留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

单间作小麦响应白粉病菌侵染的差异代谢物及代谢通路

陈升 吴鑫雨 何建杨 周懂 刘振洋 汤利 郑毅 肖靖秀

陈升, 吴鑫雨, 何建杨, 周懂, 刘振洋, 汤利, 郑毅, 肖靖秀. 单间作小麦响应白粉病菌侵染的差异代谢物及代谢通路[J]. 中国生态农业学报 (中英文), 2023, 31(0): 1−12 doi: 10.12357/cjea.20220808
引用本文: 陈升, 吴鑫雨, 何建杨, 周懂, 刘振洋, 汤利, 郑毅, 肖靖秀. 单间作小麦响应白粉病菌侵染的差异代谢物及代谢通路[J]. 中国生态农业学报 (中英文), 2023, 31(0): 1−12 doi: 10.12357/cjea.20220808
CHEN S, WU X Y, HE J Y, ZHOU D, LIU Z Y, TANG L, ZHENG Y, XIAO J X. Analysis of differential metabolites and metabolic pathways of mono- and inter- cropped wheat in response to the infection of Blumeria graminis f.sp. tritici[J]. Chinese Journal of Eco-Agriculture, 2023, 31(0): 1−12 doi: 10.12357/cjea.20220808
Citation: CHEN S, WU X Y, HE J Y, ZHOU D, LIU Z Y, TANG L, ZHENG Y, XIAO J X. Analysis of differential metabolites and metabolic pathways of mono- and inter- cropped wheat in response to the infection of Blumeria graminis f.sp. tritici[J]. Chinese Journal of Eco-Agriculture, 2023, 31(0): 1−12 doi: 10.12357/cjea.20220808

单间作小麦响应白粉病菌侵染的差异代谢物及代谢通路

doi: 10.12357/cjea.20220808
基金项目: 国家自然科学基金项目(32060718, 31760611)和云南省高层次人才培养支持计划“青年拔尖人才”项目(YNWR-QNBJ-2019-130)资助
详细信息
    作者简介:

    陈升, 主要研究方向为植物营养与病害控制。E-mail: 1135107134@qq.com

    通讯作者:

    肖靖秀, 主要研究方向为间套作体系养分资源高效利用。E-mail: xiaojingxiuxjx@126.com

  • 中图分类号: S512.1

Analysis of differential metabolites and metabolic pathways of mono- and inter- cropped wheat in response to the infection of Blumeria graminis f.sp. tritici

Funds: This work was supported by the National Natural Science Foundation of China (32060718, 31760611) and the High-level Talents Plan Young & Elite Talents Project of Yunnan Province (YNWR-QNBJ-2019-130).
More Information
  • 摘要: 为了解单作、间作小麦响应白粉病侵染的代谢差异、揭示间作提高小麦抗白粉病生理机制, 本文通过盆栽试验设置 75 mg∙kg−1 (N1)、150 mg∙kg−1 (N2)、225 mg∙kg−1 (N3) 3个施氮水平, 研究接种白粉病病原菌后, 小麦单一种植和小麦蚕豆间作下白粉病的发病情况, 并通过广泛靶向代谢组学分析单作、间作小麦响应白粉病菌侵染的差异。结果表明: 氮水平和氮水平×种植模式显著影响小麦白粉病发病率和病情指数; 在3个氮水平下, 间作降低白粉病发病率25.54%~38.81%、降低病情指数20.11%~21.97%, 其中低氮水平控制效果较好。白粉病菌侵染后, 单作、间作小麦叶片中共检测到822种代谢产物, N1、N2和N3水平下分别发现差异代谢物69种、52种和88种。KEGG代谢通路分析发现单间作小麦差异代谢物主要富集在氨基酸的生物合成、代谢途径和次生代谢物的生物合成。其中N1和N2水平下, 差异代谢物富集在代谢途径, N1和N3水平下差异代谢物富集于氨基酸的生物合成。进一步对上调、下调差异倍数前10的代谢物分析发现, 与单作相比, N1水平间作上调了谷胱甘肽还原型、L-色氨酸、L-天冬酰胺和L-谷氨酰胺, N3水平间作上调了L-天冬酰胺、L-高甲硫氨酸和L-色氨酸。除此之外, 少数生物碱类、酚酸类和有机酸类等代谢物质在氮胁迫下也呈现不同程度的变化。总之, 单作和间作小麦响应白粉病病菌侵染的应答过程受氮水平调控。在白粉病病菌侵染中、间作调控差异代谢物如氨基酸及其衍生物类、生物碱类、酚酸类和有机酸类等在植物体内的变化, 可能是间作提高小麦白粉病抗性的机制之一。其中, 氮胁迫条件下间作调控氨基酸及其衍生物与小麦白粉病抗性提高密切相关。
  • 图  1  单间作小麦和施氮水平对小麦白粉病发生的影响

    MW: 单作小麦; IW: 间作小麦; *表示同一氮水平同一时间不同种植模式下差异显著(P<0.05)。MW: monocropped wheat; IW: intercropped wheat; * indicates that there is significant difference between different planting patterns under the same N level at the same sampling time (P<0.05).

    Figure  1.  Effects of single room cropping and nitrogen application on powdery mildew occurrence in wheat

    图  2  单间作小麦叶片代谢物主成分分析

    Figure  2.  Principal component analysis of mono- and inter- cropped wheat leaves metabolism

    图  3  单作、间作小麦叶片代谢物正交偏最小二乘法-判别分析得分图(A、B、C)与置换模型检验图(D、E、F)

    R2XR2Y: 模型对X和Y矩阵的解释率; Q2: 模型的预测能力。R2X, R2Y: interpretation rate of the model for X and Y matrix; Q2: The predictive power of models.

    Figure  3.  Orthogonal Partial least squares method - discriminant analysis score map (A, B, C) and displacement model test map (D, E, F) of leaf metabolites in mono- and inter-cropped wheat

    图  4  单间作小麦叶片差异代谢物Venn图

    N1-MW VS N1-IW: N1水平下单作、间作小麦之间差异代谢物的比较; N2-MW VS N2-IW: N2水平下单作、间作小麦之间差异代谢物的比较; N3-MW VS N3-IW: N3水平下单作、间作小麦之间差异代谢物的比较。N1-MW VS N1-IW: comparison of differential metabolites between mono- and inter- cropped wheat under N1 level; N2-MW VS N2-IW: comparison of differential metabolites between mono- and inter- cropped wheat under N2 level; N3-MW VS N3-IW: comparison of differential metabolites between mono- and inter- cropped wheat under N3 level.

    Figure  4.  Venn diagram of differential metabolites in mono- and inter- cropped wheat leaves

    图  5  单间作小麦在不同施氮水平的差异代谢物KEGG分类和富集图

    图A、B、C分别表示N1、N2和N3水平下单作、间作小麦之间差异代谢物分类图和富集图。Panel A, B and C in the figure 5, the classification and enrichment of different metabolites between mono- and inter-cropped wheat at N1, N2 and N3 levels, respectively.

    Figure  5.  KEGG classification and enrichment of different metabolites in mono- and inter- cropped wheat under different N levels

    图  6  单间作小麦在不同施氮水平的差异代谢物的层次聚类图

    X轴中N1、N2、N3表示3个氮水平; MW1、MW2、MW3表示单作小麦的3个生物学重复; IW1、IW2、IW3表示间作小麦的3个生物学重复; Y轴表示差异代谢物名称。N1, N2, N3 represents three N levels in the X-axis respectively; MW1, MW2, MW3 represents three biological replications of monocropped wheat respectively; IW1, IW2, IW3 represents three biological replications of intercropped wheat respectively. The Y-axis shows the names of differential metabolites.

    Figure  6.  Hierarchical cluster diagram of different metabolites of mono- and inter- cropped wheat at different N levels

    表  1  不同发病时期的氮水平、种植模式和氮水平×种植模式对发病率和病情指数影响

    Table  1.   Effects of nitrogen level, planting pattern and nitrogen level × planting pattern on incidence and disease index in different onset periods

    接种后天数
    Days after
    inoculation (d)
    相关项
    Related items
    氮水平
    N levels
    (N)
    种植模式
    Cropping pattern
    (C)
    N×C
    3DI*nsns
    DSI**ns*
    4DInsnsns
    DSI*nsns
    5DI*****
    DSIns*****
    6DI*ns***
    DSI*ns**
    7DI*****
    DSI**ns*
    8DI*ns**
    DSI*ns**
    9DI******
    DSI**ns**
    10DI*ns*
    DSInsnsns
      *: P<0.05; **: P<0.01; ***: P<0.001; ns: 不显著。DI: 发病率; DSI: 病情指数。*: P<0.05; **: P<0.01; ***: P<0.001; ns: not significant. DI: incidence rate; DSI: disease index.
    下载: 导出CSV

    表  2  差异代谢物分类

    Table  2.   Classification of differential metabolites

    分类
    Class
    N1-MW VS N1-IWN2-MW VS N2-IWN3-MW VS N3-IW
    上调
    Up
    下调
    Down
    总体
    Total
    上调
    Up
    下调
    Down
    总体
    Total
    上调
    Up
    下调
    Down
    总体
    Total
    黄酮 Flavonoids213505099
    萜类 Terpenoids000101101
    有机酸 Organic acids3580555510
    生物碱 Alkaloids21122336101020
    氨基酸及其衍生物 Amino acids and derivatives1411515611011
    酚酸 Phenolic acids23507722123
    木脂素和香豆素 Lignans and Coumarins202022033
    脂质 Lipids224112000
    核苷酸及其衍生物 Nucleotides and derivatives551001515123
    鞣质 Tannins000000011
    其他 Others000123077
    合计 Total511869124052305888
      N1-MW VS N1-IW: N1水平下单作、间作小麦之间差异物的比较; N2-MW VS N2-IW: N2水平下单作、间作小麦之间差异物的比较; N3-MW VS N3-IW: N3水平下单作、间作小麦之间差异物的比较。N1-MW VS N1-IW: comparison of differential metabolites between mono- and inter- cropped wheat under N1 level; N2-MW VS N2-IW: comparison of differential metabolites between mono- and inter- cropped wheat under N2 level; N3-MW VS N3-IW: comparison of differential metabolites between mono- and inter- cropped wheat under N3 level.
    下载: 导出CSV
  • [1] KANG Y C, ZHOU M X, MERRY A, et al. Mechanisms of powdery mildew resistance of wheat — A review of molecular breeding[J]. Plant Pathology, 2020, 69(4): 601−617 doi: 10.1111/ppa.13166
    [2] 朱锦惠, 董艳, 肖靖秀, 等. 小麦与蚕豆间作系统氮肥调控对小麦白粉病发生及氮素累积分配的影响[J]. 应用生态学报, 2017, 28(12): 3985−3993

    ZHU J H, DONG Y, XIAO J X, et al. Effects of N application on wheat powdery mildew occurrence, nitrogen accumulation and allocation in intercropping system[J]. Chinese Journal of Applied Ecology, 2017, 28(12): 3985−3993
    [3] LUO C S, MA L K, ZHU J H, et al. Effects of nitrogen and intercropping on the occurrence of wheat powdery mildew and stripe rust and the relationship with crop yield[J]. Frontiers in Plant Science, 2021, 12: 637393 doi: 10.3389/fpls.2021.637393
    [4] 侯瑞, 李思. 氮素与植物抗病性和病原菌致病性相互关系研究进展[J]. 分子植物育种, 2021, 1−23

    HOU R, LI S. Research progress on the relationship between nitrogen and plant disease resistance and pathogen pathogenicity[J]. Molecular plant breeding, 2021, 1−23, https://kns.cnki.net/kcms/detail/46.1068.S.20211224.1140.002.html
    [5] 朱锦惠, 董坤, 杨智仙, 等. 间套作控制作物病害的机理研究进展[J]. 生态学杂志, 2017, 36(4): 1117−1126

    ZHU J H, DONG K, YANG Z X, et al. Advances in the mechanism of crop disease control by intercropping[J]. Chinese Journal of Ecology, 2017, 36(4): 1117−1126
    [6] CHEN Y X, ZHANG F S, TANG L, et al. Wheat powdery mildew and foliar N concentrations as influenced by N fertilization and belowground interactions with intercropped faba bean[J]. Plant and Soil, 2007, 291(1): 1−13
    [7] Sun Y, Wang M, Mur L A J, et al. Unravelling the roles of nitrogen nutrition in plant disease defences[J]. International journal of molecular sciences, 2020, 21(2): 572 doi: 10.3390/ijms21020572
    [8] ANZANO A, BONANOMI G, MAZZOLENI S, et al. Plant metabolomics in biotic and abiotic stress: a critical overview[J]. Phytochemistry Reviews, 2022, 21(2): 503−524 doi: 10.1007/s11101-021-09786-w
    [9] BUENO P C P, LOPES N P. Metabolomics to characterize adaptive and signaling responses in legume crops under abiotic stresses[J]. ACS Omega, 2020, 5(4): 1752−1763 doi: 10.1021/acsomega.9b03668
    [10] KUMAR R, BOHRA A, PANDEY A K, et al. Metabolomics for plant improvement: status and prospects[J]. Frontiers in Plant Science, 2017, 8: 1302 doi: 10.3389/fpls.2017.01302
    [11] ZHAO P Y, GU S B, HAN C, et al. Targeted and untargeted metabolomics profiling of wheat reveals amino acids increase resistance to Fusarium head blight[J]. Frontiers in Plant Science, 2021, 12: 762605 doi: 10.3389/fpls.2021.762605
    [12] 郑明远, 张明皓, 艾尼赛·赛米, 等. 小麦对条锈菌侵染响应的代谢组学分析[J]. 分子植物育种, 2022, https://kns.cnki.net/kcms/detail/46.1068.s.20220318.1415.012.html

    ZHENG M Y, ZHANG M H, AINISAI SAIMI, et al. Metabolomics analysis of wheat response to stripe rust infection[J]. Molecular Plant Breeding, 2022, https://kns.cnki.net/kcms/detail/46.1068.s.20220318.1415.012.html
    [13] 李隆. 间套作强化农田生态系统服务功能的研究进展与应用展望[J]. 中国生态农业学报, 2016, 24(4): 403−415

    LI L. Intercropping enhances agroecosystem services and functioning: current knowledge and perspectives[J]. Chinese Journal of Eco-Agriculture, 2016, 24(4): 403−415
    [14] TOSTI G, FARNESELLI M, BENINCASA P, et al. Nitrogen fertilization strategies for organic wheat production: crop yield and nitrate leaching[J]. Agronomy Journal, 2016, 108(2): 770−781 doi: 10.2134/agronj2015.0464
    [15] 姜卉, 赵平, 汤利, 等. 云南省不同试验区小麦蚕豆间作的产量优势分析与评价[J]. 云南农业大学学报(自然科学), 2012, 27(5): 646−652

    JIANG H, ZHAO P, TANG L, et al. Analysis and evaluation of yield advantages in wheat and faba bean intercropping system in Yunnan Province[J]. Journal of Yunnan Agricultural University (Natural Science), 2012, 27(5): 646−652
    [16] 乔鹏, 汤利, 郑毅, 等. 不同抗性小麦品种与蚕豆间作条件下的养分吸收与白粉病发生特征[J]. 植物营养与肥料学报, 2010, 16(5): 1086−1093

    QIAO P, TANG L, ZHENG Y, et al. Characteristics of nutrient uptakes and powdery mildew incidence of different resistant wheat cultivars intercropping with faba bean[J]. Plant Nutrition and Fertilizer Science, 2010, 16(5): 1086−1093
    [17] 付学鹏, 吴凤芝, 吴瑕, 等. 间套作改善作物矿质营养的机理研究进展[J]. 植物营养与肥料学报, 2016, 22(2): 525−535 doi: 10.11674/zwyf.14423

    FU X P, WU F Z, WU X, et al. Advances in the mechanism of improving crop mineral nutrients in intercropping and relay intercropping systems[J]. Journal of Plant Nutrition and Fertilizer, 2016, 22(2): 525−535 doi: 10.11674/zwyf.14423
    [18] 中华人民共和国农业部. 小麦白粉病测报调查规范: NY/T 613—2002[S]. 北京: 中国标准出版社, 2004

    Ministry of Agriculture of the People's Republic of China. Code for investigation and prediction of wheat powdery mildew: NY/T 613-2002 [S] Beijing: China Standards Press, 2004
    [19] 阿基业, 何骏, 孙润彬. 代谢组学数据处理−主成分分析十个要点问题[J]. 药学学报, 2018, 53(6): 929−937

    A J Y, HE J, SUN R B. Multivariate statistical analysis for metabolomic data: the key points in principal component analysis[J]. Acta Pharmaceutica Sinica, 2018, 53(6): 929−937
    [20] SARDANS J, GARGALLO-GARRIGA A, URBAN O, et al. Ecometabolomics of plant-herbivore and plant-fungi interactions: a synthesis study[J]. Ecosphere, 2021, 12(9): e e03736
    [21] 苗玉焕. 色氨酸代谢与棉花抗黄萎病免疫调控[D]. 武汉: 华中农业大学, 2019

    MIAO Y H. Signalling and regulatory roles of tryptophan metabolites in cotton immune system to Verticillium dahliae[D]. Wuhan: Huazhong Agricultural University, 2019
    [22] DVOŘĀČEK V, ČURN V, MOUDRÝ J. Evaluation of amino acid content and composition in spelt wheat varieties[J]. Cereal Research Communications, 2002, 30(1): 187−193
    [23] COLQUHOUN T A, KIM J Y, WEDDE A E, et al. PhMYB4 fine-tunes the floral volatile signature of Petunia × hybrida through PhC4H[J]. Journal of Experimental Botany, 2011, 62(3): 1133−1143 doi: 10.1093/jxb/erq342
    [24] XU Q, YIN X R, ZENG J K, et al. Activator- and repressor-type MYB transcription factors are involved in chilling injury induced flesh lignification in loquat via their interactions with the phenylpropanoid pathway[J]. Journal of Experimental Botany, 2014, 65(15): 4349−4359 doi: 10.1093/jxb/eru208
    [25] BELLINCAMPI D, CERVONE F, LIONETTI V. Plant cell wall dynamics and wall-related susceptibility in plant-pathogen interactions[J]. Frontiers in Plant Science, 2014, 5: 228
    [26] FARAHBAKHSH F, HAMZEHZARGHANI H, MASSAH A, et al. Comparative metabolomics of temperature sensitive resistance to wheat streak mosaic virus (WSMV) in resistant and susceptible wheat cultivars[J]. Journal of Plant Physiology, 2019, 237: 30−42 doi: 10.1016/j.jplph.2019.03.011
    [27] 贾琦珍, 陈根元, 陈瑛, 等. 小花棘豆生物碱体内抗菌活性研究[J]. 新疆农业科学, 2014, 51(11): 2053−2058

    JIA Q Z, CHEN G Y, CHEN Y, et al. Experimental evaluation of in vivo antibacterial activities of alkaloids in Oxytropis glabra DC[J]. Xinjiang Agricultural Sciences, 2014, 51(11): 2053−2058
    [28] 王朝元, 童胜兰, 胡鑫. 博落回生物碱成分及其抗菌活性的研究[J]. 中南民族大学学报(自然科学版), 2015, 34(1): 39−42

    WANG C Y, TONG S L, HU X. Studies on the alkaloid ingredients of macleayacordata and their antibacterial activity[J]. Journal of South-Central University for Nationalities (Natural Science Edition), 2015, 34(1): 39−42
    [29] 高文科, 李明海, 赵兴东, 等. 代谢组解析商品成熟与生理成熟芒果内在品质和类胡萝卜素合成差异[J]. 中国农业大学学报, 2022, 27(4): 95−104 doi: 10.11841/j.issn.1007-4333.2022.04.09

    GAO W K, LI M H, ZHAO X D, et al. Differences in intrinsic quality and carotenoid biosynthesis between commodity maturity and physiological maturity mango fruits by metabolome ananlsys[J]. Journal of China Agricultural University, 2022, 27(4): 95−104 doi: 10.11841/j.issn.1007-4333.2022.04.09
    [30] 刘利佳, 徐志强, 何佳, 等. 哈茨木霉菌诱导烟草抗黑胫病代谢差异的研究[J]. 中国农业科技导报, 2021, 23(8): 91−105

    LIU L J, XU Z Q, HE J, et al. Study on metabolic difference of resistance to black shot in tobacco induced by Trichoderma harzianum[J]. Journal of Agricultural Science and Technology, 2021, 23(8): 91−105
    [31] HEUBERGER A L, ROBISON F M, LYONS S M A, et al. Evaluating plant immunity using mass spectrometry-based metabolomics workflows[J]. Frontiers in Plant Science, 2014, 5: 291
    [32] 刘鹏飞, 胡志宏, 代探, 等. 代谢组学-植物病理学研究有力的生物分析工具[J]. 植物病理学报, 2018, 48(4): 433−444 doi: 10.13926/j.cnki.apps.000228

    LIU P F, HU Z H, DAI T, et al. Metabolomics-a robust bioanalytical approach for phytopathology[J]. Acta Phytopathologica Sinica, 2018, 48(4): 433−444 doi: 10.13926/j.cnki.apps.000228
    [33] MITTELSTRASS K, TREUTTER D, PLESSL M, et al. Modification of primary and secondary metabolism of potato plants by nitrogen application differentially affects resistance to Phytophthora infestans and Alternaria solani[J]. Plant Biology (Stuttgart, Germany), 2006, 8(5): 653−661 doi: 10.1055/s-2006-924085
    [34] CHEN Y G, SCHMELZ E A, WÄCKERS F, et al. Cotton plant, Gossypium hirsutum L, defense in response to nitrogen fertilization[J]. Journal of Chemical Ecology, 2008, 34(12): 1553−1564 doi: 10.1007/s10886-008-9560-x
    [35] CAMPOS F G, VIEIRA M A R, AMARO A C E, et al. Nitrogen in the defense system of Annona emarginata (Schltdl. ) H. Rainer[J]. PLoS One, 2019, 14(6): e0217930 doi: 10.1371/journal.pone.0217930
  • 加载中
图(6) / 表(2)
计量
  • 文章访问数:  44
  • HTML全文浏览量:  30
  • PDF下载量:  6
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-10-18
  • 录用日期:  2022-01-11
  • 修回日期:  2023-01-29
  • 网络出版日期:  2023-02-08

目录

    /

    返回文章
    返回