01b 3126±156.74b 5793±166.06b 616±28.79b
    HCA 1122.73±159.85a 71.23±5.48a 0.37±0.01a 0.20±0.02a 4427±160.10a 9653±190.29a 1025±73.30a
      NCA: 裸地区; LCA: 低覆盖区; MCA: 中覆盖区; HCA: 高覆盖区。同列不同小写字母表示不同样地间差异显著(P<0.05)。NCA: no coverage area; LCA: low-coverage area; MCA: medium-coverage area; HCA: high-coverage area. Different lowercase letters in the same column indicate significant differences among different sample plots (P<0.05).
    下载: 导出CSV

    表  5  不同覆盖度下盐地碱蓬样地的土壤呼吸速率变化

    Table  5.   Soil respiration rates in Suaeda salsa areas with different coverages

    样地
    Sampling plot
    时间 Time
    8:0010:0012:0014:0016:0018:00
    NCA0.14±0.02Dc0.23±0.03BCd0.37±0.06Ac0.34±0.04Ad0.28±0.04Bd0.22±0.03Cc
    LCA0.25±0.06Db0.49±0.07Cc0.85±0.09Ab0.81±0.10Ac0.60±0.08Bc0.47±0.07Cb
    MCA0.42±0.09Ea0.83±0.09Cb1.13±010Aa1.18±0.12Ab0.97±0.10Bb0.64±0.07Da
    HCA0.47±0.06Ea1.04±0.09Ca1.27±0.10Aa1.36±0.14Aa1.14±0.11Ba0.79±0.08Da
      NCA: 裸地区; LCA: 低覆盖区; MCA: 中覆盖区; HCA: 高覆盖区。同行不同大写字母表示同一样地不同时间间差异显著(P<0.05), 同列不同小写字母表示不同样地间差异显著(P<0.05)。NCA: no coverage area; LCA: low-coverage area; MCA: medium-coverage area; HCA: high-coverage area. Different capital letters in the same line mean significant differences among different times (P<0.05). Different lowercase letters in the same column indicate significant differences among different sample plots (P<0.05).
    下载: 导出CSV

    表  6  各指标间的相关性分析

    Table  6.   Correlation analysis between indicators

    项目 ItemX1X2X3X4X5X6X7X8X9X10X11X12X13X14
    X11.000
    X20.602*1.000
    X30.061−0.3031.000
    X4−0.696*−0.884**0.3211.000
    X5−0.798**−0.816**0.1150.889**1.000
    X6−0.593−0.806**0.3260.830**0.853**1.000
    X7−0.703*−0.829**0.2430.846**0.710**0.696*1.000
    X8−0.666*−0.921**0.4600.923**0.908**0.850**0.788**1.000
    X9−0.715**−0.916**0.3590.927**0.945**0.853**0.795**0.993**1.000
    X10−0.747**−0.851**0.1760.872**0.978**0.815**0.716**0.938**0.969**1.000
    X11−0.778**−0.693*−0.2310.724**0.888**0.744**0.699*0.697*0.773**0.858**1.000
    X12−0.813**−0.821**0.1460.904**0.959**0.801**0.825**0.906**0.943**0.955**0.890**1.000
    X13−0.535−0.769**0.659*0.773**0.657*0.666*0.678*0.861**0.824**0.732**0.4150.718**1.000
    X14−0.0200.111−0.494−0.179−0.033−0.1510.077−0.206−0.131−0.0220.3500.074−0.3151.000
      *表示在P<0.05水平显著相关; **表示在P<0.01水平极显著相关。X1: 土壤含盐量; X2: 土壤容重; X3: 土壤含水量; X4: 土壤总孔隙度; X5: 土壤有机质; X6: 土壤总氮; X7: 土壤总磷; X8: 地上部分生物量; X9: 地下部分生物量; X10: 分支数; X11: 密度; X12: 土壤呼吸速率; X13: 土壤温度; X14: 土壤湿度。*: significantly correlated at P<0.05 level; **: significantly correlated at P<0.01 level. X1: soil salt content; X2: soil bulk density; X3: soil quality moisture content; X4: soil total porosity; X5: soil organic matter; X6: soil total nitrogen; X7: soil total phosphorus; X8: aboveground biomass; X9: underground biomass; X10: branch number; X11: plant density; X12: soil respiration rate; X13: soil temperature; X14: soil moisture.
    下载: 导出CSV
  • [1] MITSCH W J, GOSSELINK J G. Wetlands[M]. 4th Edition. New York: John Wiley & Sons, 2007: 582
    [2] BRULAND G L, RICHARDSON C J. Hydrologic, edaphic, and vegetative responses to microtopographic reestablishment in a restored wetland[J]. Restoration Ecology, 2005, 13(3): 515−523 doi: 10.1111/j.1526-100X.2005.00064.x
    [3] WANG Z Y, XIN Y Z, GAO D M, et al. Microbial community characteristics in a degraded wetland of the Yellow River Delta[J]. Pedosphere, 2010, 20(4): 466−478 doi: 10.1016/S1002-0160(10)60036-7
    [4] 巩腾飞. 盐碱地植被覆盖度与土壤盐分含量时空耦合关系研究——以山东省无棣县为例[D]. 泰安: 山东农业大学, 2016

    GONG T F. Study on the spatio-temporal coupling relationship between vegetation coverage and soil salt content in saline-alkali land— A case study of Wudi County, Shandong Province[D]. Tai’an: Shandong Agricultural University, 2016
    [5] MULUMBA L N, LAL R. Mulching effects on selected soil physical properties[J]. Soil and Tillage Research, 2008, 98(1): 106−111 doi: 10.1016/j.still.2007.10.011
    [6] 单娜娜, 赖波, 杨志莹, 等. 准噶尔盆地西北缘不同盐生植物种植后土壤盐分变化研究[J]. 新疆农业科学, 2016, 53(12): 2314−2320 doi: 10.6048/j.issn.1001-4330.2016.12.020

    SHAN N N, LAI B, YANG Z Y, et al. Study on changes of soil salinity after planting halophyte in northwest of Junggar Basin[J]. Xinjiang Agricultural Sciences, 2016, 53(12): 2314−2320 doi: 10.6048/j.issn.1001-4330.2016.12.020
    [7] 于嵘, 亢庆, 张增祥, 等. 中国西北盐碱区植被盖度遥感方法分析[J]. 干旱区资源与环境, 2006, 20(2): 154−158 doi: 10.3969/j.issn.1003-7578.2006.02.030

    YU R, KANG Q, ZHANG Z X, et al. Analysis on the methods for assessing vegetation cover based on RS in Alkali Region, Northwest China[J]. Journal of Arid Land Resources and Environment, 2006, 20(2): 154−158 doi: 10.3969/j.issn.1003-7578.2006.02.030
    [8] 贾林, 张金龙, 刘璐瑶, 等. 天津滨海地区不同年限吹填土植被恢复与土壤理化性质变异特征[J]. 环境工程, 2021, 39(6): 179−186, 159 doi: 10.13205/j.hjgc.202106027

    JIA L, ZHANG J L, LIU L Y, et al. Variation characteristics of vegetation restoration and soil physical and chemical properties of different reclamation years in Tianjin coastal area[J]. Environmental Engineering, 2021, 39(6): 179−186, 159 doi: 10.13205/j.hjgc.202106027
    [9] 张芳, 熊黑钢, 安放舟, 等. 基于盐(碱)生植被盖度的土壤碱化分级[J]. 土壤学报, 2012, 49(4): 665−672

    ZHANG F, XIONG H G, AN F Z, et al. Classification of soil alkalization based on halophyte coverage[J]. Acta Pedologica Sinica, 2012, 49(4): 665−672
    [10] 彭晓莉, 吴旺泽, 沈娟, 等. 城市绿化带植被覆盖度对盐碱地土壤盐分的调节[J]. 植物研究, 2022, 42(1): 62−70 doi: 10.7525/j.issn.1673-5102.2022.01.007

    PENG X L, WU W Z, SHEN J, et al. Regulation of soil salinity by vegetation coverage in urban greenbelt saline-alkali land[J]. Bulletin of Botanical Research, 2022, 42(1): 62−70 doi: 10.7525/j.issn.1673-5102.2022.01.007
    [11] 杨志辉, 赵军, 温媛媛. 青土湖区植被与土壤盐渍化响应研究[J]. 干旱地区农业研究, 2020, 38(3): 231−237 doi: 10.7606/j.issn81000-7601.2020.03.29

    YANG Z H, ZHAO J, WEN Y Y. Study of response of vegetation coverage to salinization in Qingtu Lake[J]. Agricultural Research in the Arid Area, 2020, 38(3): 231−237 doi: 10.7606/j.issn81000-7601.2020.03.29
    [12] 马千虎, 周玉蓉, 徐金鹏, 等. 宁夏东部荒漠草原不同植被恢复模式的土壤响应特征[J]. 中国草地学报, 2018, 40(5): 50−56

    MA Q H, ZHOU Y R, XU J P, et al. Response of soil to different vegetation restorations in desert steppe in eastern Ningxia[J]. Chinese Journal of Grassland, 2018, 40(5): 50−56
    [13] 吴健利. 黄土台塬土地利用方式对土壤呼吸及有机碳矿化的影响[D]. 杨凌: 西北农林科技大学, 2016

    WU J L. Effects of land use patterns on soil respiration and organic carbon mineralization in Loess Plateau[D]. Yangling: Northwest A & F University, 2016
    [14] SCHLESINGER W H, ANDREWS J A. Soil respiration and the global carbon cycle[J]. Biogeochemistry, 2000, 48(1): 7−20 doi: 10.1023/A:1006247623877
    [15] 孙赫奕, 王庆贵. 土壤呼吸的主要影响因素研究进展[J]. 土壤科学, 2021, 9(2): 81−87

    SUN H Y, WANG Q G. The main influencing factors of soil respiration: a review[J]. Hans Journal of Soil Science, 2021, 9(2): 81−87
    [16] LI Q, ZHOU D W. Soil respiration versus vegetation degradation under the influence of three grazing regimes in the Songnen Plain[J]. Land Degradation & Development, 2018, 29(8): 2403−2416
    [17] 任志国, 马明国, 宋怡. 黑河下游五种不同植被类型土壤呼吸的差异性解析[J]. 干旱区地理, 2017, 40(3): 598−605

    REN Z G, MA M G, SONG Y. Analytic differences on soil respiration of various vegetation types in the lower reaches of Heihe River Basin[J]. Arid Land Geography, 2017, 40(3): 598−605
    [18] 马笑丹, 刘加珍, 陈永金, 等. 黄河三角洲柽柳灌丛对周边土壤呼吸的影响研究[J]. 地球环境学报, 2022, 13(4): 405−417

    MA X D, LIU J Z, CHEN Y J, et al. Effects of Tamarix chinensis shrub on soil respiration in the Yellow River Delta[J]. Journal of Earth Environment, 2022, 13(4): 405−417
    [19] 赵可夫, 李法曾. 中国盐生植物[M]. 北京: 科学出版社, 1999

    ZHAO K F, LI F Z. Halophytes in China[M]. Beijing: Science Press, 1999
    [20] ZHAO G X, LIN G, FLETCHER J J, et al. Cultivated land changes and their driving forces — A satellite remote sensing analysis in the Yellow River Delta, China[J]. Pedosphere, 2004, 14(1): 93−102
    [21] 赵心怡. 黄河三角洲滨海湿地典型植物群落特征及其与环境因子的响应[D]. 烟台: 鲁东大学, 2020

    ZHAO X Y. Characteristics of typical plant communities and its responses to environmental factors of costal wetlands in the Yellow River Delta[D]. Yantai: Ludong University, 2020
    [22] 王宇, 武亚楠, 鄢郭馨, 等. 黄河三角洲滨海湿地芦苇、碱蓬混生群落空间点格局分析[J]. 生态科学, 2020, 39(1): 51−59 doi: 10.14108/j.cnki.1008-8873.2020.01.007

    WANG Y, WU Y N, YAN G X, et al. Spatial point pattern analysis of mixed communities of Phragmites australis and Suaeda salsa in coastal wetland of the Yellow River Delta[J]. Ecological Science, 2020, 39(1): 51−59 doi: 10.14108/j.cnki.1008-8873.2020.01.007
    [23] 武亚楠, 张英虎, 张振明, 等. 黄河三角洲湿地植物根区优先流区和基质流区土壤特性分布差异[J]. 北京师范大学学报(自然科学版), 2021, 57(1): 69−75

    WU Y N, ZHANG Y H, ZHANG Z M, et al. Differences in soil characteristics between preferential and matrix flow areas in wetland plants root zone in the Yellow River Delta[J]. Journal of Beijing Normal University (Natural Science), 2021, 57(1): 69−75
    [24] 杨策, 陈环宇, 李劲松, 等. 盐地碱蓬生长对滨海重盐碱地的改土效应[J]. 中国生态农业学报(中英文), 2019, 27(10): 1578−1586

    YANG C, CHEN H Y, LI J S, et al. Soil improving effect of Suaeda salsa on heavy coastal saline-alkaline land[J]. Chinese Journal of Eco-Agriculture, 2019, 27(10): 1578−1586
    [25] 胡星云, 孙志高, 孙文广, 等. 黄河口新生湿地碱蓬生物量及氮累积与分配对外源氮输入的响应[J]. 生态学报, 2017, 37(1): 226−237

    HU X Y, SUN Z G, SUN W G, et al. Biomass and nitrogen accumulation and allocation in Suaeda salsa in response to exogenous nitrogen enrichment in the newly created marshes of the Yellow River Estuary, China[J]. Acta Ecologica Sinica, 2017, 37(1): 226−237
    [26] 谭清梅, 刘红玉, 张华兵, 等. 基于遥感的江苏省滨海湿地景观植被覆盖度分级研究[J]. 遥感技术与应用, 2013, 28(5): 934−940

    TAN Q M, LIU H Y, ZHANG H B, et al. Classification of vegetation coverage of wetland landscape based on remote sensing in the coastal area of Jiangsu Province[J]. Remote Sensing Technology and Application, 2013, 28(5): 934−940
    [27] 国家林业局. 森林生态系统长期定位观测方法: LY/T 1952—2011[S]. 北京: 中国标准出版社, 2011

    State Forestry Administration. Observation Methodology for Long-term Forest Ecosystem Research: LY/T 1952—2011[S]. Beijing: Standards Press of China, 2011
    [28] ZHANG L, PAN Y, LV W, et al. Physiological responses of biomass allocation, root architecture, and invertase activity to copper stress in young seedlings from two populations of Kummerowia stipulacea (Maxim.) Makino[J]. Ecotoxicological and Environmental Safety, 2014, 104: 278−284 doi: 10.1016/j.ecoenv.2014.03.013
    [29] 康满萍, 赵成章, 白雪. 苏干湖湿地土壤全盐含量空间异质性及影响因素[J]. 生态学报, 2021, 41(6): 2282−2291

    KANG M P, ZHAO C Z, BAI X. Spatial heterogeneity and influencing factors of total soil salinity in Sugan Lake wetland[J]. Acta Ecologica Sinica, 2021, 41(6): 2282−2291
    [30] 中国科学院南京土壤研究所. 土壤理化分析[M]. 上海: 上海科学技术出版社, 1978

    Institute of Soil Sciences, Chinese Academy of Sciences. Soil Physical and Chemical Analysis[M]. Shanghai: Shanghai Scientific & Technical Publishers, 1978
    [31] 李宝富, 熊黑钢, 张建兵, 等. 两种植被覆盖度下土壤水分和盐分的空间变异性研究[J]. 新疆农业科学, 2010, 47(1): 168−173 doi: 10.6048/j.issn.1001-4330.2010.01.031

    LI B F, XIONG H G, ZHANG J B, et al. Study on spatial variability of soil water and salt under the two vegetation coverages[J]. Xinjiang Agricultural Sciences, 2010, 47(1): 168−173 doi: 10.6048/j.issn.1001-4330.2010.01.031
    [32] 吴统贵, 陈步峰, 肖以华, 等. 珠江三角洲3种典型森林类型乔木叶片生态化学计量学[J]. 植物生态学报, 2010, 34(1): 58−63 doi: 10.3773/j.issn.1005-264x.2010.01.009

    WU T G, CHEN B F, XIAO Y H, et al. Leaf stoichiometry of trees in three forest types in Pearl River Delta, South China[J]. Chinese Journal of Plant Ecology, 2010, 34(1): 58−63 doi: 10.3773/j.issn.1005-264x.2010.01.009
    [33] 张珂, 苏永中, 王婷, 等. 荒漠绿洲区不同种植年限人工梭梭林土壤化学计量特征[J]. 生态学报, 2016, 36(11): 3235−3243

    ZHANG K, SU Y Z, WANG T, et al. Soil stoichiometry characteristics of Haloxylon ammodendron with different plantation age in the desert-oasis ecotone, North China[J]. Acta Ecologica Sinica, 2016, 36(11): 3235−3243
    [34] CASPER B B, JACKSON R B. Plant competition underground[J]. Annual Review of Ecology and Systematics, 1997, 28(0): 545−570
    [35] 李永涛, 杨庆山, 王莉莉, 等. 滨海盐碱地不同林龄白蜡人工林根系分布及土壤特性变化[J]. 东北林业大学学报, 2020, 48(8): 50−54, 98 doi: 10.3969/j.issn.1000-5382.2020.08.010

    LI Y T, YANG Q S, WANG L L, et al. Root distribution and soil properties of Fraxinus plantations with different forest stand ages in the coastal saline-alkali land[J]. Journal of Northeast Forestry University, 2020, 48(8): 50−54, 98 doi: 10.3969/j.issn.1000-5382.2020.08.010
    [36] 陈立华, 张欢, 姚宇阗, 等. 盐地碱蓬覆被对滨海滩涂土壤理化性质的影响[J]. 植物资源与环境学报, 2021, 30(2): 19−27 doi: 10.3969/j.issn.1674-7895.2021.02.03

    CHEN L H, ZHANG H, YAO Y T, et al. Effects of Suaeda salsa covering on soil physicochemical properties in coastal beach[J]. Journal of Plant Resources and Environment, 2021, 30(2): 19−27 doi: 10.3969/j.issn.1674-7895.2021.02.03
    [37] JENKINSON D S, ADAMS D E, WILD A. Model estimates of CO2 emissions from soil in response to global warming[J]. Nature, 1991, 351: 304 doi: 10.1038/351304a0
    [38] RAICH J W, TUFEKCIOGLU A. Vegetation and soil respiration: correlations and controls[J]. Biogeochemistry, 2000, 48(1): 71−90 doi: 10.1023/A:1006112000616
    [39] 王丰川, 刘加珍, 陈永金. 黄河三角洲湿地土壤呼吸及其环境因子分析[J]. 人民黄河, 2013, 35(1): 81−84 doi: 10.3969/j.issn.1000-1379.2013.01.026

    WANG F C, LIU J Z, CHEN Y J. Yellow River delta wetland soil respiration and the environmental factor analysis[J]. Yellow River, 2013, 35(1): 81−84 doi: 10.3969/j.issn.1000-1379.2013.01.026
    [40] 武传胜, 沙丽清, 张一平. 哀牢山中山湿性常绿阔叶林凋落物对土壤呼吸及其温度敏感性的影响[J]. 东北林业大学学报, 2012, 40(6): 37−40 doi: 10.3969/j.issn.1000-5382.2012.06.010

    WU C S, SHA L Q, ZHANG Y P. Effect of litter on soil respiration and its temperature sensitivity in a montane evergreen broad-leaved forest in Ailao Mountains, Yunnan[J]. Journal of Northeast Forestry University, 2012, 40(6): 37−40 doi: 10.3969/j.issn.1000-5382.2012.06.010
  • 加载中
图(1) / 表(6)
计量
  • 文章访问数:  155
  • HTML全文浏览量:  58
  • PDF下载量:  32
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-09-23
  • 录用日期:  2023-01-06
  • 修回日期:  2023-01-06
  • 网络出版日期:  2023-02-07
  • 刊出日期:  2023-03-10

目录

    /

    返回文章
    返回