留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

毛叶苕子对滨海盐碱地土壤活性有机碳和后茬玉米产量的影响

李可心 王光美 张晓冬 张海波 石一鸣 季增诚 周志勇

李可心, 王光美, 张晓冬, 张海波, 石一鸣, 季增诚, 周志勇. 毛叶苕子对滨海盐碱地土壤活性有机碳和后茬玉米产量的影响[J]. 中国生态农业学报 (中英文), 2023, 31(3): 405−416 doi: 10.12357/cjea.20220759
引用本文: 李可心, 王光美, 张晓冬, 张海波, 石一鸣, 季增诚, 周志勇. 毛叶苕子对滨海盐碱地土壤活性有机碳和后茬玉米产量的影响[J]. 中国生态农业学报 (中英文), 2023, 31(3): 405−416 doi: 10.12357/cjea.20220759
LI K X, WANG G M, ZHANG X D, ZHANG H B, SHI Y M, JI Z C, ZHOU Z Y. Effect of planting and returning Vicia villosa on soil active organic carbon and yield of subsequent maize in coastal saline soils[J]. Chinese Journal of Eco-Agriculture, 2023, 31(3): 405−416 doi: 10.12357/cjea.20220759
Citation: LI K X, WANG G M, ZHANG X D, ZHANG H B, SHI Y M, JI Z C, ZHOU Z Y. Effect of planting and returning Vicia villosa on soil active organic carbon and yield of subsequent maize in coastal saline soils[J]. Chinese Journal of Eco-Agriculture, 2023, 31(3): 405−416 doi: 10.12357/cjea.20220759

毛叶苕子对滨海盐碱地土壤活性有机碳和后茬玉米产量的影响

doi: 10.12357/cjea.20220759
基金项目: 国家重点研发计划项目(2019YFD1002702)和山东省重点研发计划项目(2021SFGC0301)资助
详细信息
    作者简介:

    李可心, 主要研究方向为全球变化生态学。E-mail: 2317163527@qq.com

    通讯作者:

    王光美, 主要研究方向为盐碱地综合利用, E-mail: gmwang@yic.ac.cn

    周志勇, 主要研究方向为全球变化生态学, E-mail: zhiyong@bjfu.edu.cn

  • 中图分类号: S142

Effect of planting and returning Vicia villosa on soil active organic carbon and yield of subsequent maize in coastal saline soils

Funds: This study was supported by the National Key Research & Development Program of China (2019YFD1002702) and the Key Research & Development Program of Shandong Province (2021SFGC0301).
More Information
  • 摘要: 黄河三角洲地区土壤盐渍化严重, 加之冬春季节降雨量少, 淡水资源匮乏, 耕地冬春休耕现象普遍。于2020年9月—2021年10月, 以冬春休耕为对照, 研究种植翻压毛叶苕子对土壤理化性质、活性有机碳组分动态变化和后茬作物玉米产量的影响, 以期为覆盖植物在黄河三角洲地区盐碱地产能提升方面的应用提供参考。结果表明, 在1年试验期内, 与冬春休耕相比, 种植毛叶苕子可以降低土壤EC, 提高易氧化有机碳(ROC)含量, 翻压后则显著降低pH, 并提高土壤养分和活性有机碳含量。与休耕相比, 试验期内毛叶苕子处理平均pH降低0.12, 平均土壤总氮(TN)、总磷(TP)、有机碳(SOC)、ROC、可溶性有机碳(DOC)含量和ROC/SOC分别提高15.1%、5.5%、6.3%、99.1%、8.2%和89.9%, 平均EC则基本持平。毛叶苕子处理的后茬玉米籽粒产量提高15.9%, 增产效果显著。主成分分析结果表明, 玉米产量与土壤TN、SOC、DOC、ROC呈正相关, 与pH、EC呈负相关。毛叶苕子翻压后, 土壤有机碳各组分含量与TN和pH的相关关系增强, 与TN呈显著正相关, 与pH呈显著负相关。种植翻压毛叶苕子后土壤TN升高和土壤pH降低, 提升了土壤有机碳和活性有机碳含量, 综合作用使后茬玉米产量提高。在黄河三角洲地区, 相对于冬春休耕, 冬春季种植毛叶苕子对土壤改良和后茬作物产量提升优势明显, 可考虑作为盐碱地综合利用的优选模式。
  • 图  1  2020—2021年试验期间气温和降雨状况

    Figure  1.  Air temperature and precipitation in the experiment from 2020 to 2021

    图  2  种植翻压毛叶苕子对盐碱地土壤理化性质的影响

    T1: 苕子种植前; T2: 毛叶苕子翻压前; T3: 毛叶苕子翻压后玉米种植前; T4: 玉米苗期; T5: 玉米大喇叭口期; T6: 玉米收获期。不同大写字母表示相同时期不同处理间差异显著(P<0.05), 不同小写字母表示相同处理下不同时期间差异显著(P<0.05)。T1: before planting V. villosa; T2: before returning V. villosa; T3: after returning V. villosa and before maize planting; T4: maize seedling stage; T5: maize bell mouth stage; T6: maize harvest period. Different capital letters indicate significant differences between two treatments in the same period (P<0.05). Different lowercase letters indicate significant differences among different periods under the same treatment (P<0.05).

    Figure  2.  Effects of planting and returning Vicia villosa on physicochemical properties of saline soil

    图  3  种植翻压毛叶苕子对盐碱地土壤有机碳和活性有机碳的影响

    T1: 苕子种植前; T2: 毛叶苕子翻压前; T3: 毛叶苕子翻压后玉米种植前; T4: 玉米苗期; T5: 玉米大喇叭口期; T6: 玉米收获期。SOC: 总有机碳; ROC: 易氧化有机碳; MBC: 微生物生物量碳; DOC: 可溶性有机碳。不同大写字母表示相同时期不同处理间差异显著(P<0.05), 不同小写字母表示相同处理下不同时期间差异显著(P<0.05)。T1: before planting V. villosa; T2: before returning V. villosa; T3: after returning V. villosa and before maize planting; T4: maize seedling stage; T5: maize bell mouth stage; T6: maize harvest period. SOC: organic carbon; ROC: readily oxidizable organic carbon; MBC: microbial biomass carbon; DOC: dissolved organic carbon. Different capital letters indicate significant differences between two treatments in the same period (P<0.05). Different lowercase letters indicate significant differences among different periods under the same treatment (P<0.05).

    Figure  3.  Effect of planting and returning Vicia villosa on organic carbon and active organic carbon contents of saline soil

    图  4  种植翻压毛叶苕子对盐碱地土壤活性有机碳相对含量的影响

    T1: 苕子种植前; T2: 毛叶苕子翻压前; T3: 毛叶苕子翻压后玉米种植前; T4: 玉米苗期; T5: 玉米大喇叭口期; T6: 玉米收获期。SOC: 总有机碳; ROC: 易氧化有机碳; MBC: 微生物生物量碳; DOC: 可溶性有机碳。不同大写字母表示相同时期不同处理间差异显著(P<0.05), 不同小写字母表示相同处理下不同时期间差异显著(P<0.05)。T1: before planting V. villosa; T2: before returning V. villosa; T3: after returning V. villosa and before maize planting; T4: maize seedling stage; T5: maize bell mouth stage; T6: maize harvest period. SOC: organic carbon; ROC: readily oxidizable organic carbon; MBC: microbial biomass carbon; DOC: dissolved organic carbon. Different capital letters indicate significant differences between two treatments in the same period (P<0.05). Different lowercase letters indicate significant differences among different periods under the same treatment (P<0.05).

    Figure  4.  Effect of planting and returning Vicia villosa on relative contents of active organic carbon of saline soils

    图  5  玉米收获期土壤活性有机碳、土壤理化性质和玉米产量的主成分分析

    FT: 休耕处理; VT: 毛叶苕子处理; EC: 电导率; TN: 全氮; TP: 全磷; SOC: 有机碳; ROC: 易氧化有机碳; DOC: 可溶性有机碳; MBC: 微生物生物量碳; EY: 玉米籽粒产量。FT: fallow treatment; VT: Vicia villosa treatment; EC: electrical conductance; TN: total nitrogen; TP: total phosphorus; SOC: soil organic carbon; ROC: readily oxidizable carbon; DOC: dissolved organic carbon; MBC: microbial biomass carbon; EY: maize grain yield.

    Figure  5.  Principal component analysis of soil reactive organic carbon, soil physicochemical properties at harvest and maize yield

    表  1  毛叶苕子产量及养分特征

    Table  1.   Yield and nutrient characteristics of Vicia villosa

    干重
    Dry weight
    (kg·hm−2)
    C含量
    C content
    (g·kg−1)
    N含量
    N content
    (g·kg−1)
    C/NP含量
    P content
    (g·kg−1)
    K含量
    K content
    (g·kg−1)
    地上部 Shoot 4503.68±212.48a412.05±1.82a32.41±1.66a12.74±0.69b2.03±0.25a41.31±5.22a
    根 Root 497.91±36.63b329.77±0.94b14.37±0.44b21.78±2.09a1.13±0.19b33.23±0.52a
    全株 Whole plant5001.59±214.59403.03±1.3830.67±1.5613.16±0.661.93±0.2040.53±4.82
      不同字母表示不同部位在P<0.05水平差异显著。Different letters indicate significant differences between two parts at P<0.05 level.
    下载: 导出CSV

    表  2  试验期间种植翻压毛叶苕子下盐碱地土壤理化性质和有机碳组分之间的关系

    Table  2.   Relationship between physicochemical properties and organic carbon fractions contents of saline soil under planting and returning Vicia villosa in the experiment duration

    取样时期
    Sampling time
    指标
    Indicator
    pH电导率
    Electrical conductance
    全氮
    Total N
    全磷
    Total P
    T1总有机碳 Organic carbon−0.27−0.70*0.490.90**
    易氧化有机碳 Readily oxidizable organic carbon−0.08−0.650.250.66
    可溶性有机碳 Dissolved organic carbon0.010.39−0.18−0.52
    微生物生物量碳 Microbial biomass carbon−0.090.71*−0.24−0.79*
    T2总有机碳 Organic carbon0.49−0.250.24−0.29
    易氧化有机碳 Readily oxidizable organic carbon0.49−0.680.520.46
    可溶性有机碳 Dissolved organic carbon0.35−0.77*0.350.41
    微生物生物量碳 Microbial biomass carbon−0.480.89**−0.53−0.54
    T3总有机碳 Organic carbon−0.70−0.340.520.34
    易氧化有机碳 Readily oxidizable organic carbon−0.89**−0.350.85**0.64
    可溶性有机碳 Dissolved organic carbon−0.63−0.130.74*0.50
    微生物生物量碳 Microbial biomass carbon−0.83*−0.230.83*0.63
    T4总有机碳 Organic carbon−0.230.340.05−0.33
    易氧化有机碳 Readily oxidizable organic carbon−0.92**0.90**0.86**−0.25
    可溶性有机碳 Dissolved organic carbon−0.320.410.32−0.34
    微生物生物量碳 Microbial biomass carbon−0.95**0.95**0.81*−0.45
    T5总有机碳 Organic carbon−0.720.230.82*0.50
    易氧化有机碳 Readily oxidizable organic carbon−0.420.030.82*0.66
    可溶性有机碳 Dissolved organic carbon−0.680.000.100.51
    微生物生物量碳 Microbial biomass carbon0.28−0.35−0.010.40
    T6总有机碳 Organic carbon−0.87**−0.380.99**−0.36
    易氧化有机碳 Readily oxidizable organic carbon−0.63−0.290.89**−0.57
    可溶性有机碳 Dissolved organic carbon−0.52−0.540.77*−0.75*
    微生物生物量碳 Microbial biomass carbon0.61−0.45−0.58−0.12
      *: P<0.05; **: P<0.01; T1: 苕子种植前; T2: 毛叶苕子翻压前; T3: 毛叶苕子翻压后玉米种植前; T4: 玉米苗期; T5: 玉米大喇叭口期; T6: 玉米收获期。T1: before planting V. villosa; T2: before returning V. villosa; T3: after returning V. villosa and before maize planting; T4: maize seedling stage; T5: maize bell mouth stage; T6: maize harvest period.
    下载: 导出CSV

    表  3  种植翻压毛叶苕子对盐碱地玉米地上部生物量和产量的影响

    Table  3.   Effects of planting and returning Vicia villosa on biomass and yields of maize in saline soil

    kg·hm−2 
    处理
    Treatment
    秸秆生物量
    Straw biomass
    籽粒产量
    Grain yield
    地上部生物量
    Aboveground biomass
    休耕
    Fallow
    7545.44±399.85b5231.78±208.44b12 777.22±562.91b
    毛叶苕子
    Vicia villosa
    9452.12±453.05a6061.22±252.04a15 513.34±628.03a
      不同字母表示不同处理在P<0.05水平差异显著。Different letters indicate significant differences between two treatments at P<0.05 level.
    下载: 导出CSV
  • [1] WANG S F, WANG X K, OUYANG Z Y. Effects of land use, climate, topography and soil properties on regional soil organic carbon and total nitrogen in the Upstream Watershed of Miyun Reservoir, North China[J]. Journal of Environmental Sciences, 2012, 24(3): 387−395 doi: 10.1016/S1001-0742(11)60789-4
    [2] BLAIR G, LEFROY R, LISLE L. Soil carbon fractions based on their degree of oxidation, and the development of a carbon management index for agricultural systems[J]. Australian Journal of Agricultural Research, 1995, 46(7): 1459−1466 doi: 10.1071/AR9951459
    [3] 朱小梅, 王建红, 赵宝泉, 等. 不同盐分土壤环境下绿肥腐解及养分释放动态研究[J]. 水土保持学报, 2018, 32(6): 309−314

    ZHU X M, WANG J H, ZHAO B Q, et al. Dynamics of decomposition and nutrient release of green manure under different saline soils[J]. Journal of Soil and Water Conservation, 2018, 32(6): 309−314
    [4] KALBITZ K, SOLINGER S, PARK J H, et al. Controls on the dynamics of dissolved organic matter in soils: A review[J]. Soil Science, 2000, 165(4): 277−304 doi: 10.1097/00010694-200004000-00001
    [5] CHUCK Ingels. Pros and cons of cover crops: PART 1 This is the first of three articles about cover cropping in orchards[J]. Good fruit grower, 2004, 55(8): 13
    [6] KAYE J P, QUEMADA M. Using cover crops to mitigate and adapt to climate change. A review[J]. Agronomy for Sustainable Development, 2017, 37(4): 2−17
    [7] 黄璐, 李廷亮, 李顺, 等. 旱地冬小麦夏闲期种植不同豆科绿肥对还田养分和土壤有机碳、氮组分的影响[J]. 生态学杂志, 2022, 41(12): 2335−2343

    HUANG L, LI Y L, LI S, et al. Effects of planting legume green manure crops in summer fallow period of dryland winter wheat on returning nutrients, soil organic carbon and nitrogen components[J]. Chinese Journal of Ecology, 2022, 41(12): 2335−2343
    [8] ZHANG Z, AN J, XIONG S, et al. Orychophragmus violaceus-maize rotation increases maize productivity by improving soil chemical properties and plant nutrient uptake[J]. Field Crops Research, 2022, 279: 108470−108481 doi: 10.1016/j.fcr.2022.108470
    [9] 郭耀东, 程曼, 赵秀峰, 等. 轮作绿肥对盐碱地土壤性质、后作青贮玉米产量及品质的影响[J]. 中国生态农业学报, 2018, 26(6): 856−864 doi: 10.13930/j.cnki.cjea.170952

    GUO Y D, CHENG M, ZHAO X F, et al. Effects of green manure rotation on soil properties and yield and quality of silage maize in saline-alkali soils[J]. Chinese Journal of Eco-Agriculture, 2018, 26(6): 856−864 doi: 10.13930/j.cnki.cjea.170952
    [10] 高菊生, 徐明岗, 董春华, 等. 长期稻-稻-绿肥轮作对水稻产量及土壤肥力的影响[J]. 作物学报, 2013, 39(2): 343−349 doi: 10.3724/SP.J.1006.2013.00343

    GAO J S, XU M G, DONG C H, et al. Effects of long-term rice-rice-green manure cropping rotation on rice yield and soil fertility[J]. Acta Agronomica Sinica, 2013, 39(2): 343−349 doi: 10.3724/SP.J.1006.2013.00343
    [11] 李峰. 紫云英和秸秆还田对水稻土养分、活性有机碳及氧化铁的影响[D]. 武汉: 华中农业大学, 2019

    LI F. Effects of Chinese Milk Vetch and straw returning on nutrients, active organic carbon and iron oxide in paddy soil[D]. Wuhan: Huazhong Agricultural University, 2019
    [12] 周国朋, 曹卫东, 白金顺, 等. 多年紫云英-双季稻下不同施肥水平对两类水稻土有机质及可溶性有机质的影响[J]. 中国农业科学, 2016, 49(21): 4096−4106 doi: 10.3864/j.issn.0578-1752.2016.21.004

    ZHOU G P, CAO W D, BAI J S, et al. Effects of different fertilization levels on soil organic matter and dissolved organic matter in two paddy soils after multi-years’ rotation of Chinese milk vetch and double-cropping rice[J]. Scientia Agricultura Sinica, 2016, 49(21): 4096−4106 doi: 10.3864/j.issn.0578-1752.2016.21.004
    [13] 高嵩涓, 曹卫东, 白金顺, 等. 长期冬种绿肥改变红壤稻田土壤微生物生物量特性[J]. 土壤学报, 2015, 52(4): 902−910 doi: 10.11766/trxb201408190410

    GAO S J, CAO W D, BAI J S, et al. Long-term application of winter green manures changed the soil microbial biomass properties in red paddy soil[J]. Acta Pedologica Sinica, 2015, 52(4): 902−910 doi: 10.11766/trxb201408190410
    [14] 李峰, 周方亮, 黄雅楠, 等. 减施化肥下紫云英和秸秆还田对土壤养分及活性有机碳的影响[J]. 华中农业大学学报, 2020, 39(1): 67−75

    LI F, ZHOU F L, HUANG Y N, et al. Effects of Chinese milk vetch and straw returning on soil nutrient and active organic carbon under reduced application of chemical fertilizer[J]. Journal of Huazhong Agricultural University, 2020, 39(1): 67−75
    [15] 唐海明, 程凯凯, 肖小平, 等. 不同冬季覆盖作物对双季稻田土壤有机碳的影响[J]. 应用生态学报, 2017, 28(2): 465−473 doi: 10.13287/j.1001-9332.201702.009

    TANG H M, CHENG K K, XIAO X P, et al. Effects of different winter cover crops on soil organic carbon in a double cropping rice paddy field[J]. Chinese Journal of Applied Ecology, 2017, 28(2): 465−473 doi: 10.13287/j.1001-9332.201702.009
    [16] 肖小平, 唐海明, 聂泽民, 等. 冬季覆盖作物残茬还田对双季稻田土壤有机碳和碳库管理指数的影响[J]. 中国生态农业学报, 2013, 21(10): 1202−1208 doi: 10.3724/SP.J.1011.2013.01202

    XIAO X P, TANG H M, NIE Z M, et al. Effects of winter cover crop straw recycling on soil organic carbon and soil carbon pool management index in paddy fields[J]. Chinese Journal of Eco-Agriculture, 2013, 21(10): 1202−1208 doi: 10.3724/SP.J.1011.2013.01202
    [17] 吕真真, 杨劲松, 刘广明, 等. 黄河三角洲土壤盐渍化与地下水特征关系研究[J]. 土壤学报, 2017, 54(6): 1377−1385 doi: 10.11766/trxb201701160401

    LÜ Z Z, YANG J S, LIU G M, et al. Relationship between soil salinization and groundwater characteristics in the Yellow River Delta[J]. Acta Pedologica Sinica, 2017, 54(6): 1377−1385 doi: 10.11766/trxb201701160401
    [18] 白春礼. 科技创新引领黄河三角洲农业高质量发展[J]. 中国科学院院刊, 2020, 35(2): 138−144 doi: 10.16418/j.issn.1000-3045.20200201001

    BAI C L. Scientific and technological innovation leads high-quality development of agriculture in the Yellow River Delta[J]. Bulletin of Chinese Academy of Sciences, 2020, 35(2): 138−144 doi: 10.16418/j.issn.1000-3045.20200201001
    [19] WANG Y J, JI L J, LI Q S, et al. Effects of long-term bare fallow during the winter-wheat growth season on the soil chemical properties, fungal community composition, and the occurrence of maize fungal diseases in North China[J]. Plant Disease, 2021, 105(9): 2575−2584 doi: 10.1094/PDIS-11-20-2492-RE
    [20] 熊静, 王改兰, 曹卫东, 等. 华北二月兰-春玉米轮作体系中土壤硝态氮的时空变化特征[J]. 应用生态学报, 2014, 25(2): 467−473 doi: 10.13287/j.1001-9332.2013.0005

    XIONG J, WANG G L, CAO W D, et al. Temporal and spatial variations of soil NO3-N in Orychophragmus violaceus / spring maize rotation system in North China[J]. Chinese Journal of Applied Ecology, 2014, 25(2): 467−473 doi: 10.13287/j.1001-9332.2013.0005
    [21] 赵秋, 张新建, 宁晓光. 北方冬季绿肥适宜种植作物的筛选[J]. 中国农学通报, 2021, 37(33): 50−54 doi: 10.11924/j.issn.1000-6850.casb2021-0114

    ZHAO Q, ZHANG X J, NING X G. Selection of suitable varieties of winter green manure crops in North China[J]. Chinese Agricultural Science Bulletin, 2021, 37(33): 50−54 doi: 10.11924/j.issn.1000-6850.casb2021-0114
    [22] 梁静. 黄河三角洲野大豆根瘤菌多样性及耐盐促生菌株筛选[D]. 北京: 中国农业科学院, 2021

    LIANG J. Diversity of rhizobia from glycine soja in the Yellow River Delta and screening of salt-tolerant and growth-promoting strains[D]. Beijing: Chinese Academy of Agricultural Sciences, 2021
    [23] 鲍士旦. 土壤农化分析(第三版)[M]. 北京: 中国农业出版社, 2000

    BAO S D. Soil Agrochemical Analysis (Third Edition) [M]. Beijing: China Agricultural Press, 2000
    [24] 樊志龙, 柴强, 曹卫东, 等. 绿肥在我国旱地农业生态系统中的服务功能及其应用[J]. 应用生态学报, 2020, 31(4): 1389−1402 doi: 10.13287/j.1001-9332.202004.023

    FAN Z L, CHAI Q, CAO W D, et al. Ecosystem service function of green manure and its application in dryland agriculture of China[J]. Chinese Journal of Applied Ecology, 2020, 31(4): 1389−1402 doi: 10.13287/j.1001-9332.202004.023
    [25] 孙文彦, 孙敬海, 尹红娟, 等. 绿肥与苗木间种改良苗圃盐碱地的研究[J]. 土壤通报, 2015, 46(5): 1221−1225 doi: 10.19336/j.cnki.trtb.2015.05.029

    SUN W Y, SUN J H, YIN H J, et al. Effect of winter green manure on improving saline-alkali nursery garden land[J]. Chinese Journal of Soil Science, 2015, 46(5): 1221−1225 doi: 10.19336/j.cnki.trtb.2015.05.029
    [26] 蔺海明, 贾恢先, 张有福, 等. 毛苕子对次生盐碱地抑盐效应的研究[J]. 草业学报, 2003, 12(4): 58−62 doi: 10.3321/j.issn:1004-5759.2003.04.011

    LIN H M, JIA H X, ZHANG Y F, et al. Effect of salt restraint on Vicia Villosa in secondary salinization land[J]. Acta Prataculturae Sinica, 2003, 12(4): 58−62 doi: 10.3321/j.issn:1004-5759.2003.04.011
    [27] 王强盛, 薄雨心, 余坤龙, 等. 绿肥还田在稻作生态系统的效应分析及研究展望[J]. 土壤, 2021, 53(2): 243−249 doi: 10.13758/j.cnki.tr.2021.02.004

    WANG Q S, BO Y X, YU K L, et al. Analysis and research prospect of effect of green manure returning on rice cropping ecosystem[J]. Soils, 2021, 53(2): 243−249 doi: 10.13758/j.cnki.tr.2021.02.004
    [28] 米迎宾, 杨劲松, 姚荣江, 等. 不同措施对滨海盐渍土壤呼吸、电导率和有机碳的影响[J]. 土壤学报, 2016, 53(3): 612−620 doi: 10.11766/trxb201509250458

    MI Y B, YANG J S, YAO R J, et al. Effects of farming practice on soil respiration, ECe and organic carbon in coastal saline soil[J]. Acta Pedologica Sinica, 2016, 53(3): 612−620 doi: 10.11766/trxb201509250458
    [29] 王遵亲. 中国盐渍土[M]. 北京: 科学出版社, 1993

    WANG Z Q. Salt Affected Soils of China[M]. Beijing: Science Press, 1993
    [30] 张建兵, 杨劲松, 姚荣江, 等. 有机肥与覆盖方式对滩涂围垦农田水盐与作物产量的影响[J]. 农业工程学报, 2013, 29(15): 116−125 doi: 10.3969/j.issn.1002-6819.2013.15.015

    ZHANG J B, YANG J S, YAO R J, et al. Dynamics of soil water, salt and crop growth under farmyard manure and mulching in coastal tidal flat soil of northern Jiangsu Province[J]. Transactions of the Chinese Society of Agricultural Engineering, 2013, 29(15): 116−125 doi: 10.3969/j.issn.1002-6819.2013.15.015
    [31] 宋莉, 韩上, 鲁剑巍, 等. 油菜秸秆、紫云英绿肥及其不同比例配施还田的腐解及养分释放规律研究[J]. 中国土壤与肥料, 2015(3): 100−104 doi: 10.11838/sfsc.20150318

    SONG L, HAN S, LU J W, et al. Study on characteristics of decomposing and nutrients releasing of different proportional mixture of rape straw and Chinese milk vetch in rice field[J]. Soil and Fertilizer Sciences in China, 2015(3): 100−104 doi: 10.11838/sfsc.20150318
    [32] 谭英爱. 不同冬绿肥翻压对玉米生长及土壤肥力影响的研究[D]. 天津: 天津农学院, 2020

    TAN Y A. Effects of different winter green manures on corn growth and soil fertility[D]. Tianjin: Tianjin Agricultural University, 2020
    [33] ALLAR J, MALTAIS-LANDRY G. Limited benefits of summer cover crops on nitrogen cycling in organic vegetable production[J]. Nutrient Cycling in Agroecosystems, 2022, 122: 119−138 doi: 10.1007/s10705-021-10189-8
    [34] POTT L P, AMADO T J C, SCHWALBERT R A, et al. Effect of hairy vetch cover crop on maize nitrogen supply and productivity at varying yield environments in Southern Brazil[J]. Science of the Total Environment, 2021, 759: 9
    [35] 杨翠萍, 脱云飞, 张岛, 等. 降雨对不同土地利用类型土壤水氮变化特征的影响[J]. 水土保持学报, 2019, 33(6): 220−226 doi: 10.13870/j.cnki.stbcxb.2019.06.031

    YANG C P, TUO Y F, ZHANG D, et al. Effects of rain fall on soil water and nitrogen change characteristics under different land uses[J]. Journal of Soil and Water Conservation, 2019, 33(6): 220−226 doi: 10.13870/j.cnki.stbcxb.2019.06.031
    [36] 白璐, 蒋福祯, 曹卫东, 等. 麦后复种绿肥对土壤有机碳及其固持特征的影响[J]. 干旱地区农业研究, 2021, 39(4): 148−154 doi: 10.7606/j.issn.1000-7601.2021.04.19

    BAI L, JIANG F Z, CAO W D, et al. Effects of multiple cropping of green manure after wheat on soil organic carbon and its sequestration characteristics[J]. Agricultural Research in the Arid Areas, 2021, 39(4): 148−154 doi: 10.7606/j.issn.1000-7601.2021.04.19
    [37] 刘慧. 油菜绿肥还田对盐碱土壤有机碳及酶活性的影响[D]. 石河子: 石河子大学, 2020

    LIU H. Effect of rape green manure on soil organic carbon and enzyme activity in saline soil[D]. Shihezi: Shihezi University, 2020
    [38] CHEN L Y, LIU L, MAO C, et al. Nitrogen availability regulates topsoil carbon dynamics after permafrost thaw by altering microbial metabolic efficiency[J]. Nature Communications, 2018, 9(1): 1−11 doi: 10.1038/s41467-017-02088-w
    [39] GAO S J, GAO J S, CAO W D, et al. Effects of long-term green manure application on the content and structure of dissolved organic matter in red paddy soil[J]. Journal of Integrative Agriculture, 2018, 17(8): 1852−1860 doi: 10.1016/S2095-3119(17)61901-4
    [40] 程会丹, 鲁艳红, 聂军, 等. 土壤活性有机碳周年变化对紫云英翻压量的响应[J]. 土壤, 2021, 53(4): 723−731 doi: 10.13758/j.cnki.tr.2021.04.008

    CHENG H D, LU Y H, NIE J, et al. Responses of annual variation of soil active organic carbon to Chinese Milk Vetch application rates[J]. Soils, 2021, 53(4): 723−731 doi: 10.13758/j.cnki.tr.2021.04.008
    [41] 张春, 杨万忠, 韩清芳, 等. 夏闲期种植不同绿肥作物对土壤养分及冬小麦产量的影响[J]. 干旱地区农业研究, 2014, 32(2): 66−72 doi: 10.7606/j.issn.1000-7601.2014.02.011

    ZHANG C, YANG W Z, HAN Q F, et al. Effects on soil nutrient and yield of winter wheat of planting different green manures during summer fallow[J]. Agricultural Research in the Arid Areas, 2014, 32(2): 66−72 doi: 10.7606/j.issn.1000-7601.2014.02.011
    [42] ABDALLA M, HASTINGS A, CHENG K, et al. A critical review of the impacts of cover crops on nitrogen leaching, net greenhouse gas balance and crop productivity[J]. Global Change Biology, 2019, 25: 2530−2543 doi: 10.1111/gcb.14644
  • 加载中
图(5) / 表(3)
计量
  • 文章访问数:  34
  • HTML全文浏览量:  18
  • PDF下载量:  2
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-09-30
  • 录用日期:  2022-11-27
  • 网络出版日期:  2023-02-10

目录

    /

    返回文章
    返回