留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

地下微咸水埋深对土壤水盐分布与冬小麦耗水特性的影响

张雪佳 王金涛 董心亮 田柳 娄泊远 刘小京 孙宏勇

张雪佳, 王金涛, 董心亮, 田柳, 娄泊远, 刘小京, 孙宏勇. 地下微咸水埋深对土壤水盐分布与冬小麦耗水特性的影响[J]. 中国生态农业学报 (中英文), 2023, 31(3): 417−427 doi: 10.12357/cjea.20220882
引用本文: 张雪佳, 王金涛, 董心亮, 田柳, 娄泊远, 刘小京, 孙宏勇. 地下微咸水埋深对土壤水盐分布与冬小麦耗水特性的影响[J]. 中国生态农业学报 (中英文), 2023, 31(3): 417−427 doi: 10.12357/cjea.20220882
ZHANG X J, WANG J T, DONG X L, TIAN L, LOU B Y, LIU X J, SUN H Y. Effect of underground brackish water depth on soil water-salt distribution and water consumption of winter wheat[J]. Chinese Journal of Eco-Agriculture, 2023, 31(3): 417−427 doi: 10.12357/cjea.20220882
Citation: ZHANG X J, WANG J T, DONG X L, TIAN L, LOU B Y, LIU X J, SUN H Y. Effect of underground brackish water depth on soil water-salt distribution and water consumption of winter wheat[J]. Chinese Journal of Eco-Agriculture, 2023, 31(3): 417−427 doi: 10.12357/cjea.20220882

地下微咸水埋深对土壤水盐分布与冬小麦耗水特性的影响

doi: 10.12357/cjea.20220882
基金项目: 国家重点研发计划课题(2021YFE0114500)资助
详细信息
    作者简介:

    张雪佳, 主要研究方向为农田水盐运移过程及调控。E-mail: zhangxuejia20@mails.ucas.ac.cn

    通讯作者:

    孙宏勇, 主要研究方向为农田水盐运移过程机理与调控。E-mail: hysun@sjziam.ac.cn

  • 中图分类号: S273.4; S512.1

Effect of underground brackish water depth on soil water-salt distribution and water consumption of winter wheat

Funds: This study was supported by the National Key Research and Development Project (2021YFE0114500).
More Information
  • 摘要: 环渤海低平原地区的冬小麦生产面临淡水资源短缺的制约, 高效安全利用较为丰富的浅层微咸水资源对农业可持续发展具有非常重要的意义。本研究于2021—2022年采用土柱模拟方法在中国科学院南皮生态农业试验站开展, 试验设置4个处理: 无地下水埋深淡水灌溉处理(CK), 地下微咸水埋深为0.5 m (GW1)、1.0 m (GW2)及1.5 m (GW3)处理, 每个处理3个重复, 对不同微咸水埋深下冬小麦土壤含水量及含盐量和水分利用特点进行调查。结果表明, 表层土壤(0~10 cm)含水量及含盐量随地下水埋深的增加而逐渐降低。与CK处理相比, GW1处理表层土壤含水量显著增加30.9%, GW3处理显著降低79.3%, 而与GW2处理无显著变化; GW1和GW2处理表层土壤盐含量显著增加3.4 g∙kg−1和2.0 g∙kg−1, 而GW3与CK处理之间差异不显著。GW1和GW2处理盐分主要积累在土壤表层(0~10 cm); GW3处理表层盐分较低, 主要积累在土壤30~50 cm深度。冬小麦蒸散量随地下水埋深的增加而显著降低, 与CK处理相比, GW1和GW2处理下冬小麦蒸散量显著增加50.2%和20.3%, GW3处理无显著差异。冬小麦产量在GW3处理下最高, 较CK处理显著提高38.04%; 同时, 该处理具有最高的生物量水平水分利用效率和产量水平水分利用效率, 显著高于CK处理26.7%和40.1%。上述结果表明, 咸水质量浓度为3 g·L−1, 地下水埋深在0.5~1.5 m的条件下, 1.5 m是冬小麦生长的适宜地下微咸水埋深上限, 此时, 表层含盐量和作物蒸散量最低, 产量和水分利用效率最优。
  • 图  1  试验装置结构图

    Figure  1.  Structure diagram of the test device

    图  2  不同地下微咸水埋深下冬小麦成熟期土壤含水量和土壤盐分含量

    CK、GW1、GW2、GW3分别表示对照处理以及地下微咸水埋深为0.5 m、1.0 m和1.5 m处理。CK, GW1, GW2 and GW3 are the control treatment and the treatments for underground brackish water depths of 0.5 m, 1.0 m and 1.5 m, respectively.

    Figure  2.  Soil water and soil salt contents at winter wheat harvest under different underground brackish water depths

    图  3  不同地下微咸水埋深下冬小麦蒸散量与地下水埋深深度及0~10 cm表层土壤含水量的关系

    Figure  3.  Relationship between evapotranspiration of winter wheat and groundwater depth and 0−10 cm surface soil water content under different underground brackish water depths

    图  4  不同地下微咸水埋深下0~30 cm土壤相对含水量及钠吸附比

    GW1、GW2、GW3分别表示地下微咸水埋深为0.5 m、1.0 m和1.5 m处理。图中不同字母表示不同处理间在P<0.05水平差异显著。GW1, GW2 and GW3 show the treatments for underground brackish water depths of 0.5 m, 1.0 m and 1.5 m, respectively. Different letters indicate significant differences at P<0.05 level among different treatments.

    Figure  4.  Soil-relative water content and soil sodium adsorption ratio of 0–30 cm soil under different underground brackish water depths

    表  1  不同地下微咸水埋深下冬小麦的水量平衡

    Table  1.   Water balance components of winter wheat under different underground brackish water depths

    处理
    Treatment
    地下水补给量
    Groundwater recharge
    (mm)
    灌溉量
    Irrigation
    (mm)
    总供水量
    Total water supply
    (mm)
    土壤储水量变化
    Change in soil water storage
    (mm)
    蒸散量
    Evapotranspiration
    (mm)
    CK0487.5487.5d+79.5b567.0c
    GW1971.220.0991.2a−139.7a851.5a
    GW2763.820.0783.8b−101.9b682.0b
    GW3620.520.0640.5c−76.8b564.0c
      CK、GW1、GW2、GW3分别表示对照处理以及地下微咸水埋深为0.5 m、1.0 m和1.5 m处理。不同字母表示不同处理在P<0.05水平差异显著。+、−表示土壤储水量变化的正负。CK, GW1, GW2 and GW3 are the control treatment and the treatments for underground brackish water depths of 0.5 m, 1.0 m and 1.5 m, respectively. Different letters indicate significant differences at P<0.05 level among different treatments. + and − indicate positive and negative changes in soil water storage.
    下载: 导出CSV

    表  2  不同地下微咸水埋深下冬小麦产量及其组成

    Table  2.   Yield and yield components of winter wheat under different underground brackish water depths

    处理
    Treatment
    穗粒数
    Kernel number
    per spike
    千粒重
    1000-grain
    weight (g)
    穗数
    Spike number
    (plants∙m−2)
    收获指数
    Harvest index
    产量
    Yield
    (kg∙m−2)
    生物量水平水分利用效率
    Water use efficiency at
    biomass level (kg∙m−3)
    产量水平水分利用效率
    Water use efficiency at
    yield level (kg∙m−3)
    CK30.67±0.58d46.58±3.45a647.45±146.39a0.432±0.020ab0.92±0.17b3.76±0.57b1.62±0.31b
    GW133.00±1.00c46.41±2.02a630.81±169.76a0.426±0.011ab0.96±0.24ab2.64±0.43c1.13±0.25b
    GW235.00±1.73b48.88±1.76a501.24±141.73a0.398±0.045b0.85±0.17b3.10±0.19bc1.24±0.23b
    GW337.00±0.00a49.14±1.44a699.37±45.81a0.474±0.022a1.27±0.12a4.77±0.40a2.27±0.30a
      CK、GW1、GW2、GW3分别表示对照处理以及地下微咸水埋深为0.5 m、1.0 m和1.5 m处理。表中数据表示平均值±标准误差。不同字母表示不同处理间在P<0.05水平差异显著。CK, GW1, GW2 and GW3 are the control treatment and the treatments for underground brackish water depths of 0.5 m, 1.0 m and 1.5 m, respectively. The data in the table is mean ± standard error. Different letters indicate significant differences at P<0.05 level among different treatments.
    下载: 导出CSV

    表  3  不同地下微咸水埋深下冬小麦产量与土壤水分、盐分线性回归分析

    Table  3.   Linear regression analysis of winter wheat yield and soil moisture and salinity in different soil layers under different underground brackish water depths

    土壤深度
    Soil depth (cm)
    模型
    Model
    R2P
    0~10Y=1.288−0.043SW+0.213SS0.7190.022
    0~20Y=1.404−0.063SW+0.201SS0.6980.028
    0~30Y=1.121−0.053SW+0.167SS0.7590.014
    0~50Y=0.828−0.046SW+0.156SS0.7450.017
      SS表示土壤积盐含量(g∙kg−1), SW表示土壤平均含水量(%)。SS is the soil salt accumulation (g∙kg−1); SW is the average soil water content (%).
    下载: 导出CSV

    表  4  不同地下微咸水埋深下冬小麦产量的相关性分析

    Table  4.   Correlation analysis of yield in winter wheat under different underground brackish water depths

    指标 IndexY1Y2Y3Y4Y5Y6Y7Y8
    Y11.000
    Y20.915**1.000
    Y30.242−0.1011.000
    Y40.251−0.1430.710*1.000
    Y50.921**0.852**0.1180.1601.000
    Y6−0.434−0.097−0.586−0.862**−0.3651.000
    Y70.843**0.5850.5090.681*0.729*−0.838**1.000
    Y80.896**0.6620.4500.6050.828**−0.776*0.986**1.000
      Y1: 冬小麦产量; Y2: 穗数; Y3: 千粒重; Y4: 穗粒数; Y5: 收获指数; Y6: 蒸散; Y7: 生物量水平水分利用效率; Y8: 产量水平水分利用效率。*和**分别表示相关性达P<0.05和P<0.01显著水平。Y1: winter wheat yield; Y2: spike number; Y3: 1000-grain weight; Y4: kernel number per spike; Y5: harvest index; Y6: evapotranspiration; Y7: water use efficiency at biomass level; Y8: water use efficiency at yield level. * and ** indicate significant correlation at P<0.05 and P<0.01 levels, respectively.
    下载: 导出CSV
  • [1] 王树强. 地下水资源可持续利用的制度架构−以华北平原为例[J]. 地下水, 2012, 34(3): 6−8

    WANG S Q. Sustainable use of groundwater resources in the system frame — As an example of the North China Plain[J]. Ground Water, 2012, 34(3): 6−8
    [2] 梅旭荣, 罗远培. 缺水与我国粮食生产: 问题、潜力与对策[J]. 科技导报, 2000(6): 31−34 doi: 10.3321/j.issn:1000-7857.2000.06.010

    MEI X R, LUO Y P. Water shortage and grain production in China: problems, potential and countermeasures[J]. Science & Technology Review, 2000(6): 31−34 doi: 10.3321/j.issn:1000-7857.2000.06.010
    [3] 孙宏勇, 刘小京, 张喜英. 盐碱地水盐调控研究[J]. 中国生态农业学报, 2018, 26(10): 1528−1536

    SUN H Y, LIU X J, ZHANG X Y. Regulations of salt and water of saline-alkali soil: a review[J]. Chinese Journal of Eco-Agriculture, 2018, 26(10): 1528−1536
    [4] 巴比江, 郑大玮, 贾云茂, 等. 地下水埋深对冬麦田土壤水分及产量的影响[J]. 节水灌溉, 2004(5): 5−9 doi: 10.3969/j.issn.1007-4929.2004.05.002

    BA B J, ZHENG D W, JIA Y M, et al. Influence of water table on the soil water variation and crop yield of winter wheat field[J]. Water Saving Irrigation, 2004(5): 5−9 doi: 10.3969/j.issn.1007-4929.2004.05.002
    [5] REN B Z, DONG S T, LIU P, et al. Ridge tillage improves plant growth and grain yield of waterlogged summer maize[J]. Agricultural Water Management, 2016, 177: 392−399 doi: 10.1016/j.agwat.2016.08.033
    [6] XU X, HUANG G H, SUN C, et al. Assessing the effects of water table depth on water use, soil salinity and wheat yield: searching for a target depth for irrigated areas in the upper Yellow River Basin[J]. Agricultural Water Management, 2013, 125: 46−60 doi: 10.1016/j.agwat.2013.04.004
    [7] SEPASKHAH A R, KANOONI A, GHASEMI M M. Estimating water table contributions to corn and sorghum water use[J]. Agricultural Water Management, 2003, 58(1): 67−79 doi: 10.1016/S0378-3774(02)00081-1
    [8] 郝远远, 徐旭, 黄权中, 等. 土壤水盐与玉米产量对地下水埋深及灌溉响应模拟[J]. 农业工程学报, 2014, 30(20): 128−136 doi: 10.3969/j.issn.1002-6819.2014.20.016

    HAO Y Y, XU X, HUANG Q Z, et al. Modeling soil water-salt dynamics and maize yield responses to groundwater depths and irrigations[J]. Transactions of the Chinese Society of Agricultural Engineering, 2014, 30(20): 128−136 doi: 10.3969/j.issn.1002-6819.2014.20.016
    [9] MUELLER L, BEHRENDT A, SCHALITZ G, et al. Above ground biomass and water use efficiency of crops at shallow water tables in a temperate climate[J]. Agricultural Water Management, 2005, 75(2): 117−136 doi: 10.1016/j.agwat.2004.12.006
    [10] 武朝宝. 地下水埋深对作物产量与水分利用效率的影响及作物系数变化[J]. 地下水, 2011, 33(4): 20−23 doi: 10.3969/j.issn.1004-1184.2011.04.008

    WU C B. Effect of groundwater depth on crop output and water-used efficiency and the change of crop coefficients[J]. Ground Water, 2011, 33(4): 20−23 doi: 10.3969/j.issn.1004-1184.2011.04.008
    [11] LIU T G, LUO Y. Effects of shallow water tables on the water use and yield of winter wheat (Triticum aestivum L.) under rain-fed condition[J]. Australian Journal of Crop Science, 2011, 5: 1692−1697
    [12] WESSTRÖM I, MESSING I. Effects of controlled drainage on N and P losses and N dynamics in a loamy sand with spring crops[J]. Agricultural Water Management, 2007, 87(3): 229−240 doi: 10.1016/j.agwat.2006.07.005
    [13] SOYLU M E, KUCHARIK C J, LOHEIDE S P. Influence of groundwater on plant water use and productivity: development of an integrated ecosystem-variably saturated soil water flow model[J]. Agricultural and Forest Meteorology, 2014, 189/190: 198−210
    [14] 刘战东, 肖俊夫, 牛豪震, 等. 地下水埋深对冬小麦和春玉米产量及水分生产效率的影响[J]. 干旱地区农业研究, 2011, 29(1): 29−33

    LIU Z D, XIAO J F, NIU H Z, et al. Influence of groundwater depth on yield and WUE of winter wheat and spring maize[J]. Agricultural Research in the Arid Areas, 2011, 29(1): 29−33
    [15] NARJARY B, KUMAR S, MEENA M D, et al. Effects of shallow saline groundwater table depth and evaporative flux on soil salinity dynamics using hydrus-1D[J]. Agricultural Research, 2021, 10(1): 105−115 doi: 10.1007/s40003-020-00484-1
    [16] 张喜英, 刘小京, 陈素英, 等. 环渤海低平原农田多水源高效利用机理和技术研究[J]. 中国生态农业学报, 2016, 24(8): 995−1004

    ZHANG X Y, LIU X J, CHEN S Y, et al. Efficient utilization of various water sources in farmlands in the low plain nearby Bohai Sea[J]. Chinese Journal of Eco-Agriculture, 2016, 24(8): 995−1004
    [17] 李佳, 曹彩云, 郑春莲, 等. 河北低平原冬小麦长期咸水灌溉矿化度阈值研究[J]. 中国生态农业学报, 2016, 24(5): 643−651

    LI J, CAO C Y, ZHENG C L, et al. Salinity threshold of long-term saline water irrigation for winter wheat in Hebei Lowland Plain[J]. Chinese Journal of Eco-Agriculture, 2016, 24(5): 643−651
    [18] HARGREAVES G H, ALLEN R G. History and evaluation of Hargreaves evapotranspiration equation[J]. Journal of Irrigation and Drainage Engineering, 2003, 129(1): 53−63 doi: 10.1061/(ASCE)0733-9437(2003)129:1(53)
    [19] LUO Y F, CHANG X M, PENG S Z, et al. Short-term forecasting of daily reference evapotranspiration using the Hargreaves-Samani model and temperature forecasts[J]. Agricultural Water Management, 2014, 136: 42−51 doi: 10.1016/j.agwat.2014.01.006
    [20] ALLEN R G, PEREIRA L S, RAES D, et al. Crop evapotranspiration-guidelines for computing crop requirements, FAO Irrigation and Drainage Paper 56[J]. FAO: Rome, Italy, 1998. https://www.docin.com/p-408591772.html
    [21] ZHANG X Y, QIN W L, CHEN S Y, et al. Responses of yield and WUE of winter wheat to water stress during the past three decades— A case study in the North China Plain[J]. Agricultural Water Management, 2017, 179: 47−54 doi: 10.1016/j.agwat.2016.05.004
    [22] LIU R X, ZHOU Z G, GUO W Q, et al. Effects of N fertilization on root development and activity of water-stressed cotton (Gossypium hirsutum L.) plants[J]. Agricultural Water Management, 2008, 95(11): 1261−1270 doi: 10.1016/j.agwat.2008.05.002
    [23] CUI B S, YANG Q C, ZHANG K J, et al. Responses of saltcedar (Tamarix chinensis) to water table depth and soil salinity in the Yellow River Delta, China[J]. Plant Ecology, 2010, 209(2): 279−290 doi: 10.1007/s11258-010-9723-z
    [24] 李小倩, 夏江宝, 赵西梅, 等. 不同潜水埋深下浅层土壤的水盐分布特征[J]. 中国水土保持科学, 2017, 15(2): 43−50

    LI X Q, XIA J B, ZHAO X M, et al. Water and salt distribution characteristics of shallow soil at different diving water levels[J]. Science of Soil and Water Conservation, 2017, 15(2): 43−50
    [25] XIA J B, LANG Y, ZHAO Q K, et al. Photosynthetic characteristics of Tamarix chinensis under different groundwater depths in freshwater habitats[J]. Science of the Total Environment, 2021, 761: 143221
    [26] 李文昊, 王振华, 王凯飞. 蒸发条件下地下水埋深对土壤水盐含量的影响[J]. 石河子大学学报(自然科学版), 2020, 38(4): 443−448

    LI W H, WANG Z H, WANG K F. Effect of groundwater depth on soil water and salt content under evaporation[J]. Journal of Shihezi University (Natural Science), 2020, 38(4): 443−448
    [27] 崔亚莉, 张德强, 邵景力, 等. 地下水浅埋区土壤水TDS变化规律分析[J]. 水土保持学报, 2004(1): 185−188

    CUI Y L, ZHANG D Q, SHAO J L, et al. Study on variation and influence factor of soil-water TDS in shallow groundwater areas[J]. Journal of Soil Water Conservation, 2004(1): 185−188
    [28] 糟凯龙. 毛管力与植物蒸腾拉力综合作用提升地下水试验研究[D]. 乌鲁木齐: 新疆农业大学, 2021

    ZAO K L. Experimental study on comprehensive effect of capillary force and transpiration pulling force of plants to enhance groundwater[D]. Urumqi: Xinjiang Agricultural University, 2021
    [29] ZHANG J, HEYDEN J V, BENDEL D, et al. Combination of soil-water balance models and water-table fluctuation methods for evaluation and improvement of groundwater recharge calculations[J]. Hydrogeology Journal, 2011, 19(8): 1487−1502 doi: 10.1007/s10040-011-0772-8
    [30] 王峰, 姚宝林, 孙三民, 等. 矿化度对均质土壤毛管水上升特性与土壤盐分的影响[J]. 中国农村水利水电, 2017(9): 27−31 doi: 10.3969/j.issn.1007-2284.2017.09.007

    WANG F, YAO B L, SUN S M, et al. The effects of different total dissolved solids degree on characteristics of capillary water rise and soil salt under homogeneous soil[J]. China Rural Water and Hydropower, 2017(9): 27−31 doi: 10.3969/j.issn.1007-2284.2017.09.007
    [31] LI J, YU B, ZHAO C, et al. Physiological and morphological responses of Tamarix ramosissima and Populus euphratica to altered groundwater availability[J]. Tree Physiology, 2013, 33(1): 57−68 doi: 10.1093/treephys/tps120
    [32] 姚宝林, 孙三民, 李发永, 等. 潜水蒸发条件下不同棉秆隔层埋深对土壤盐分时空分布的影响[J]. 灌溉排水学报, 2021, 40(10): 95−102

    YAO B L, SUN S M, LI F Y, et al. Using cotton straw interlayer to reduce evaporation and salt migration from groundwater to the soil surface[J]. Journal of Irrigation and Drainage, 2021, 40(10): 95−102
    [33] 窦超银, 康跃虎, 万书勤. 地下水浅埋区重度盐碱地覆膜咸水滴灌水盐动态试验研究[J]. 土壤学报, 2011, 48(3): 524−532

    DOU C Y, KANG Y H, WAN S Q. Water and salt dynamics of saline-sodic soil with shallow water table under mulch-drip irrigation with saline water[J]. Acta Pedologica Sinica, 2011, 48(3): 524−532
    [34] SOPPE R W O, AYARS J E. Characterizing ground water use by safflower using weighing lysimeters[J]. Agricultural Water Management, 2003, 60(1): 59−71 doi: 10.1016/S0378-3774(02)00149-X
    [35] 顾南, 张建云, 刘翠善, 等. 地下水埋深对淮北平原冬小麦耗水量影响试验研究[J]. 水文地质工程地质, 2021, 48(4): 15−24

    GU N, ZHANG J Y, LIU C S, et al. An experimental study of the influence of groundwater level on water consumption of winter wheat in the Huaibei Plain[J]. Hydrogeology & Engineering Geology, 2021, 48(4): 15−24
    [36] ZHAO P, KANG S Z, LI S E, et al. Seasonal variations in vineyard ET partitioning and dual crop coefficients correlate with canopy development and surface soil moisture[J]. Agricultural Water Management, 2018, 197: 19−33 doi: 10.1016/j.agwat.2017.11.004
    [37] 彭正凯, 李玲玲, 谢军红, 等. 不同耕作措施对旱地作物生育期农田耗水结构和水分利用效率的影响[J]. 水土保持学报, 2018, 32(5): 214−221

    PENG Z K, LI L L, XIE J H, et al. Effects of different tillage practices on water consumption structure and water use efficiency during crop growth period in arid farmland[J]. Journal of Soil and Water Conservation, 2018, 32(5): 214−221
    [38] KAHLOWN M A, ASHRAF M, ZIA-UL-HAQ. Effect of shallow groundwater table on crop water requirements and crop yields[J]. Agricultural Water Management, 2005, 76(1): 24−35 doi: 10.1016/j.agwat.2005.01.005
    [39] CHRISTIANSON J A, LLEWELLYN D J, DENNIS E S, et al. Global gene expression responses to waterlogging in roots and leaves of cotton (Gossypium hirsutum L.)[J]. Plant and Cell Physiology, 2010, 51(1): 21−37 doi: 10.1093/pcp/pcp163
    [40] ZHANG H, LI D S, ZHOU Z G, et al. Soil water and salt affect cotton (Gossypium hirsutum L.) photosynthesis, yield and fiber quality in coastal saline soil[J]. Agricultural Water Management, 2017, 187: 112−121 doi: 10.1016/j.agwat.2017.03.019
    [41] ABLIZ A, TIYIP T, GHULAM A, et al. Effects of shallow groundwater table and salinity on soil salt dynamics in the Keriya Oasis, Northwestern China[J]. Environmental Earth Sciences, 2016, 75(3): 260 doi: 10.1007/s12665-015-4794-8
    [42] ZHANG W C, ZHU J Q, ZHOU X G, et al. Effects of shallow groundwater table and fertilization level on soil physico-chemical properties, enzyme activities, and winter wheat yield[J]. Agricultural Water Management, 2018, 208: 307−317 doi: 10.1016/j.agwat.2018.06.039
    [43] ASLAM R. A critical review on halophytes: Salt tolerant plants[J]. Journal of Medicinal Plants Research, 2011, 5(33): 7108−7118
    [44] 刘铁刚, 罗毅, 袁国富. 不同水分条件下冬小麦浅层地下水利用试验研究[J]. 灌溉排水学报, 2010, 29(3): 6−11

    LIU T G, LUO Y, YUAN G F. Experimental research on the uptake of shallow ground water by winter wheat under different water conditions[J]. Journal of Irrigation and Drainage, 2010, 29(3): 6−11
    [45] 王征宏, 戴凌峰, 赵威, 等. 盐胁迫对玉米根、芽主要渗透调节物质的影响[J]. 河南农业科学, 2013, 42(6): 21−23 doi: 10.3969/j.issn.1004-3268.2013.06.005

    WANG Z H, DAI L F, ZHAO W, et al. Effects of salt stress on main osmotic adjustment substance in root and shoot of maize[J]. Journal of Henan Agricultural Sciences, 2013, 42(6): 21−23 doi: 10.3969/j.issn.1004-3268.2013.06.005
    [46] 杨晓慧, 蒋卫杰, 魏珉, 等. 植物对盐胁迫的反应及其抗盐机理研究进展[J]. 山东农业大学学报(自然科学版), 2006(2): 302−305, 308

    YANG X H, JIANG W J, WEI M, et al. Review on plant response and resistance mechanism to salt stress[J]. Journal of Shandong Agricultural University (Natural Science Edition), 2006(2): 302−305, 308
    [47] 王元华. 小麦适宜地下水位试验[J]. 土壤学报, 1994, 31(4): 439−446

    WANG Y H. Study on suitable groundwater levels for wheat growth[J]. Acta Pedologica Sinica, 1994, 31(4): 439−446
    [48] FIDANTEMIZ Y F, JIA X H, DAIGH A L M, et al. Effect of water table depth on soybean water use, growth, and yield parameters[J]. Water, 2019, 11(5): 931 doi: 10.3390/w11050931
    [49] DONG H Z, LI W J, TANG W, et al. Early plastic mulching increases stand establishment and lint yield of cotton in saline fields[J]. Field Crops Research, 2009, 111(3): 269−275 doi: 10.1016/j.fcr.2009.01.001
    [50] ZHU W, YANG J S, YAO R J, et al. Soil water-salt control and yield improvement under the effect of compound control in saline soil of the Yellow River Delta, China[J]. Agricultural Water Management, 2022, 263: 107455 doi: 10.1016/j.agwat.2022.107455
    [51] 贺苗. 淮北平原区旱涝均衡治理适宜地下水埋深研究[D]. 扬州: 扬州大学, 2014

    HE M. Study on suitable groundwater depth for balanceing drought and flood in Huaibei Plain[D]. Yangzhou: Yangzhou University, 2014
  • 加载中
图(4) / 表(4)
计量
  • 文章访问数:  20
  • HTML全文浏览量:  11
  • PDF下载量:  3
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-11-10
  • 录用日期:  2023-02-06
  • 修回日期:  2023-02-06
  • 网络出版日期:  2023-02-14

目录

    /

    返回文章
    返回