留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

咸水灌溉影响耕地质量和作物生产的研究进展

孙宏勇 张雪佳 田柳 娄泊远 刘彤 王金涛 董心亮 郭凯 刘小京

孙宏勇, 张雪佳, 田柳, 娄泊远, 刘彤, 王金涛, 董心亮, 郭凯, 刘小京. 咸水灌溉影响耕地质量和作物生产的研究进展[J]. 中国生态农业学报 (中英文), 2023, 31(3): 354−363 doi: 10.12357/cjea.20220899
引用本文: 孙宏勇, 张雪佳, 田柳, 娄泊远, 刘彤, 王金涛, 董心亮, 郭凯, 刘小京. 咸水灌溉影响耕地质量和作物生产的研究进展[J]. 中国生态农业学报 (中英文), 2023, 31(3): 354−363 doi: 10.12357/cjea.20220899
SUN H Y, ZHANG X J, TIAN L, LOU B Y, LIU T, WANG J T, DONG X L, GUO K, LIU X J. Effects of saline water irrigation on soil quality and crop production: a review[J]. Chinese Journal of Eco-Agriculture, 2023, 31(3): 354−363 doi: 10.12357/cjea.20220899
Citation: SUN H Y, ZHANG X J, TIAN L, LOU B Y, LIU T, WANG J T, DONG X L, GUO K, LIU X J. Effects of saline water irrigation on soil quality and crop production: a review[J]. Chinese Journal of Eco-Agriculture, 2023, 31(3): 354−363 doi: 10.12357/cjea.20220899

咸水灌溉影响耕地质量和作物生产的研究进展

doi: 10.12357/cjea.20220899
基金项目: 中国科学院战略性先导科技专项A类(XDA26040102)和河北省重点研发计划项目(21326411D, 21326408D)资助
详细信息
    通讯作者:

    孙宏勇, 主要研究方向为农田水盐运移过程机理与调控。E-mail: hysun@sjziam.ac.cn

  • 中图分类号: S641.2

Effects of saline water irrigation on soil quality and crop production: a review

Funds: This study was supported by the Special Project of Strategic Leading Science and Technology of Chinese Academy of Sciences (XDA26040102) and the Key Research and Development Project in Hebei Province, China (21326411D, 21326408D).
More Information
  • 摘要: 水资源是基础性自然资源和重要的战略资源。盐碱地多分布于干旱半干旱地区, 淡水资源短缺是盐碱区农业可持续发展的主要限制因素。同时盐碱区较为丰富的咸水微咸水资源、土地资源和光热资源等为盐碱区农业可持续发展提供了可能。本文针对咸水灌溉影响耕地质量、作物生长、产量和品质等问题, 综述了基于水质的咸水分类、咸水灌溉制度与灌溉方式和地下水埋深等影响咸水在农业生产中安全利用的因素, 阐述了不同矿化度咸水灌溉, 土壤水力特性、理化性质、温室气体排放等土壤质量变化情况和对作物生长发育、产量和品质的影响, 明确了有机物料、咸水灌溉制度、覆盖和耕作等农艺措施、水肥盐多因素调控和耐盐作物适盐种植等农业措施的作用。咸水灌溉下土壤质量呈下降趋势, 有机物料的施用、秸秆还田和合理的耕作等调控措施通过影响土壤质量保证咸水的安全利用。与旱作相比, 咸水灌溉可以起到明显的增产作用, 在合理的咸水范围内还能提升品质。在新形势下, 未来将面向国家粮食安全重大需求, 以协同提升土壤质量、作物产量和品质为多目标, 系统开展咸水非充分灌溉、水肥盐综合调控、咸水灌溉对土壤质量和作物咸水精准灌溉机理过程研究、技术研发和模式示范工作, 为缺水盐渍区农业可持续发展提供理论依据和技术支撑。
  • 表  1  不同阴离子水化学类型矿化度与电导率的关系[8]

    Table  1.   Relationship between the anionic type mineralization and electrical conductivity of saline water

    阴离子水化学类型
    Anionic type
    样品组数
    Number of samples
    线性回归方程
    Equation
    相关系数
    Correlation coefficient
    重碳酸型 Bicarbonate type144M=0.882×EC+21.450.967
    重碳酸氯化物硫酸型 Bicarbonate chloride sulfate type115M=0.818×EC−15.390.971
    重碳酸氯化物型 Bicarbonate chloride type125M=0.777×EC+76.770.927
    重碳酸硫酸型 Bicarbonate sulfuric acid type36M=0.888×EC−20.390.992
    硫酸氯化物重碳酸型 Sulfuric chloride bicarbonate type19M=0.805×EC+6.7590.880
    氯化物重碳酸硫酸型 Chloride bicarbonate sulfuric acid type46M=0.792×EC−47.430.990
    氯化物硫酸重碳酸型 Chloride sulfuric acid bicarbonate type35M=0.854×EC−231.820.979
    氯化物重碳酸型 Chloride bicarbonate type27M=0.725×EC+49.160.961
    重碳酸硫酸氯化物型 Bicarbonate sulfate chloride type72M=0.864×EC−54.520.986
    平均 Mean626M=0.766×EC+109.890.982
      公式中, M为矿化度(mg·L−1), EC为电导率(μS·cm−1)。In the equation, M is mineralization degree (mg·L−1), EC is electrical conductivity (μS·cm−1).
    下载: 导出CSV

    表  2  天然水水质的分类

    Table  2.   Classification of natural water

    g·L−1 
    O. A. Aleken分类(1970)
    O. A. Aleken (1970) classification
    美国分类 (1970)
    American classification (1970)
    中国分类
    Chinese classification
    舒卡列夫分类
    Shukalev classification
    淡水 Freshwater<1<1<1.0<1.5
    微咸水 Brackish water1~251~101.0~3.01.5~10.0
    咸水 Saline water25~5010~1003.0~10.010.0~40.0
    盐水 Brine>50>10010.0~50.0>40.0
    卤水 Bittern>50.0
    下载: 导出CSV

    表  3  基于相对产量和土壤电导率关系的主要大田农作物的耐盐能力

    Table  3.   Salt tolerance of main field crops based on the relative yield and electrical conductivity

    盐分敏感程度
    Salinity sensitivity
    作物
    Crop
    电导率阈值
    Threshold of electrical conductivity (dS·m−1)
    敏感性
    Sensibility [%∙(dS∙m−1)−1]
    敏感菜豆 Beans1.017.0
    Sensitive水稻 Rice3.012.0
    玉米 Maize1.712.0
    中等敏感苜蓿 Alfalfa2.07.3
    Moderate sensitive
    中等耐受小麦 Wheat6.07.1
    Moderate tolerance大豆 Soybean5.020.0
    高粱 Sorghum6.816.0
    耐盐棉花 Cotton7.75.2
    Tolerant大麦 Oats8.05.0
      资料来源: Maas[65]和Tanji [66]。表中数据根据公式Y/Y0=100−b(EC−t)计算。其中Y/Y0为相对产量; b是盐敏感性, 表示为EC变化引起的相对产量降低幅度[%∙(dS∙m−1)−1]; t为电导率(EC)的阈值, EC<t, 对相对产量没有影响, EC>t, 相对产量降低。Source: Maas (1984)[65]和Tanji (1990)[66]. The data are calculated with the formula Y/Y0=100−b(EC−t). In the formula, Y/Y0 is the relative yield; EC is electrical conductivity. b is the crop sensitity to salinity, inidcating decreasing of relative yield when EC increase [%∙(dS∙m−1)−1]. t is the threshold of EC (dS∙m−1). There isn’t impact of EC on relative yield when EC is below t. The relative yield will decrease when EC is higher than t.
    下载: 导出CSV
  • [1] 康绍忠. 藏粮于水 藏水于技−发展高水效农业 保障国家食物安全[J]. 中国水利, 2022(13): 1−5

    KANG S Z. Store grain in water and technology— development of highly-efficient agricultural water use for ensuring national food security[J]. China Water Resources, 2022(13): 1−5
    [2] Food and Agriculture Organization of United Nations. Emissions totals[EB/OL]. [2022-11-07]. https://www.fao.org/faostat/zh/#data/GT
    [3] 刘友兆, 付光辉. 中国微咸水资源化若干问题研究[J]. 地理与地理信息科学, 2004, 20(2): 57−60

    LIU Y Z, FU G H. Utilization of gentle salty water resource in China[J]. Geography and Geo-Information Science, 2004, 20(2): 57−60
    [4] 陈素英, 张喜英, 邵立威, 等. 微咸水非充分灌溉对冬小麦生长发育及夏玉米产量的影响[J]. 中国生态农业学报, 2011, 19(3): 579−585 doi: 10.3724/SP.J.1011.2011.00579

    CHEN S Y, ZHANG X Y, SHAO L W, et al. Effect of deficit irrigation with brackish water on growth and yield of winter wheat and summer maize[J]. Chinese Journal of Eco-Agriculture, 2011, 19(3): 579−585 doi: 10.3724/SP.J.1011.2011.00579
    [5] 张喜英, 刘小京, 陈素英, 等. 环渤海低平原农田多水源高效利用机理和技术研究[J]. 中国生态农业学报, 2016, 24(8): 995−1004

    ZHANG X Y, LIU X J, CHEN S Y, et al. Efficient utilization of various water sources in farmlands in the low plain nearby Bohai Sea[J]. Chinese Journal of Eco-Agriculture, 2016, 24(8): 995−1004
    [6] SU H, SUN H Y, DONG X L, et al. Did manure improve saline water irrigation threshold of winter wheat? A 3-year field investigation[J]. Agricultural Water Management, 2021, 258: 107203 doi: 10.1016/j.agwat.2021.107203
    [7] 李佳, 曹彩云, 郑春莲, 等. 河北低平原冬小麦长期咸水灌溉矿化度阈值研究[J]. 中国生态农业学报, 2016, 24(5): 643−651

    LI J, CAO C Y, ZHENG C L, et al. Salinity threshold of long-term saline water irrigation for winter wheat in Hebei Lowland Plain[J]. Chinese Journal of Eco-Agriculture, 2016, 24(5): 643−651
    [8] 刘中业, 徐建国, 祁晓凡, 等. 地下水电导率与矿化度相关关系分析−以鲁北平原为例[J]. 山东国土资源, 2013, 29(9): 57−60, 64

    LIU Z Y, XU J G, QI X F, et al. Analysis on groundwater conductivity and salinity correlation — Setting Lubei Plain in Shandong Province as an example[J]. Shandong Land and Resources, 2013, 29(9): 57−60, 64
    [9] 高宗军, 郭健斌, 魏久传. 水文地质学[M]. 徐州: 中国矿业大学出版社, 2011

    GAO Z J, GUO J B, WEI J C. Hydrogeology[M]. Xuzhou: China University of Mining & Technology Press, 2011
    [10] 中国环境科学研究院, 生态环境部南京环境科学研究所, 生态环境部土壤与农业农村生态环境监管技术中心, 农业农村部环境保护科研监测所. GB 5084—2021. 《农田灌溉水质标准》[S]. 北京: 中国环境出版集团, 2021

    Chinese Academy of Environmental Sciences, Nanjing Institute of Environmental Sciences of the Ministry of Ecology and Environment, Technical Center for Soil and Agriculture and Rural Ecological Environment Supervision of the Ministry of Ecological Environment; Environmental Protection Research and Monitoring Institute of the Ministry of Agriculture and Rural Affairs. GB 5084—2021. Standards for Irrigation Water Quality[S]. Beijing: China Environmental Publishing Group, 2021
    [11] AYERS R S, WESTCOTT D W. Water quality for agriculture[R]. Rome: FAO Irrigation & Drainage, 1985, Rev. 1
    [12] RHOADES J, KANDIAH A, MASHALI A. The use of saline waters for crop production[R]. Rome: FAO Irrigation & Drainage No 48, 1992: 5–6
    [13] 郭凯, 巨兆强, 封晓辉, 等. 咸水结冰灌溉改良盐碱地的研究进展及展望[J]. 中国生态农业学报, 2016, 24(8): 1016−1024

    GUO K, JU Z Q, FENG X H, et al. Advances and expectations of researches on saline soil reclamation by freezing saline water irrigation[J]. Chinese Journal of Eco-Agriculture, 2016, 24(8): 1016−1024
    [14] 蔡达伟, 孔淑琼, 刘瑞琪. 微咸水农田安全灌溉研究进展[J]. 节水灌溉, 2020(10): 91−95, 100

    CAI D W, KONG S Q, LIU R Q. A review of brackish water for agricultural safe irrigation[J]. Water Saving Irrigation, 2020(10): 91−95, 100
    [15] SAGGU S, KAUSHAL M. Fresh and saline water irrigation through drip and furrow method[J]. International Journal of Tropical Agriculture, 1991, 9: 194−202
    [16] 余根坚. 节水灌溉条件下水盐运移与用水管理模式研究[D]. 武汉: 武汉大学, 2014

    YU G J. Research on water-salt migration and water management mode under water-saving irrigation conditions[D]. Wuhan: Wuhan University, 2014
    [17] 李成, 冯浩, 罗帅, 等. 垄膜沟灌对旱区农田土壤盐分及硝态氮运移特征的影响[J]. 水土保持学报, 2019, 33(3): 268−275

    LI C, FENG H, LUO S, et al. Effects of ridge with plastic mulch-furrow irrigation on soil salt and nitrate nitrogen transport characteristics in arid areas[J]. Journal of Soil and Water Conservation, 2019, 33(3): 268−275
    [18] 罗帅. 河套灌区垄膜沟灌模式下不同灌水量对春玉米田水盐氮运移特征的影响[D]. 杨凌: 西北农林科技大学, 2021

    LUO S. The influence of irrigation amounts on transport characteristics of soil water-salt-nitrogen in spring maize fields under ridge mulched with plastic film-furrow irrigation in Hetao irrigation district[D]. Yangling: Northwest Agricultural and Forest University, 2021
    [19] 李国安, 蒋静, 马娟娟, 等. 咸水灌溉对土壤水盐分布和小麦产量的影响[J]. 排灌机械工程学报, 2018, 36(6): 544−552

    LI G A, JIANG J, MA J J, et al. Effect of saline water irrigation on water-salt distribution and yield of wheat[J]. Journal of Drainage and Irrigation Machinery Engineering, 2018, 36(6): 544−552
    [20] 陈素英, 邵立威, 孙宏勇, 等. 微咸水灌溉对土壤盐分平衡与作物产量的影响[J]. 中国生态农业学报, 2016, 24(8): 1049−1058

    CHEN S Y, SHAO L W, SUN H Y, et al. Effect of brackish water irrigation on soil salt balance and yield of both winter wheat and summer maize[J]. Chinese Journal of Eco-Agriculture, 2016, 24(8): 1049−1058
    [21] LIU C M. Soil salinity control regarding subsurface water regulation in North China Plain[J]. The Journal of Chinese Geography, 1996, 6(4): 28−37
    [22] SEPASKHAH A, KANOONI A, GHASEMI M. Estimating water table contributions to corn and sorghum water use[J]. Agricultural Water Management, 2003, 58(1): 67−79 doi: 10.1016/S0378-3774(02)00081-1
    [23] NARJARY B, KUMAR S, MEENA M D, et al. Effects of shallow saline groundwater table depth and evaporative flux on soil salinity dynamics using hydrus-1D[J]. Agricultural Research, 2021, 10(1): 105−115 doi: 10.1007/s40003-020-00484-1
    [24] LIU T G, LUO Y. Effects of shallow water tables on the water use and yield of winter wheat (Triticum aestivum L.) under rain-fed condition[J]. Australian Journal of Crop Science, 2011, 5(13): 1692−1697
    [25] 张盼盼, 赵慧, 荣昊. 微咸水灌溉对盐碱土水盐运移的影响[J]. 人民长江, 2021, 52(5): 198−202, 208

    ZHANG P P, ZHAO H, RONG H. Effect of brackishwater content on water and salt transport law in saline-alkali soil irrigation[J]. Yangtze River, 2021, 52(5): 198−202, 208
    [26] 唐胜强, 佘冬立. 灌溉水质对土壤饱和导水率和入渗特性的影响[J]. 农业机械学报, 2016, 47(10): 108−114

    TANG S Q, SHE D L. Influence of water quality on soil saturated hydraulic conductivity and infiltration properties[J]. Transactions of the Chinese Society for Agricultural Machinery, 2016, 47(10): 108−114
    [27] 刘淙琮, 孙宏勇, 郭凯, 等. 不同矿化度咸水在滨海典型植被盐碱地中的入渗特性研究[J]. 土壤, 2022, 54(1): 177−183

    LIU C C, SUN H Y, GUO K, et al. Infiltration characteristics of saline water with different salinity in coastal saline-alkali land with typical vegetation[J]. Soils, 2022, 54(1): 177−183
    [28] 张余良, 陆文龙, 张伟, 等. 长期微咸水灌溉对耕地土壤理化性状的影响[J]. 农业环境科学学报, 2006, 25(4): 969−973

    ZHANG Y L, LU W L, ZHANG W, et al. Effects of long term brackish water irrigation on characteristics of agrarian soil[J]. Journal of Agro-Environment Science, 2006, 25(4): 969−973
    [29] 冯棣, 张俊鹏, 孙池涛, 等. 长期咸水灌溉对土壤理化性质和土壤酶活性的影响[J]. 水土保持学报, 2014, 28(3): 171−176

    FENG D, ZHANG J P, SUN C T, et al. Effects of long-term irrigation with saline water on soil physical-chemical properties and activities of soil enzyme[J]. Journal of Soil and Water Conservation, 2014, 28(3): 171−176
    [30] 时唯伟, 支月娥, 王景, 等. 土壤次生盐渍化与微生物数量及土壤理化性质研究[J]. 水土保持学报, 2009, 23(6): 166−170

    SHI W W, ZHI Y E, WANG J, et al. Secondary salinization of greenhouse soil and its effects on microbe number and soil physico-chemical properties[J]. Journal of Soil and Water Conservation, 2009, 23(6): 166−170
    [31] 周玲玲, 孟亚利, 王友华, 等. 盐胁迫对棉田土壤微生物数量与酶活性的影响[J]. 水土保持学报, 2010, 24(2): 241−246

    ZHOU L L, MENG Y L, WANG Y H, et al. Effects of salinity stress on cotton field soil microbe quantity and soil enzyme activity[J]. Journal of Soil and Water Conservation, 2010, 24(2): 241−246
    [32] DONG X L, WANG J T, ZHANG X J, et al. Long-term saline water irrigation decreased soil organic carbon and inorganic carbon contents[J]. Agricultural Water Management, 2022. DOI: 10.1016/j.agwat.2022.107760
    [33] 高聪帅. 环渤海低平原微咸水灌溉对土壤质量和作物影响及调控研究[D]. 北京: 中国科学院大学, 2021

    GAO C S. Effects of brackish water irrigation on soil quality and crops near the Bohai Low Plain[D]. Beijing: University of Chinese Academy of Sciences, 2021
    [34] AKHTAR M, HUSSAIN F, ASHRAF M Y, et al. Influence of salinity on nitrogen transformations in soil[J]. Communications in Soil Science and Plant Analysis, 2012, 43(12): 1674−1683 doi: 10.1080/00103624.2012.681738
    [35] 李亚威, 徐俊增, 卫琦, 等. 不同水盐条件下盐渍土硝化过程特征[J]. 排灌机械工程学报, 2018, 36(9): 909−913

    LI Y W, XU J Z, WEI Q, et al. Soil nitrification process under different soil moisture and salinity conditions[J]. Journal of Drainage and Irrigation Machinery Engineering, 2018, 36(9): 909−913
    [36] 王帅杰, 杨培岭, 苏艳平, 等. 微咸水与淡水轮灌对春玉米土壤CO2和N2O排放的影响[J]. 中国农业大学学报, 2018, 23(10): 41−48

    WANG S J, YANG P L, SU Y P, et al. Effects of alternative irrigation between brackish water and fresh water on CO2 and N2O emission from spring maize soil[J]. Journal of China Agricultural University, 2018, 23(10): 41−48
    [37] 邹其会. 不同水质灌溉对温室气体排放和氮素运移的影响[D]. 北京: 中国农业大学, 2013

    ZOU Q H. Effects of treated wastewater and brackish water irrigation on soil greenhouse gas emissions and nitrogen transportation[D]. Beijing: China Agricultural University, 2013
    [38] 李双男, 侯振安. 咸水滴灌对棉田土壤氧化亚氮排放的影响[J]. 石河子大学学报: 自然科学版, 2016, 34(3): 301−308

    LI S N, HOU Z A. Effect of drip irrigation with saline water on soil nitrous oxide emissions in cotton field[J]. Journal of Shihezi University: Natural Science, 2016, 34(3): 301−308
    [39] KONTOPOULOU C, BILALS D, PAPPA V A, et al. Effects of organic farming practices and salinity on yield and greenhouse gas emission from a common bean crop[J]. Scientia Horticulture, 2015, 183: 48–57
    [40] MUNNS R. Comparative physiology of salt and water stress[J]. Plant, Cell & Environment, 2002, 25(2): 239−250
    [41] MUNNS R, TESTER M. Mechanisms of salinity tolerance[J]. Annual Review of Plant Biology, 2008, 59: 651−681 doi: 10.1146/annurev.arplant.59.032607.092911
    [42] CRAMER G R, LÄUCHLI A, EPSTEIN E. Effects of NaCl and CaCl2 on ion activities in complex nutrient solutions and root growth of cotton[J]. Plant Physiology, 1986, 81(3): 792−797 doi: 10.1104/pp.81.3.792
    [43] 弋良朋, 王祖伟. 盐胁迫下3种滨海盐生植物的根系生长和分布[J]. 生态学报, 2011, 31(5): 1195−1202

    YI L P, WANG Z W. Root system characters in growth and distribution among three littoral halophytes[J]. Acta Ecologica Sinica, 2011, 31(5): 1195−1202
    [44] 贾秀苹, 岳云, 陈炳东. 盐胁迫对油葵生育时期和农艺性状的影响分析[J]. 作物杂志, 2009(6): 45−48

    JIA X P, YUE Y, CHEN B D. Influence of salt stress on maturity and agronomic characters of oil sunflower[J]. Crops, 2009(6): 45−48
    [45] 李洪亮. 盐胁迫对水稻生育时期和农艺性状的影响[J]. 黑龙江农业科学, 2010(11): 18−20

    LI H L. Effect of salt stress on maturity and agronomic characters of rice[J]. Heilongjiang Agricultural Sciences, 2010(11): 18−20
    [46] 郑延海. 冬小麦对盐分与臭氧胁迫的生理生态响应机理研究[D]. 北京: 中国科学院研究生院, 2009

    ZHENG Y H. Ecophysiological response mechanism of winter wheat (Triticum aestivum L.) to salinity and ozone stresses[D]. Beijing: Graduate School of Chinese Academy of Sciences, 2009
    [47] 苏寒, 王金涛, 董心亮, 等. 不同质量浓度咸水灌溉对冬小麦产量和生理生化特性的影响[J]. 灌溉排水学报, 2021, 40(8): 1−9

    SU H, WANG J T, DONG X L, et al. Effects of different saline water irrigation on yield, physiological and biochemical traits of winter wheat[J]. Journal of Irrigation and Drainage, 2021, 40(8): 1−9
    [48] 于潇, 侯云寒, 徐征和, 等. 微咸水灌溉对冬小麦光合及荧光动力学参数的影响[J]. 节水灌溉, 2019(2): 102−106

    YU X, HOU Y H, XU Z H, et al. Effects of brackish water irrigation on photosynthetic characteristics and fluorescence kinetics parameters of winter wheat[J]. Water Saving Irrigation, 2019(2): 102−106
    [49] 吴忠东, 王全九. 不同微咸水组合灌溉对土壤水盐分布和冬小麦产量影响的田间试验研究[J]. 农业工程学报, 2007, 23(11): 71−76

    WU Z D, WANG Q J. Field study on impacts of soil water-salt distribution and winter wheat yield by different saline water combination irrigations[J]. Transactions of the Chinese Society of Agricultural Engineering, 2007, 23(11): 71−76
    [50] 孙宏勇, 刘小京, 张喜英. 盐碱地水盐调控研究[J]. 中国生态农业学报, 2018, 26(10): 1528−1536

    SUN H Y, LIU X J, ZHANG X Y. Regulations of salt and water of saline-alkali soil: a review[J]. Chinese Journal of Eco-Agriculture, 2018, 26(10): 1528−1536
    [51] 尚伟, 石建初, 牛灵安, 等. 灌溉水矿化度及盐分带入量对小麦相对产量影响的统计分析[J]. 灌溉排水学报, 2009, 28(5): 41−44

    SHANG W, SHI J C, NIU L A, et al. Statistical analysis of the relationship between irrigated saline water’s mineralization degree/salt mass and the relative yield of wheat[J]. Journal of Irrigation and Drainage, 2009, 28(5): 41−44
    [52] 王辉. 我国微咸水灌溉研究进展[J]. 节水灌溉, 2016(6): 59−63

    WANG H. Advances in study of brackish water irrigation in China[J]. Water Saving Irrigation, 2016(6): 59−63
    [53] ZHANG J P, LI K J, GAO Y, et al. Evaluation of saline water irrigation on cotton growth and yield using the AquaCrop crop simulation model[J]. Agricultural Water Management, 2022, 261: 107355 doi: 10.1016/j.agwat.2021.107355
    [54] 毛振强, 宇振荣, 马永良. 微咸水灌溉对土壤盐分及冬小麦和夏玉米产量的影响[J]. 中国农业大学学报, 2003, 8(S1): 20−25

    MAO Z Q, YU Z R, MA Y L. Influence of brackish water on the soil salt regime and yield of winter wheat and summer maize[J]. Journal of China Agricultural University, 2003, 8(S1): 20−25
    [55] 陈佩, 王金涛, 董心亮, 等. 蔬菜咸水灌溉研究进展[J]. 中国生态农业学报(中英文), 2022, 30(5): 799−808

    CHEN P, WANG J T, DONG X L, et al. Review of research development associated with the application of saline water irrigation to vegetables[J]. Chinese Journal of Eco-Agriculture, 2022, 30(5): 799−808
    [56] 徐云岭, 余叔文. 植物盐胁迫蛋白[J]. 植物生理学通讯, 1989, 25(2): 12−16

    XU Y L, YU S W. Salt-stress proteins in plants[J]. Plant Physiology Communications, 1989, 25(2): 12−16
    [57] 周瑞莲, Pasternak Dov, 赵哈林. 沙漠地区盐水灌溉对牧草产量及品质的影响[J]. 应用生态学报, 2002, 13(8): 985−989 doi: 10.3321/j.issn:1001-9332.2002.08.015

    ZHOU R L, PASTERNAK D, ZHAO H L. Influence of saltwater irrigation on the yield and quality of Cynodon dactylon under desert conditions[J]. Chinese Journal of Applied Ecology, 2002, 13(8): 985−989 doi: 10.3321/j.issn:1001-9332.2002.08.015
    [58] 马玉诏, 党红凯, 李科江, 等. 咸水灌溉对冬小麦籽粒品质特性和产量的影响[J]. 应用生态学报, 2022, 33(4): 1063−1068

    MA Y Z, DANG H K, LI K J, et al. Effects of brackish water irrigation on grain quality characteristics and yield of winter wheat[J]. Chinese Journal of Applied Ecology, 2022, 33(4): 1063−1068
    [59] 肖丹丹. 不同浓度盐水灌溉对水稻产量、叶片生理特征及品质的影响[D]. 扬州: 扬州大学, 2021

    XIAO D D. Effects of salty water irrigation with different concentrations on rice yield, leaf physiological characteristics and grain quality[D]. Yangzhou: Yangzhou University, 2021
    [60] 翟彩娇, 邓先亮, 张蛟, 等. 盐分胁迫对稻米品质性状的影响[J]. 中国稻米, 2020, 26(2): 44−48

    ZHAI C J, DENG X L, ZHANG J, et al. Effects of salt stress on quality traits of Japonica rice[J]. China Rice, 2020, 26(2): 44−48
    [61] 李玉, 田宪艺, 王振林, 等. 有机肥替代部分化肥对滨海盐碱地土壤改良和小麦产量的影响[J]. 土壤, 2019, 51(6): 1173−1182

    LI Y, TIAN X Y, WANG Z L, et al. Effects of substitution of partial chemical fertilizers with organic fertilizers on soil improvement and wheat yield in coastal saline and alkaline land[J]. Soils, 2019, 51(6): 1173−1182
    [62] 牛君仿, 冯俊霞, 路杨, 等. 咸水安全利用农田调控技术措施研究进展[J]. 中国生态农业学报, 2016, 24(8): 1005−1015

    NIU J F, FENG J X, LU Y, et al. Advances in agricultural practices for attenuating salt stress under saline water irrigation[J]. Chinese Journal of Eco-Agriculture, 2016, 24(8): 1005−1015
    [63] 余世鹏, 杨劲松, 刘广明. 不同水肥盐调控措施对盐碱耕地综合质量的影响[J]. 土壤通报, 2011, 42(4): 942−947

    YU S P, YANG J S, LIU G M. Impacts of different water-fertilizer-salt regulation measures on saline farmland quality[J]. Chinese Journal of Soil Science, 2011, 42(4): 942−947
    [64] DEINLEIN U, STEPHAN A B, HORIE T, et al. Plant salt-tolerance mechanisms[J]. Trends Plant Sciences, 2014, 19: 371−379 doi: 10.1016/j.tplants.2014.02.001
    [65] MAAS E V. Crop tolerance[J]. California Agriculture, 1984, 38(10): 20−21
    [66] TANJI K K. Agricultural salinity assessment and management[C]. Nwe York, USA: American Society of Civil Engineers, 1990: 413–415
    [67] 杨劲松, 姚荣江, 王相平, 等. 中国盐渍土研究: 历程、现状与展望[J]. 土壤学报, 2022, 59(1): 10−27

    YANG J S, YAO R J, WANG X P, et al. Research on salt-affected soils in China: history, status quo and prospect[J]. Acta Pedologica Sinica, 2022, 59(1): 10−27
    [68] 杜学军, 胡树文. 基于文献计量分析的近30年国内外盐碱地研究进展[J]. 安徽农业科学, 2021, 49(18): 236–239, 242

    DU X J, HU S W. Research progress of saline-alkali land at home and abroad over the past 30 years based on bibliometric analysis[J]. Journal of Anhui Agricultural Sciences, 2021, 49(18): 236−239, 242
  • 加载中
表(3)
计量
  • 文章访问数:  159
  • HTML全文浏览量:  55
  • PDF下载量:  47
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-11-17
  • 录用日期:  2023-01-12
  • 修回日期:  2023-01-12
  • 网络出版日期:  2023-02-10
  • 刊出日期:  2023-03-10

目录

    /

    返回文章
    返回