留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

两个菠萝品种对不同形态氮素的获取策略

陈晓慧 许秀玉 付立勇 潘艳菊 冯莹 蔡志全

陈晓慧, 许秀玉, 付立勇, 潘艳菊, 冯莹, 蔡志全. 两个菠萝品种对不同形态氮素的获取策略[J]. 中国生态农业学报 (中英文), 2023, 31(0): 1−10 doi: 10.12357/cjea.20220857
引用本文: 陈晓慧, 许秀玉, 付立勇, 潘艳菊, 冯莹, 蔡志全. 两个菠萝品种对不同形态氮素的获取策略[J]. 中国生态农业学报 (中英文), 2023, 31(0): 1−10 doi: 10.12357/cjea.20220857
CHEN X H, XU X Y, FU L Y, PAN Y J, FENG Y, CAI Z Q. Nitrogen acquirement strategy of different nitrogen forms in two pineapple cultivars[J]. Chinese Journal of Eco-Agriculture, 2023, 31(0): 1−10 doi: 10.12357/cjea.20220857
Citation: CHEN X H, XU X Y, FU L Y, PAN Y J, FENG Y, CAI Z Q. Nitrogen acquirement strategy of different nitrogen forms in two pineapple cultivars[J]. Chinese Journal of Eco-Agriculture, 2023, 31(0): 1−10 doi: 10.12357/cjea.20220857

两个菠萝品种对不同形态氮素的获取策略

doi: 10.12357/cjea.20220857
基金项目: 国家自然科学基金(31971697)、广东省林业创新项目(2021KJCX002)和广东省科技创新战略专项(乡村振兴专项2021-6844)资助
详细信息
    作者简介:

    陈晓慧, 主要研究方向为园艺学。E-mail: polina_hui@163.com

    通讯作者:

    蔡志全, 主要研究方向为农学。E-mail: zhiquan.cai@126.com

  • 中图分类号: S565.201

Nitrogen acquirement strategy of different nitrogen forms in two pineapple cultivars

Funds: This study was supported by the National Natural Science Foundation of China (31971697), the Forestry Innovation Project in Guangdong (2021KJCX002), and the rural revitalization in Guangdong province (2021-6844).
More Information
  • 摘要: 氮是菠萝最需要的大量营养素之一, 也是与产量关系密切的营养元素。本试验分别在4月和9月两个生长季节, 选择了广东省徐闻县田间生长的‘巴厘’和‘台农17’两个菠萝品种不同树龄的植株为研究对象, 测定了不同年龄植株的形态、生理和生长特征, 并利用稳定性同位素15N示踪技术探讨了菠萝对3种形态氮素(铵态氮、硝态氮和甘氨酸)的获取策略。结果表明, 在4月份果实收获期, 与‘巴厘’相比, ‘台农17’菠萝的产量(单个鲜果重)和根生物量较低, 但其植株高度、单株生物量、叶片N和K含量和比叶面积无显著差异, 叶片碳稳定性同位素(δ13C)和P含量较高。无论在4月份或者9月份, 两菠萝品种间对不同形态的氮素吸收有显著的差异。总体而言, ‘台农17’比‘巴厘’的氮吸收能力要强(P<0.05)。‘台农17’菠萝较强的氮吸收能力和水分利用效率更有助于将其分配到地上以促进光合作用, 从而维持其植株在较短生命周期内的生长。两菠萝品种都偏好吸收铵态氮(36.8%~64.6%), 其次是甘氨酸(23.2%~47.1%), 对硝态氮吸收速率最低(9.1%~31.5%)。处于营养生长阶段的菠萝植株(5~8个月)比果实收获时期的氮吸收速率高。随着树龄的增长, 铵态氮贡献率逐渐增大, 而甘氨酸贡献率逐渐降低。不同季节和树龄条件下, 不同形态氮素的吸收速率与土壤氮含量和其他所测得植物性状的相关性不显著。总之, 本研究首次证实田间菠萝的根系具有较强直接吸收利用有机氮的能力, 菠萝的品种和生长阶段都是影响氮素获取策略的重要因素。
  • 图  1  不同季节两个菠萝品种不同生长时期叶片N、P、K含量

    C: 品种; A: 树龄; M:月。*: P<0.05; **: P<0.01; ns: 无显著差异。不同小写字母表示差异显著(P<0.05)。Different lowercase letters indicate significant differences at P<0.05 level. C: cultivar; A: age; M:months.

    Figure  1.  Leaf N, P and K contents of two pineapple cultivars in different growth period sampled in different seasons

    图  2  不同季节两个菠萝品种不同生长时期的叶片δ13C值

    C: 品种; A: 树龄; M:月。*: P<0.05; ns: 无显著差异。不同小写字母表示差异显著(P<0.05)。Different lowercase letters indicate significant differences at P<0.05 level. C: cultivar; A: age; M:months.

    Figure  2.  Leaf δ13C values of two pineapple cultivars in different growth period sampled in different seasons.

    图  3  不同季节的两个菠萝品种对不同形态氮的吸收速率

    C: 品种; A: 树龄; M:月。*: P<0.05; ns: 无显著差异。不同小写字母表示差异显著(P<0.05)。Different lowercase letters indicate significant differences at P<0.05 level. C: cultivar; A: age; M:months.

    Figure  3.  The uptake rates of different nitrogen forms in two pineapple cultivars sampled in different seasons

    图  4  在不同季节的两个菠萝对不同形态氮素吸收的贡献率

    Figure  4.  The contribution rate of different nitrogen forms to total nitrogen uptake in roots of in two pineapple cultivars sampled in different seasons

    图  5  菠萝品种和年龄下土壤不同形态氮含量与氮素吸收速率的相关性

    Figure  5.  The correlation analysis between nitrogen contents in soils and N uptake rates by roots across different pineapple cultivars and plant ages

    表  1  不同季节的两菠萝品种的形态和生长特征

    Table  1.   Morphological and growth traits of two pineapple cultivars sampled in different seasons

    季节
    Season
    品种
    Cultivar
    年龄
    Age (months)
    生长阶段
    Growth stage
    株高
    Height (cm)
    植株鲜重
    Fresh weight (g)
    比叶面积
    Specific leaf area
    (cm2∙g−1)
    根干重
    Root dry
    weight (g)
    单果重
    Weight per
    fruit (g)
    比根长
    Specific fine-root
    length (m∙g−1)
    4月
    April
    巴厘
    Bali
    8 营养生长期
    Vegetative stage
    43.0±5.5b 652±113.7b 85.5±25.9a 33.8±13.8b /     /
    20 果实收获期
    Harvest stage
    90.0±8.1a 3064±904.2a 56.0±2.9b 68.5±16.3a 796±197.7a /
    台农17
    Tainong17
    5 营养生长期
    Vegetative stage
    51.6±6.7b 752±384.1b 55.5±22.9b 39.0±15.6b / /
    16 果实收获期
    Harvest stage
    96.8±6.6a 2868±595.9a 59.4±5.1b 49.8±13.2b 532±100.6b /
    二维方差分析
    Two-way ANOVA
    品种 Cultivar (C) * ** ns ns *
    年龄 Age (A) *** ** ns **
    C×A ns ns * *
    9月
    September
    巴厘
    Bali
    13# 营养生长期
    Vegetative stage
    59.2±13.9b 1521.4±757.6b 59.1±5.2b 12.9±6.1b / 11±1.8a
    15 营养生长期
    Vegetative stage
    64.8±4ab 1959±523.9b 59.2±5.7b 14.4±7.5b / 10±5.1ab
    台农17
    Tainong17
    10# 营养生长期
    Vegetative stage
    69±4.6ab 2170.4±176.6b 67.9±4.6a 18.2±4.2b / 7.5±2.5ab
    12 营养生长期
    Vegetative stage
    72.6±6.6a 3246±410.8a 59.4±6.5b 31.5±5.6a / 6.2±1.4b
    二维方差分析
    Two-way ANOVA
    品种 Cultivar (C) * ** ns ** *
    年龄 Age (A) ns ** ns * ns
    C×A ns ns ns * ns
      同一个月内标识不同字母的数据表示其差异性显著(P<0.05)。*, P<0.05; **, P<0.01; ***, P<0.001. ns: 无显著差异; #:分别为4月的‘巴厘’和‘台农17’标记追踪的材料。Different lowercase letters indicate significant differences between samples within the same season at P<0.05 level. Ns: no significant difference. #: those plants of “Bali” and “Tainong 17” pineapples sampled in September are tracked from the seedlings growing in April, respectively.
    下载: 导出CSV

    表  2  不同季节的土壤不同形态氮的含量

    Table  2.   The contents of different nitrogen forms in soils (mg∙kg−1) sampled in different seasons

    季节 Season品种 Cultivar年龄 Age (months)铵态氮 Ammonium nitrogen硝态氮 Nitrate nitrogen氨基酸态氮 Amino acid nitrogen
    4月 April 巴厘 Bali 8 38.4±1.11b 8.53±0.04a 691.58±16.80b
    20 142.33±19.07a 8.70±0.19b 856.82±69.94a
    台农17 Tainong17 5 52.33±2.78b 8.03±0.05a 710.12±55.25b
    16 17.37±0.59c 5.20±0.03c 617.07±91.07b
    9月September 巴厘 Bali 13 10.63 11.1 249.75
    15 9.87 11.51 268.03
    台农17 Tainong17 10 7.75 9.02 189.32
    12 4.67 4.84 296.44
      不同小写字母表示4月份内不同采样土壤中同一种氮形态间存在显著差异(P<0.05)。Different lowercase letters indicated significant differences between the different samples soils within the same nitrogen form in April at P<0.05 level.
    下载: 导出CSV

    表  3  不同菠萝品种和年龄下植物功能性状与氮素吸收速率的相关性

    Table  3.   The correlation between plant traits and N uptake rates by roots across different pineapple cultivars and plant ages

    植物功能性状
    Plant trait
    氮吸收速率 N uptake rate
    铵态氮 NH4+-N硝态氮 NO3-N甘氨酸 Glycine总吸收速率 Total absorption
    整株生物量 Plant biomass0.012−0.475−0.617−0.388
    比叶面积 Specific leaf area0.088−0.1830.3240.063
    根生物量 Root biomass0.2290.254−0.1190.169
    比根长 Specific root length−0.882−0.881−0.875−0.918
    叶片氮含量 Leaf N content−0.203−0.576−0.389−0.453
    下载: 导出CSV
  • [1] WANG C X, LING F, LU Z Q, et al. Characteristics of nitrogen accumulation and utilization in peanuts (Arachis hypogaea) with different nitrogen use efficiencies[J]. Chinese Journal of Eco-Agriculture, 2019, 27(11): 1706−1713
    [2] LIAN Y, LU J, HU C M, et al. Effects of low nitrogen stress on foxtail millet seedling characteristics and screening of low nitrogen tolerant varieties[J]. Chinese Journal of Eco-Agriculture, 2020, 28(4): 523−534
    [3] MA L N, XU X F, ZHANG C X, et al. Strong non-growing season N uptake by deciduous trees in a temperate forest: A 15N isotopic experiment[J]. Journal of Ecology, 2021, 109: 3752−3766 doi: 10.1111/1365-2745.13754
    [4] STUART CHAPIN F III, MOILANEN L, KIELLAND K. Preferential use of organic nitrogen for growth by a non-mycorrhizal Arctic sedge[J]. Nature, 1993, 361(6408): 150−153 doi: 10.1038/361150a0
    [5] NÄSHOLM T, HUSS-DANELL K, HÖGBERG P. Uptake of glycine by field grown wheat[J]. New Phytologist, 2001, 150(1): 59−63 doi: 10.1046/j.1469-8137.2001.00072.x
    [6] ICHIHASHI Y, DATE Y, SHINO A, et al. Multi-omics analysis on an agroecosystem reveals the significant role of organic nitrogen to increase agricultural crop yield[J]. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117(25): 14552−14560 doi: 10.1073/pnas.1917259117
    [7] FARZADFAR S, CONGREVES K A. Soil organic nitrogen: an overlooked but potentially significant contribution to crop nutrition[J]. Plant and Soil, 2021, 462(1): 7−23
    [8] ZHANG J B, WANG J, MÜLLER C, et al. Ecological and practical significances of crop species preferential N uptake matching with soil N dynamics[J]. Soil Biology and Biochemistry, 2016, 103: 63−70 doi: 10.1016/j.soilbio.2016.08.009
    [9] CUI J H, YU C Q, QIAO N, et al. Plant preference for NH4+ versus NO3 at different growth stages in an alpine agroecosystem[J]. Field Crops Research, 2017, 201: 192−199 doi: 10.1016/j.fcr.2016.11.009
    [10] HENNERON L, KARDOL P, WARDLE D A, et al. Rhizosphere control of soil nitrogen cycling: a key component of plant economic strategies[J]. The New Phytologist, 2020, 228(4): 1269−1282 doi: 10.1111/nph.16760
    [11] MERCIER H, KERBAUY G B, CARVALHO M T, et al. Growth and GDH and AAT isoenzyme patterns in terrestrial and epiphytic bromeliads as influenced by nitrogen source[J]. Selbyana, 1997, 18(1): 89−94
    [12] ENDRES L, MERCIER H. Ammonium and urea as nitrogen sources for bromeliads[J]. Journal of Plant Physiology, 2001, 158(2): 205−212 doi: 10.1078/0176-1617-00170
    [13] MAIA V M, PEGORARO R F, ASPIAZÚ I, et al. Diagnosis and management of nutrient constraints in pineapple[M]. Fruit Crops. Amsterdam: Elsevier, 2020: 739–760
    [14] PEGORARO R F, DE SOUZA B A M, MAIA V M, et al. Growth and production of irrigated Vitória pineapple grown in semi-arid conditions[J]. Revista Brasileira De Fruticultura, 2014, 36(3): 693−703 doi: 10.1590/0100-2945-265/13
    [15] 陈菁, 徐明岗, 孙光明, 等. 叶面追施硝态氮肥抑制菠萝营养生长效应[J]. 中国土壤与肥料, 2018(4): 82−86 doi: 10.11838/sfsc.20180413

    CHEN J, XU M G, SUN G M, et al. Effect of nitrate nitrogen on inhibiting the vegetative growth of pineapple[J]. Soil and Fertilizer Sciences in China, 2018(4): 82−86 doi: 10.11838/sfsc.20180413
    [16] 卢明, 剧虹伶, 洪珊, 等. 不同菠萝品种矿质养分的积累特性及利用效率[J]. 果树学报, 2017, 34(9): 1152−1160 doi: 10.13925/j.cnki.gsxb.20170072

    LU M, JU H L, HONG S, et al. A study on the mineral nutrient accumulation properties and use efficiency in different pineapple varieties[J]. Journal of Fruit Science, 2017, 34(9): 1152−1160 doi: 10.13925/j.cnki.gsxb.20170072
    [17] 张锡铜, 吴青松, 林文秋, 等. 18份菠萝种质果实外观性状比较分析[J]. 果树学报, 2022, 39(1): 78−85 doi: 10.13925/j.cnki.gsxb.20200569

    ZHANG X T, WU Q S, LIN W Q, et al. Comparative analysis of fruit appearance traits of 18 accessions in pineapple germplasm[J]. Journal of Fruit Science, 2022, 39(1): 78−85 doi: 10.13925/j.cnki.gsxb.20200569
    [18] 陈菁, 孙光明, 习金根, 等. 菠萝不同品种氮、磷、钾养分累积差异性研究[J]. 广东农业科学, 2010, 37(6): 87–88

    CHEN J, SUN G M, XI J G, et al. Study on the N, P, K accumulative rule of plantlets of different pinpeapple variety[J]. Guangdong Agricultural Sciences, 2010, 37(6): 87–88
    [19] 李常诚, 李倩茹, 徐兴良, 等. 不同林龄杉木氮素的获取策略[J]. 生态学报, 2016, 36(9): 2620−2625

    LI C C, LI Q R, XU X L, et al. Nitrogen acquisition strategies of Cunninghamia lanceolata at different ages[J]. Acta Ecologica Sinica, 2016, 36(9): 2620−2625
    [20] ZHANG Z L, LI N, XIAO J, et al. Changes in plant nitrogen acquisition strategies during the restoration of spruce plantations on the eastern Tibetan Plateau, China[J]. Soil Biology and Biochemistry, 2018, 119: 50−58 doi: 10.1016/j.soilbio.2018.01.002
    [21] 董鸣. 陆地生物群落调查观测与分析[M]. 北京: 中国标准出版社, 1997

    DONG M. Survey, Observation and Analysis of Terristal Biocommunities [M]. Beijing: Standards Press of China, 1997
    [22] LAMBERS H, OLIVEIRA R S. Plant Physiological Ecology[M]. Springer Cham: Springer, 2019
    [23] MASCLAUX-DAUBRESSE C, DANIEL-VEDELE F, DECHORGNAT J, et al. Nitrogen uptake, assimilation and remobilization in plants: challenges for sustainable and productive agriculture[J]. Annals of Botany, 2010, 105(7): 1141−1157 doi: 10.1093/aob/mcq028
    [24] FRESCHET G T, ROUMET C, COMAS L H, et al. Root traits as drivers of plant and ecosystem functioning: current understanding, pitfalls and future research needs[J]. The New Phytologist, 2021, 232(3): 1123−1158 doi: 10.1111/nph.17072
    [25] MOREAU D, BARDGETT R D, FINLAY R D, et al. A plant perspective on nitrogen cycling in the rhizosphere[J]. Functional Ecology, 2019, 33(4): 540−552 doi: 10.1111/1365-2435.13303
    [26] 徐坤, 赵青春. 甜椒对不同形态氮素的吸收和分配[J]. 核农学报, 1999, 13(6): 339−342 doi: 10.3969/j.issn.1000-8551.1999.06.004

    XU K, ZHAO Q C. Absorption and distribution of different form of nitrogen in sweet pepper[J]. Journal of Nuclear Agricultural Sciences, 1999, 13(6): 339−342 doi: 10.3969/j.issn.1000-8551.1999.06.004
    [27] LEROY C, CARRIAS J F, CÉRÉGHINO R, et al. The contribution of microorganisms and metazoans to mineral nutrition in bromeliads[J]. Journal of Plant Ecology, 2016, 9(3): 241−255 doi: 10.1093/jpe/rtv052
    [28] MATIZ A, MIOTO P T, AIDAR M M, et al. Utilization of urea by leaves of bromeliad Vriesea gigantea under water deficit: much more than a nitrogen source[J]. Biologia Plantarum, 2017, 61(4): 751−762 doi: 10.1007/s10535-017-0721-z
  • 加载中
图(5) / 表(3)
计量
  • 文章访问数:  85
  • HTML全文浏览量:  41
  • PDF下载量:  9
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-11-04
  • 录用日期:  2023-01-12
  • 修回日期:  2023-01-12
  • 网络出版日期:  2023-02-07

目录

    /

    返回文章
    返回