留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

盐渍化土壤团聚体和微生物与有机质关系研究进展

董心亮 王金涛 田柳 娄泊远 张雪佳 刘彤 刘小京 孙宏勇

董心亮, 王金涛, 田柳, 娄泊远, 张雪佳, 刘彤, 刘小京, 孙宏勇. 盐渍化土壤团聚体和微生物与有机质关系研究进展[J]. 中国生态农业学报 (中英文), 2023, 31(3): 364−372 doi: 10.12357/cjea.20220752
引用本文: 董心亮, 王金涛, 田柳, 娄泊远, 张雪佳, 刘彤, 刘小京, 孙宏勇. 盐渍化土壤团聚体和微生物与有机质关系研究进展[J]. 中国生态农业学报 (中英文), 2023, 31(3): 364−372 doi: 10.12357/cjea.20220752
DONG X L, WANG J T, TIAN L, LOU B Y, ZHANG X J, LIU T, LIU X J, SUN H Y. Review of relationships between soil aggregates, microorganisms and soil organic matter in salt-affected soil[J]. Chinese Journal of Eco-Agriculture, 2023, 31(3): 364−372 doi: 10.12357/cjea.20220752
Citation: DONG X L, WANG J T, TIAN L, LOU B Y, ZHANG X J, LIU T, LIU X J, SUN H Y. Review of relationships between soil aggregates, microorganisms and soil organic matter in salt-affected soil[J]. Chinese Journal of Eco-Agriculture, 2023, 31(3): 364−372 doi: 10.12357/cjea.20220752

盐渍化土壤团聚体和微生物与有机质关系研究进展

doi: 10.12357/cjea.20220752
基金项目: 国家重点研发计划项目(2021YFE0114500, 2021YFD1901002, 2021YFD1900904)和国家自然科学基金项目(41907017)资助
详细信息
    作者简介:

    董心亮, 主要研究方向为土壤有机质周转及调控过程。E-mail: xldong@sjziam.ac.cn

    通讯作者:

    孙宏勇, 主要研究方向为盐渍化土壤水盐运移过程及盐碱耕地质量提升。E-mail: hysun@sjziam.ac.cn

  • 中图分类号: S152

Review of relationships between soil aggregates, microorganisms and soil organic matter in salt-affected soil

Funds: This study was supported by the National Key Research and Development Program of China (2021YFE0114500, 2021YFD1901002, 2021YFD1900904) and the National Natural Science Foundation of China (41907017).
More Information
  • 摘要: 土壤有机质是耕地质量的核心, 不仅促进土壤团聚体形成, 也为植物和微生物提供养分。土壤有机质的形成和分解过程都离不开微生物的参与, 而土壤团聚体不仅为微生物提供了栖息环境, 也对有机质进行物理保护。在高盐分含量的土壤中, 有机质的积累和分解过程变得更加复杂, 因此本文总结了土壤盐渍化及其危害, 分析了土壤盐分对土壤团聚结构和微生物特征的影响、盐碱土壤有机质特征及积累规律, 进而综述了土壤盐分对土壤有机质影响规律的研究进展, 旨在揭示盐碱土壤碳封存的潜在机理。以往研究表明盐渍化土壤有机质含量低、团聚结构差、微生物活性低, 这些都与土壤盐分含量高和外源有机物质输入量低有关。恶劣的土壤结构导致盐渍化土壤有机质暴露而较易分解, 低量的外源有机物质输入导致盐渍化土壤有机质较难积累。可见, 盐渍化土壤是潜在的碳库, 适宜的措施可以显著提高盐渍化土壤有机质含量。在此基础上, 提出未来盐渍化土壤有机质积累的研究方向: 1)不同盐分环境下土壤团聚结构和土壤微生物在有机质分解过程中的响应规律; 2)外源有机物料添加下土壤团聚结构和土壤微生物在有机质积累过程中的响应规律; 3)土壤有机质提升后盐碱地生产力特征。以上研究不仅可以阐明盐碱土壤有机质的周转机理, 为盐碱地“固碳封存”提供理论依据, 还可以有针对性地提供盐碱耕地质量提升措施, 推进盐碱地绿色可持续发展。
  • 图  1  Ca2+或Na+与土壤颗粒和有机质(SOM)的关系

    Figure  1.  Relationships between Ca2+ or Na+ and soil particles and organic matter (SOM)

    图  2  土壤盐渍化过程中土壤有机质(SOM)含量和稳定性变化

    Figure  2.  Soil organic matter (SOM) content and stability changes during soil salinization

  • [1] RENGASAMY P. World salinization with emphasis on Australia[J]. Journal of Experimental Botany, 2006, 57(5): 1017−1023 doi: 10.1093/jxb/erj108
    [2] 杨劲松. 中国盐渍土研究的发展历程与展望[J]. 土壤学报, 2008, 45(5): 837−845 doi: 10.3321/j.issn:0564-3929.2008.05.010

    YANG J S. Development and prospect of the research on salt-affected soils in China[J]. Acta Pedologica Sinica, 2008, 45(5): 837−845 doi: 10.3321/j.issn:0564-3929.2008.05.010
    [3] SHAHBAZ M, ASHRAF M. Improving salinity tolerance in cereals[J]. Critical Reviews in Plant Sciences, 2013, 32(4): 237−249 doi: 10.1080/07352689.2013.758544
    [4] LI J G, PU L J, HAN M F, et al. Soil salinization research in China: Advances and prospects[J]. Journal of Geographical Sciences, 2014, 24(5): 943−960 doi: 10.1007/s11442-014-1130-2
    [5] SETIA R, GOTTSCHALK P, SMITH P, et al. Soil salinity decreases global soil organic carbon stocks[J]. The Science of the Total Environment, 2013, 465: 267−272 doi: 10.1016/j.scitotenv.2012.08.028
    [6] 杨劲松, 姚荣江, 王相平, 等. 中国盐渍土研究: 历程、现状与展望[J]. 土壤学报, 2022, 59(1): 10−27 doi: 10.11766/trxb202110270578

    YANG J S, YAO R J, WANG X P, et al. Research on salt-affected soils in China: history, status quo and prospect[J]. Acta Pedologica Sinica, 2022, 59(1): 10−27 doi: 10.11766/trxb202110270578
    [7] TRIVEDI P, SINGH B P, SINGH B K. Soil carbon: Introduction, importance, status, threat, and mitigation[M]. SINGH B K. Soil Carbon Storage: Modulators, Mechanisms and Modeling. Pittsburgh: Academic Press, 2018: 1–28
    [8] COTCHING W E. Organic matter in the agricultural soils of Tasmania, Australia — A review[J]. Geoderma, 2018, 312: 170−182 doi: 10.1016/j.geoderma.2017.10.006
    [9] PAUL E A. The nature and dynamics of soil organic matter: Plant inputs, microbial transformations, and organic matter stabilization[J]. Soil Biology and Biochemistry, 2016, 98: 109−126 doi: 10.1016/j.soilbio.2016.04.001
    [10] WONG V N L, GREENE R S B, DALAL R C, et al. Soil carbon dynamics in saline and sodic soils: a review[J]. Soil Use and Management, 2010, 26(1): 2−11 doi: 10.1111/j.1475-2743.2009.00251.x
    [11] URY E A, WRIGHT J P, ARDÓN M, et al. Saltwater intrusion in context: soil factors regulate impacts of salinity on soil carbon cycling[J]. Biogeochemistry, 2022, 157(2): 215−226 doi: 10.1007/s10533-021-00869-6
    [12] RATH K M, FIERER N, MURPHY D V, et al. Linking bacterial community composition to soil salinity along environmental gradients[J]. The ISME Journal, 2019, 13(3): 836−846 doi: 10.1038/s41396-018-0313-8
    [13] RATH K M, ROUSK J. Salt effects on the soil microbial decomposer community and their role in organic carbon cycling: a review[J]. Soil Biology and Biochemistry, 2015, 81: 108−123 doi: 10.1016/j.soilbio.2014.11.001
    [14] KELLER L P, MCCARTHY G J, RICHARDSON J L. Mineralogy and stability of soil evaporites in North Dakota[J]. Soil Science Society of America Journal, 1986, 50(4): 1069−1071 doi: 10.2136/sssaj1986.03615995005000040047x
    [15] MUNNS R. Comparative physiology of salt and water stress[J]. Plant, Cell & Environment, 2002, 25(2): 239−250
    [16] WANG W X, VINOCUR B, ALTMAN A. Plant responses to drought, salinity and extreme temperatures: towards genetic engineering for stress tolerance[J]. Planta, 2003, 218(1): 1−14 doi: 10.1007/s00425-003-1105-5
    [17] QADIR M, QUILLÉROU E, NANGIA V, et al. Economics of salt-induced land degradation and restoration[J]. Natural Resources Forum, 2014, 38(4): 282−295 doi: 10.1111/1477-8947.12054
    [18] RENGASAMY P. Soil processes affecting crop production in salt-affected soils[J]. Functional Plant Biology, 2010, 37(7): 613 doi: 10.1071/FP09249
    [19] DALIAKOPOULOS I N, TSANIS I K, KOUTROULIS A, et al. The threat of soil salinity: a European scale review[J]. Science of the Total Environment, 2016, 573: 727−739 doi: 10.1016/j.scitotenv.2016.08.177
    [20] VOLKMAR K M, HU Y, STEPPUHN H. Physiological responses of plants to salinity: A review[J]. Canadian Journal of Plant Science, 1998, 78(1): 19−27 doi: 10.4141/P97-020
    [21] ASLAM R. A critical review on halophytes: salt tolerant plants[J]. Journal of Medicinal Plants Research, 2011, 5(33): 7108−7118
    [22] EMPADINHAS N, COSTA M S. Osmoadaptation mechanisms in prokaryotes: distribution of compatible solutes[J]. International Microbiolog, 2008, 11(3): 151−161
    [23] OREN A. Bioenergetic aspects of halophilism[J]. Microbiology and Molecular Biology Reviews, 1999, 63(2): 334−348 doi: 10.1128/MMBR.63.2.334-348.1999
    [24] SCHIMEL J, BALSER T C, WALLENSTEIN M. Microbial stress-response physiology and its implications for ecosystem function[J]. Ecology, 2007, 88(6): 1386−1394 doi: 10.1890/06-0219
    [25] SIX J, ELLIOTT E T, PAUSTIAN K. Soil macroaggregate turnover and microaggregate formation: a mechanism for C sequestration under no-tillage agriculture[J]. Soil Biology and Biochemistry, 2000, 32(14): 2099−2103 doi: 10.1016/S0038-0717(00)00179-6
    [26] OADES J M. Soil organic matter and structural stability: mechanisms and implications for management[J]. Plant and Soil, 1984, 76(1/2/3): 319−337
    [27] SIX J, BOSSUYT H, DEGRYZE S, et al. A history of research on the link between (micro)aggregates, soil biota, and soil organic matter dynamics[J]. Soil and Tillage Research, 2004, 79(1): 7−31 doi: 10.1016/j.still.2004.03.008
    [28] AMEZKETA E. Soil aggregate stability: A review[J]. Journal of Sustainable Agriculture, 1999, 14(2/3): 83−151
    [29] RENGASAMY P, OLSSON K A. Sodicity and soil structure[J]. Soil Research, 1991, 29(6): 935 doi: 10.1071/SR9910935
    [30] QUIRK J P. The significance of the threshold and turbidity concentrations in relation to sodicity and microstructure[J]. Soil Research, 2001, 39(6): 1185 doi: 10.1071/SR00050
    [31] LEE BARBOUR S. Nineteenth Canadian Geotechnical Colloquium: the soil-water characteristic curve: a historical perspective[J]. Canadian Geotechnical Journal, 1998, 35(5): 873−894 doi: 10.1139/t98-040
    [32] OADIR M, OSTER J, SCHUBERT S, et al Phytoremediation of sodic and saline‐sodic soils[J]. Advances in Agronomy, 2007, 96: 197–247
    [33] SETIA R, RENGASAMY P, MARSCHNER P. Effect of exchangeable cation concentration on sorption and desorption of dissolved organic carbon in saline soils[J]. Science of the Total Environment, 2013, 465: 226−232 doi: 10.1016/j.scitotenv.2013.01.010
    [34] MAVI M S, SANDERMAN J, CHITTLEBOROUGH D J, et al. Sorption of dissolved organic matter in salt-affected soils: effect of salinity, sodicity and texture[J]. Science of the Total Environment, 2012, 435/436: 337−344 doi: 10.1016/j.scitotenv.2012.07.009
    [35] SAIFULLAH, DAHLAWI S, NAEEM A, et al. Biochar application for the remediation of salt-affected soils: challenges and opportunities[J]. Science of the Total Environment, 2018, 625: 320−335 doi: 10.1016/j.scitotenv.2017.12.257
    [36] GARCÍA-ORENES F, GUERRERO C, MATAIX-SOLERA J, et al. Factors controlling the aggregate stability and bulk density in two different degraded soils amended with biosolids[J]. Soil and Tillage Research, 2005, 82(1): 65−76 doi: 10.1016/j.still.2004.06.004
    [37] WU L P, ZHANG S R, MA R H, et al. Carbon sequestration under different organic amendments in saline-alkaline soils[J]. CATENA, 2021, 196: 104882 doi: 10.1016/j.catena.2020.104882
    [38] SETIA R, SMITH P, MARSCHNER P, et al. Simulation of salinity effects on past, present, and future soil organic carbon stocks[J]. Environmental Science & Technology, 2012, 46(3): 1624−1631
    [39] WANG C, QU L R, YANG L M, et al. Large-scale importance of microbial carbon use efficiency and necromass to soil organic carbon[J]. Global Change Biology, 2021, 27(10): 2039−2048 doi: 10.1111/gcb.15550
    [40] LIANG C, AMELUNG W, LEHMANN J, et al. Quantitative assessment of microbial necromass contribution to soil organic matter[J]. Global Change Biology, 2019, 25(11): 3578−3590 doi: 10.1111/gcb.14781
    [41] 梁超, 朱雪峰. 土壤微生物碳泵储碳机制概论[J]. 中国科学:地球科学, 2021, 51(5): 680−695 doi: 10.1360/SSTe-2020-0213

    LIANG C, ZHU X F. The soil microbial carbon pump as a new concept for terrestrial carbon sequestration[J]. Scientia Sinica (Terrae), 2021, 51(5): 680−695 doi: 10.1360/SSTe-2020-0213
    [42] ALVAREZ C R, ALVAREZ R, GRIGERA M S, et al. Associations between organic matter fractions and the active soil microbial biomass[J]. Soil Biology and Biochemistry, 1998, 30(6): 767−773 doi: 10.1016/S0038-0717(97)00168-5
    [43] YUAN B C, LI Z Z, LIU H, et al. Microbial biomass and activity in salt affected soils under arid conditions[J]. Applied Soil Ecology, 2007, 35(2): 319−328 doi: 10.1016/j.apsoil.2006.07.004
    [44] YAN N, MARSCHNER P. Response of microbial activity and biomass to increasing salinity depends on the final salinity, not the original salinity[J]. Soil Biology and Biochemistry, 2012, 53: 50−55 doi: 10.1016/j.soilbio.2012.04.028
    [45] 强学彩, 袁红莉, 高旺盛. 秸秆还田量对土壤CO2释放和土壤微生物量的影响[J]. 应用生态学报, 2004, 15(3): 469−472 doi: 10.3321/j.issn:1001-9332.2004.03.022

    QIANG X C, YUAN H L, GAO W S. Effect of crop-residue incorporation on soil CO2 emission and soil microbial biomass[J]. Chinese Journal of Applied Ecology, 2004, 15(3): 469−472 doi: 10.3321/j.issn:1001-9332.2004.03.022
    [46] NAIR A, NGOUAJIO M. Soil microbial biomass, functional microbial diversity, and nematode community structure as affected by cover crops and compost in an organic vegetable production system[J]. Applied Soil Ecology, 2012, 58: 45−55 doi: 10.1016/j.apsoil.2012.03.008
    [47] SARDINHA M, MÜLLER T, SCHMEISKY H, et al. Microbial performance in soils along a salinity gradient under acidic conditions[J]. Applied Soil Ecology, 2003, 23(3): 237−244 doi: 10.1016/S0929-1393(03)00027-1
    [48] MUHAMMAD S, MÜLLER T, JOERGENSEN R G. Decomposition of pea and maize straw in Pakistani soils along a gradient in salinity[J]. Biology and Fertility of Soils, 2006, 43(1): 93−101 doi: 10.1007/s00374-005-0068-z
    [49] 操庆, 曹海生, 魏晓兰, 等. 盐胁迫对设施土壤微生物量碳氮和酶活性的影响[J]. 水土保持学报, 2015, 29(4): 300−304 doi: 10.13870/j.cnki.stbcxb.2015.04.054

    CAO Q, CAO H S, WEI X L, et al. Effect of salt stress on carbon and nitrogen of microbial biomass and activity of enzyme in greenhouse soil[J]. Journal of Soil and Water Conservation, 2015, 29(4): 300−304 doi: 10.13870/j.cnki.stbcxb.2015.04.054
    [50] WONG V N L, DALAL R C, GREENE R S B. Salinity and sodicity effects on respiration and microbial biomass of soil[J]. Biology and Fertility of Soils, 2008, 44(7): 943−953 doi: 10.1007/s00374-008-0279-1
    [51] MAVI M S, MARSCHNER P. Drying and wetting in saline and saline-sodic soils — Effects on microbial activity, biomass and dissolved organic carbon[J]. Plant and Soil, 2012, 355(1/2): 51−62
    [52] ZHANG X D, AMELUNG W. Gas chromatographic determination of muramic acid, glucosamine, mannosamine, and galactosamine in soils[J]. Soil Biology and Biochemistry, 1996, 28(9): 1201−1206 doi: 10.1016/0038-0717(96)00117-4
    [53] NELSON P N, LADD J N, OADES J M. Decomposition of 14C-labelled plant material in a salt-affected soil[J]. Soil Biology and Biochemistry, 1996, 28(4/5): 433−441
    [54] YAZDANPANAH N, MAHMOODABADI M, CERDÀ A. The impact of organic amendments on soil hydrology, structure and microbial respiration in semiarid lands[J]. Geoderma, 2016, 266: 58−65 doi: 10.1016/j.geoderma.2015.11.032
    [55] 李贵桐, 张宝贵, 李保国. 秸秆预处理对土壤微生物量及呼吸活性的影响[J]. 应用生态学报, 2003, 14(12): 2225−2228 doi: 10.3321/j.issn:1001-9332.2003.12.029

    LI G T, ZHANG B G, LI B G. Effect of straw pretreatment on soil microbial biomass and respiration activity[J]. Chinese Journal of Applied Ecology, 2003, 14(12): 2225−2228 doi: 10.3321/j.issn:1001-9332.2003.12.029
    [56] RIETZ D N, HAYNES R J. Effects of irrigation-induced salinity and sodicity on soil microbial activity[J]. Soil Biology and Biochemistry, 2003, 35(6): 845−854 doi: 10.1016/S0038-0717(03)00125-1
    [57] FRANKENBERGER W T J, BINGHAM F T. Influence of salinity on soil enzyme activities[J]. Soil Science Society of America Journal, 1982, 46(6): 1173−1177 doi: 10.2136/sssaj1982.03615995004600060011x
    [58] GARCÍA C, HERNÁNDEZ T. Influence of salinity on the biological and biochemical activity of a calciorthird soil[J]. Plant and Soil, 1996, 178(2): 255−263 doi: 10.1007/BF00011591
    [59] SAVIOZZI A, CARDELLI R, DI PUCCIO R. Impact of salinity on soil biological activities: a laboratory experiment[J]. Communications in Soil Science and Plant Analysis, 2011, 42(3): 358−367 doi: 10.1080/00103624.2011.542226
    [60] GRAND W D. Life at low water activity[J]. Philosophical Transactions of the Royal Society B-Biological Sciences, 2004, 359(1448): 1249−1266 doi: 10.1098/rstb.2004.1502
    [61] MANZONI S, TAYLOR P, RICHTER A, et al. Environmental and stoichiometric controls on microbial carbon-use efficiency in soils[J]. New Phytologist, 2012, 196(1): 79−91 doi: 10.1111/j.1469-8137.2012.04225.x
    [62] RATH K M, MAHESHWARI A, BENGTSON P, et al. Comparative toxicities of salts on microbial processes in soil[J]. Applied and Environmental Microbiology, 2016, 82(7): 2012−2020 doi: 10.1128/AEM.04052-15
    [63] PATERSON E, OSLER G, DAWSON L A, et al. Labile and recalcitrant plant fractions are utilised by distinct microbial communities in soil: independent of the presence of roots and mycorrhizal fungi[J]. Soil Biology and Biochemistry, 2008, 40(5): 1103−1113 doi: 10.1016/j.soilbio.2007.12.003
    [64] STRICKLAND M S, ROUSK J. Considering fungal: bacterial dominance in soils — Methods, controls, and ecosystem implications[J]. Soil Biology and Biochemistry, 2010, 42(9): 1385−1395 doi: 10.1016/j.soilbio.2010.05.007
    [65] WICHERN J, WICHERN F, JOERGENSEN R G. Impact of salinity on soil microbial communities and the decomposition of maize in acidic soils[J]. Geoderma, 2006, 137(1/2): 100−108
    [66] LAL R. Soil carbon sequestration to mitigate climate change[J]. Geoderma, 2004, 123(1/2): 1−22
    [67] DONG X L, LI M Z, LIN Q M, et al. Soil Na+ concentration controls salt-affected soil organic matter components in Hetao region China[J]. Journal of Soils and Sediments, 2019, 19(3): 1120−1129 doi: 10.1007/s11368-018-2127-8
    [68] TEJADA M, GARCIA C, GONZALEZ J L, et al. Use of organic amendment as a strategy for saline soil remediation: influence on the physical, chemical and biological properties of soil[J]. Soil Biology and Biochemistry, 2006, 38(6): 1413−1421 doi: 10.1016/j.soilbio.2005.10.017
    [69] DE LA PAIX M J, LANHAI L, XI C, et al. Physicochemical properties of saline soils and aeolian dust[J]. Land Degradation & Development, 2013, 24(6): 539−547
    [70] SIX J, PAUSTIAN K, ELLIOTT E T, et al. Soil structure and organic matterⅠ. Distribution of aggregate-size classes and aggregate-associated carbon[J]. Soil Science Society of America Journal, 2000, 64(2): 681−689 doi: 10.2136/sssaj2000.642681x
    [71] NANNIPIERI P, ASCHER J, CECCHERINI M T, et al. Microbial diversity and soil functions[J]. European Journal of Soil Science, 2003, 54(4): 655−670 doi: 10.1046/j.1351-0754.2003.0556.x
    [72] SOLLINS P, HOMANN P, CALDWELL B A. Stabilization and destabilization of soil organic matter: mechanisms and controls[J]. Geoderma, 1996, 74(1/2): 65−105
    [73] 廖丹, 于东升, 赵永存, 等. 成都典型区水稻土有机碳组分构成及其影响因素研究[J]. 土壤学报, 2015, 52(3): 517−527

    LIAO D, YU D S, ZHAO Y C, et al. Composition of organic carbon in paddy soil in typical area of Chengdu and its influencing factors[J]. Acta Pedologica Sinica, 2015, 52(3): 517−527
    [74] DONG X L, WANG J T, ZHANG X J, et al. Long-term saline water irrigation decreased soil organic carbon and inorganic carbon contents[J]. Agricultural Water Management, 2022, 270: 107760 doi: 10.1016/j.agwat.2022.107760
    [75] 赵哲萱, 冉成, 孟祥宇, 等. 秸秆还田对苏打盐碱稻区土壤团聚体分布及有机碳含量的影响[J]. 吉林农业大学学报, 2022. DOI: 10.13327/j.jjlau.2021.1552

    ZHAO Z X, RAN C, MENG X Y, et al. Effect of straw repatriation on the distribution of soil aggregates and organic carbon content in saline-sodic rice areas[J]. Journal of Jilin Agricultural University, 2022. DOI: 10.13327/j.jjlau.2021.1552
    [76] JANDL R, SOLLINS P. Water-extractable soil carbon in relation to the belowground carbon cycle[J]. Biology and Fertility of Soils, 1997, 25(2): 196−201 doi: 10.1007/s003740050303
    [77] WONG V N L, DALAL R C, GREENE R S B. Carbon dynamics of sodic and saline soils following gypsum and organic material additions: a laboratory incubation[J]. Applied Soil Ecology, 2009, 41(1): 29−40 doi: 10.1016/j.apsoil.2008.08.006
  • 加载中
图(2)
计量
  • 文章访问数:  178
  • HTML全文浏览量:  74
  • PDF下载量:  51
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-09-29
  • 录用日期:  2022-11-17
  • 修回日期:  2022-09-29
  • 网络出版日期:  2022-11-21

目录

    /

    返回文章
    返回