留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

水氮调控对棉花生理性状及产量的影响

孟妍君 马鑫颖 宋晨 孙红春 刘连涛 张科 张永江 白志英 李存东

孟妍君, 马鑫颖, 宋晨, 孙红春, 刘连涛, 张科, 张永江, 白志英, 李存东. 水氮调控对棉花生理性状及产量的影响[J]. 中国生态农业学报 (中英文), 2023, 31(9): 1379−1391 doi: 10.12357/cjea.20230002
引用本文: 孟妍君, 马鑫颖, 宋晨, 孙红春, 刘连涛, 张科, 张永江, 白志英, 李存东. 水氮调控对棉花生理性状及产量的影响[J]. 中国生态农业学报 (中英文), 2023, 31(9): 1379−1391 doi: 10.12357/cjea.20230002
MENG Y J, MA X Y, SONG C, SUN H C, LIU L T, ZHANG K, ZHANG Y J, BAI Z Y, LI C D. Effects of water and nitrogen regulation on physiological characteristics and yield of cotton[J]. Chinese Journal of Eco-Agriculture, 2023, 31(9): 1379−1391 doi: 10.12357/cjea.20230002
Citation: MENG Y J, MA X Y, SONG C, SUN H C, LIU L T, ZHANG K, ZHANG Y J, BAI Z Y, LI C D. Effects of water and nitrogen regulation on physiological characteristics and yield of cotton[J]. Chinese Journal of Eco-Agriculture, 2023, 31(9): 1379−1391 doi: 10.12357/cjea.20230002

水氮调控对棉花生理性状及产量的影响

doi: 10.12357/cjea.20230002
基金项目: 河北省重点研发计划项目(20326409D)、河北省自然科学基金项目(C2022204036)、华北作物改良与调控国家重点实验室自主研究课题(NCCIR2020ZZ-18)和河北省现代棉花产业技术体系(HBCT2023070207)资助
详细信息
    作者简介:

    孟妍君, 主要研究方向为棉花生理与栽培, E-mail: mengyanjun2022@163.com

    通讯作者:

    白志英, 主要研究方向为作物抗逆生理, E-mail: zhiyingbai@126.com

    李存东, 主要研究方向为棉花生理与栽培, E-mail: nxylcd@hebau.edu.cn

  • 中图分类号: S562

Effects of water and nitrogen regulation on physiological characteristics and yield of cotton

Funds: This study was supported by the Key R&D Program of Hebei Province (20326409D), the Natural Science Foundation of Hebei Province (C2022204036), the Independent Research Project of the State Key Laboratory of North China Crop Improvement and Regulation (NCCIR2020ZZ-18), and Hebei Modern Cotton Industry Technology System (HBCT2023070207).
More Information
  • 摘要: 水分和氮素是影响棉花生长发育和产量的主要因子, 为探究水分和氮素对棉花形态、生理特性以及产量的调控效应, 本研究以‘农大棉36号’为材料, 设置干旱胁迫(W1, 相对含水量为45%±5%)和正常供水(W2, 相对含水量为70%±5%)两个水分条件以及不施氮肥(N0)、低氮[N1, 69 mg(N)∙kg−1]、常规施氮[N2, 138 mg(N)∙kg−1] 3个氮素水平, 分析不同水分和氮肥条件下棉花地上部和根系形态、光合性状、抗氧化酶活性、氮代谢酶活性以及产量的变化。结果表明, 与W2处理相比, W1处理显著抑制了棉花生长, 降低了棉花株高、茎粗、叶面积以及总根长、总根表面积、平均根直径(P<0.05), 显著增加了超氧化物歧化酶(SOD)、过氧化物酶(POD)、过氧化氢酶(CAT)活性, 降低了相对叶绿素含量(SPAD)、最大光化学效率(Fv/Fm)和光合能力, 从而造成棉花产量下降(P<0.05); 与N2处理相比, N0和N1处理上述指标均显著降低。干旱胁迫下, 常规施氮处理比不施氮肥和低氮处理促进棉花地上和地下生长, 显著提高主茎叶SPAD、净光合速率和Fv/Fm (P<0.05), 增强抗氧化酶(SOD、POD、CAT)和氮代谢酶(GS和NR)活性(P<0.05), 减轻干旱胁迫对棉花生长造成的抑制, 提高棉花产量。在低氮条件下, 正常供水比干旱胁迫处理亦促进棉花的生长, 增强光合作用和氮代谢酶活性, 减缓了低氮胁迫对其产生的不利影响, 提高产量(P<0.05)。因此, 可通过增施氮肥提高干旱胁迫下的棉花产量, 亦可通过适当增加灌水量提高低氮胁迫下的棉花产量, 本研究为明确氮素胁迫和水分胁迫下合理的水肥管理提供了理论依据。
  • 图  1  水分和氮素对棉花株高(A)、茎粗(B)以及叶面积(C)的影响

    W1: 相对含水量为45%±5%; W2: 相对含水量为70%±5%; N0: 不施氮肥; N1: 施氮69 mg(N)·kg−1; N2: 施氮138 mg(N)·kg−1。不同小写字母表示同一时间不同处理间在P<0.05水平差异显著。ns表示未达到显著水平, *代表P<0.05显著水平, **代表达P<0.01极显著水平。W1: relative water content of 45%±5%; W2: relative water content of 70%±5%; N0: no nitrogen fertilizer; N1: nitrogen application rate of 69 mg(N)·kg−1; N2: nitrogen application rate of 138 mg(N)·kg−1. Different lowercase letters above the bars indicate significant differences at P<0.05 level among treatments in the same date. ns means no significant difference. * means signifi-cant differences at P<0.05 level. ** means significant differences at P<0.01 level.

    Figure  1.  Effects of water and nitrogen regulation on plant height (A), stem diameter (B) and leaf area (C) of cotton

    图  2  水分和氮素调控对棉花总根长(A)、总根表面积(B)以及平均根直径(C)的影响

    W1: 相对含水量为45%±5%; W2: 相对含水量为70%±5%; N0: 不施氮肥; N1: 施氮69 mg(N)·kg−1; N2: 施氮138 mg(N)·kg−1。不同小写字母表示不同处理间在P<0.05水平差异显著。ns表示未达到显著水平, *代表P<0.05显著水平, **代表P<0.01极显著水平。W1: relative water content of 45%±5%; W2: relative water content of 70%±5%; N0: no nitrogen fertilizer; N1: nitrogen application rate of 69 mg(N)·kg−1; N2: nitrogen application rate of 138 mg(N)·kg−1. Different lowercase letters above the bars indicate significant differences at P<0.05 level among treatments. ns means no significant difference. * means significant differences at P<0.05 level. ** means significant differences at P<0.01 level.

    Figure  2.  Effects of water and nitrogen regulation on total root length (A), total root surface area (B) and average root diameter (C) of cotton

    图  3  水分和氮素调控对棉花谷氨酰胺合成酶活性(A)和硝酸还原酶活性(B)的影响

    W1: 相对含水量为45%±5%; W2: 相对含水量为70%±5%; N0: 不施氮肥; N1: 施氮69 mg(N)·kg−1; N2: 施氮138 mg(N)·kg−1。不同小写字母表示同一时间不同处理间在P<0.05水平差异显著。ns表示未达到显著水平, *代表P<0.05显著水平, **代表P<0.01极显著水平。W1: relative water content of 45%±5%; W2: relative water content of 70%±5%; N0: no nitrogen fertilizer; N1: nitrogen application rate of 69 mg(N)·kg−1; N2: nitrogen application rate of 138 mg(N)·kg−1. Different lowercase letters above the bars indicate significant differences at P<0.05 level among treatments in the same date. ns means no significant difference. * means significant differences at P<0.05 level. ** means significant differences at P<0.01 level.

    Figure  3.  Effects of water and nitrogen regulation on activities of glutamine synthetase (GS, A) and nitrate reductase (NR, B) in cotton

    图  4  水分和氮素调控对棉花籽棉产量的影响

    W1: 相对含水量为45%±5%; W2: 相对含水量为70%±5%; N0: 不施氮肥; N1: 施氮69 mg(N)·kg−1; N2: 施氮138 mg(N)·kg−1。不同小写字母表示不同处理间在P<0.05水平差异显著。ns表示未达到显著水平, *代表P<0.05显著水平, **代表P<0.01极显著水平。W1: relative water content of 45%±5%; W2: relative water content of 70%±5%; N0: no nitrogen fertilizer; N1: nitrogen application rate of 69 mg(N)·kg−1; N2: nitrogen application rate of 138 mg(N)·kg−1. Different lowercase letters above the bars indicate significant differences at P<0.05 level among treatments. ns means no significant difference. * means significant differences at P<0.05 level. ** means significant differences at P<0.01 level.

    Figure  4.  Effects of water and nitrogen regulation on cotton seed yield

    表  1  水分和氮素调控对棉花相对叶绿素含量(SPAD)的影响

    Table  1.   Effects of water and nitrogen regulation on relative chlorophyll content (SPAD) of cotton

    处理
    Treatment
    处理后天数 Days after treatment (d)
    0153045607590
    W1N042.33±0.50a42.97±0.85e41.20±0.26d35.63±0.75e30.87±0.68e25.73±1.37e20.33±1.25d
    W2N043.07±0.95a46.00±0.46cd43.67±0.59c40.70±0.85c35.87±0.85d32.47±1.86d28.43±0.68c
    W1N142.57±0.74a45.10±0.26d42.30±1.01cd38.67±0.38d34.93±0.32d31.23±1.23d26.37±0.87c
    W2N143.00±1.15a47.53±0.95b50.77±0.57b45.60±0.46b42.40±0.60b40.53±1.19b36.97±1.16b
    W1N243.10±0.70a46.63±0.65bc49.27±1.04b44.27±0.95b40.67±0.50c37.77±0.99c34.77±0.81b
    W2N242.90±1.11a49.33±0.93a55.27±0.95a50.53±0.86a47.43±0.47a44.67±1.20a41.90±1.41a
    水分 Water (W)ns************
    施氮 Nitrogen application (N)ns************
    水分×氮肥 W×Nnsns****ns*
      W1: 相对含水量为45%±5%; W2: 相对含水量为70%±5%; N0: 不施氮肥; N1: 施氮69 mg(N)·kg−1; N2: 施氮138 mg(N)·kg−1。同列不同小写字母表示同一时间不同处理间在P<0.05水平差异显著。ns表示未达到显著水平, *代表P<0.05显著水平, **代表P<0.01极显著水平。W1: relative water content of 45%±5%; W2: relative water content of 70%±5%; N0: no nitrogen fertilizer; N1: nitrogen application rate of 69 mg(N)·kg−1; N2: nitrogen application rate of 138 mg(N)·kg−1. Different lowercase letters in the same column indicate significant differences at P<0.05 level among treatments in the same date. ns means no significant difference. * means significant differences at P<0.05 level. ** means significant differences at P<0.01 level.
    下载: 导出CSV

    表  2  水分和氮素调控对棉花净光合速率的影响

    Table  2.   Effects of water and nitrogen regulation on net photosynthetic rate of cotton

    µmol·m−2·s−1 
    处理
    Treatment
    处理后天数 Days after treatment (d)
    0153045607590
    W1N011.65±0.66a11.04±0.20d10.31±0.19d9.99±0.47c8.94±0.36d8.21±0.18d7.79±0.15c
    W2N011.61±0.70a11.73±0.21c11.06±0.14c10.65±0.37bc9.88±0.14c9.54±0.52c9.19±0.04b
    W1N111.90±0.15a11.42±0.40cd10.97±0.26c10.50±0.45bc9.73±0.08c9.43±0.19c9.08±0.11b
    W2N111.99±0.29a12.37±0.36b11.96±0.20b11.17±0.17b10.58±0.30b10.14±0.08b9.63±0.50b
    W1N212.09±0.40a11.79±0.33c11.30±0.33c10.96±0.40b10.37±0.37b10.04±0.07b9.51±0.39b
    W2N212.13±0.19a13.51±0.46a13.10±0.40a12.51±0.26a11.87±0.21a11.20±0.25a10.65±0.22a
    水分 Water (W)ns************
    施氮 Nitrogen application (N)ns************
    水分×氮肥 W×Nns**ns*nsns
      W1: 相对含水量为45%±5%; W2: 相对含水量为70%±5%; N0: 不施氮肥; N1: 施氮69 mg(N)·kg−1; N2: 施氮138 mg(N)·kg−1。同列不同小写字母表示同一时间不同处理间在P<0.05水平差异显著。ns表示未达到显著水平, *代表P<0.05显著水平, **代表P<0.01极显著水平。W1: relative water content of 45%±5%; W2: relative water content of 70%±5%; N0: no nitrogen fertilizer; N1: nitrogen application rate of 69 mg(N)·kg−1; N2: nitrogen application rate of 138 mg(N)·kg−1. Different lowercase letters in the same column indicate significant differences at P<0.05 level among treatments in the same date. ns means no significant difference. * means significant differences at P<0.05 level. ** means significant differences at P<0.01 level.
    下载: 导出CSV

    表  3  水分和氮素调控对棉花PSⅡ反应中心光能转换效率(Fv/Fm)的影响

    Table  3.   Effects of water and nitrogen regulation on light energy conversion efficiency of PSⅡ reaction center (Fv/Fm) of cotton

    处理
    Treatment
    处理后天数 Days after treatment (d)
    0153045607590
    W1N00.78±0.01a0.72±0.003e0.66±0.003e0.55±0.003e0.48±0.007d0.48±0.007d0.45±0.013d
    W2N00.79±0.012a0.75±0.005cd0.69±0.003c0.59±0.004cd0.52±0.011c0.52±0.011c0.48±0.004c
    W1N10.79±0.014a0.73±0.003de0.69±0.003d0.58±0.014d0.52±0.012c0.52±0.012c0.48±0.007bc
    W2N10.79±0.014a0.76±0.003b0.71±0.003b0.62±0.013b0.54±0.001b0.54±0.001b0.49±0.003bc
    W1N20.79±0.008a0.74±0.014bc0.70±0.002b0.61±0.009bc0.53±0.005bc0.53±0.005bc0.50±0.007b
    W2N20.79±0.008a0.80±0.006a0.75±0.009a0.67±0.006a0.64±0.008a0.64±0.008a0.61±0.011a
    水分 Water (W)ns************
    施氮 Nitrogen application (N)ns************
    水分×氮肥 W×Nns**********
      W1: 相对含水量为45%±5%; W2: 相对含水量为70%±5%; N0: 不施氮肥; N1: 施氮69 mg(N)·kg−1; N2: 施氮138 mg(N)·kg−1。同列不同小写字母表示同一时间不同处理间在P<0.05水平差异显著。ns表示未达到显著水平, *代表P<0.05显著水平, **代表P<0.01极显著水平。W1: relative water content of 45%±5%; W2: relative water content of 70%±5%; N0: no nitrogen fertilizer; N1: nitrogen application rate of 69 mg(N)·kg−1; N2: nitrogen application rate of 138 mg(N)·kg−1. Different lowercase letters in the same column indicate significant differences at P<0.05 level among treatments in the same date. ns means no significant difference. * means significant differences at P<0.05 level. ** means significant differences at P<0.01 level.
    下载: 导出CSV

    表  4  水分和氮素调控对棉花超氧化物歧化酶(SOD)活性的影响

    Table  4.   Effects of water and nitrogen regulation on superoxide dismutase (SOD) activity of cotton

    U·g−1(FW) 
    处理
    Treatment
    处理后天数 Days after treatment (d)
    0153045607590
    W1N0 503.84±25.56a 704.81±10.82c 867.84±30.86bc 811.62±19.32c 737.84±11.16c 686.54±21.64c 644.38±27.19c
    W2N0 510.86±36.29a 645.78±26.02d 808.11±48.36d 749.08±12.35d 699.89±21.39d 642.27±12.35d 608.54±14.81c
    W1N1 523.51±34.79a 756.81±22.80b 916.32±8.52ab 863.62±14.96b 801.78±11.99b 756.11±21.12b 700.59±14.35b
    W2N1 527.03±35.96a 702.00±17.26c 862.22±22.21c 812.32±12.71c 746.97±12.88c 706.92±27.51c 657.03±27.51bc
    W1N2 547.41±11.99a 801.08±17.26a 957.08±19.32a 926.16±13.55a 872.76±21.08a 818.65±19.13a 758.22±37.02a
    W2N2 548.81±36.66a 754.00±14.04b 910.70±15.20abc 881.89±24.43b 829.89±25.33b 763.14±26.91b 706.22±16.86b
    水分 Water (W) ns ** ** ** ** ** **
    施氮 Nitrogen application (N) ns ** ** ** ** ** **
    水分×氮肥 W×N ns ns ns ns ns ns ns
      W1: 相对含水量为45%±5%; W2: 相对含水量为70%±5%; N0: 不施氮肥; N1: 施氮69 mg(N)·kg−1; N2: 施氮138 mg(N)·kg−1。同列不同小写字母表示同一时间不同处理间在P<0.05水平差异显著。ns表示未达到显著水平, *代表P<0.05显著水平, **代表P<0.01极显著水平。W1: relative water content of 45%±5%; W2: relative water content of 70%±5%; N0: no nitrogen fertilizer; N1: nitrogen application rate of 69 mg(N)·kg−1; N2: nitrogen application rate of 138 mg(N)·kg−1. Different lowercase letters in the same column indicate significant differences at P<0.05 level among treatments in the same date. ns means no significant difference. * means significant differences at P<0.05 level. ** means significant differences at P<0.01 level.
    下载: 导出CSV

    表  5  水分和氮素调控对棉花过氧化物酶(POD)活性的影响

    Table  5.   Effects of water and nitrogen regulation on peroxidase (POD) activity of cotton

    U·mg−1(FW) 
    处理
    Treatment
    处理后天数 Days after treatment (d)
    0153045607590
    W1N0297.45±18.73a407.41±13.26cd536.46±28.69c493.06±27.94c401.04±30.12b357.64±18.13c318.29±18.24c
    W2N0300.93±20.12a375.58±19.12d483.22±17.82d435.76±35.87d343.17±22.12c299.77±16.41d278.36±22.39d
    W1N1309.61±20.12a446.18±18.13b573.50±25.42bc534.72±22.77abc438.08±25.42b402.78±19.33b344.33±22.59bc
    W2N1312.50±15.62a418.40±15.14bc543.98±33.14bc503.47±15.91bc406.25±27.29b350.69±21.05c309.61±21.43cd
    W1N2314.81±32.26a484.95±24.82a626.16±19.12a568.87±19.12a506.37±28.07a451.39±26.95a386.00±15.66a
    W2N2318.29±12.56a451.39±16.56ab583.91±15.17b541.67±19.1ab444.44±21.12b408.56±11.82b359.95±26.12ab
    水分 Water (W)ns************
    施氮 Nitrogen application (N)ns************
    水分×氮肥 W×Nnsnsnsnsnsnsns
      W1: 相对含水量为45%±5%; W2: 相对含水量为70%±5%; N0: 不施氮肥; N1: 施氮69 mg(N)·kg−1; N2: 施氮138 mg(N)·kg−1。同列不同小写字母表示同一时间不同处理间在P<0.05水平差异显著。ns表示未达到显著水平, *代表P<0.05显著水平, **代表P<0.01极显著水平。W1: relative water content of 45%±5%; W2: relative water content of 70%±5%; N0: no nitrogen fertilizer; N1: nitrogen application rate of 69 mg(N)·kg−1; N2: nitrogen application rate of 138 mg(N)·kg−1. Different lowercase letters in the same column indicate significant differences at P<0.05 level among treatments in the same date. ns means no significant difference. * means significant differences at P<0.05 level. ** means significant differences at P<0.01 level.
    下载: 导出CSV

    表  6  干旱胁迫和氮素调控对棉花过氧化氢酶(CAT)活性的影响

    Table  6.   Effects of water and nitrogen regulation on catalase (CAT) activity of cotton

    U·mg−1(protein) 
    处理
    Treatment
    处理后天数 Days after treatment (d)
    0153045607590
    W1N056.08±7.43a72.58±4.71bc82.95±8.25bc93.79±2.27d87.66±3.74bc78.94±5.35bc70.46±4.26d
    W2N057.97±6.74a65.75±5.10c74.94±6.16c84.13±4.90e77.53±6.01c67.40±7.15c62.68±5.21d
    W1N160.56±7.15a78.71±4.26ab89.08±6.74b100.15±1.47bc95.44±3.24b85.31±5.89b78.94±6.10bc
    W2N1 60.09±12.86a73.05±5.31bc81.77±3.56bc91.67±5.31cd86.72±4.02bc76.11±2.48b69.28±3.74cd
    W1N264.57±3.56a86.01±2.68a100.15±3.63a110.99±4.64a102.98±8.84a94.02±2.12a88.13±5.35a
    W2N265.98±4.71a80.12±7.63ab90.02±2.16b101.57±3.56b91.20±2.45ab83.89±4.55ab77.76±1.87b
    水分 Water (W)ns***********
    施氮 Nitrogen application (N)ns************
    水分×氮肥 W×Nnsnsnsnsnsnsns
      W1: 相对含水量为45%±5%; W2: 相对含水量为70%±5%; N0: 不施氮肥; N1: 施氮69 mg(N)·kg−1; N2: 施氮138 mg(N)·kg−1。同列不同小写字母表示同一时间不同处理间在P<0.05水平差异显著。ns表示未达到显著水平, *代表P<0.05显著水平, **代表P<0.01极显著水平。W1: relative water content of 45%±5%; W2: relative water content of 70%±5%; N0: no nitrogen fertilizer; N1: nitrogen application rate of 69 mg(N)·kg−1; N2: nitrogen application rate of 138 mg(N)·kg−1. Different lowercase letters in the same column indicate significant differences at P<0.05 level among treatments in the same date. ns means no significant difference. * means significant differences at P<0.05 level. ** means significant differences at P<0.01 level.
    下载: 导出CSV

    表  7  水分和氮素调控对棉花丙二醛(MDA)含量的影响

    Table  7.   Effects of water and nitrogen regulation on malondialdehyde (MDA) content of cotton

    µmol·g−1(FW) 
    处理
    Treatment
    处理后天数 Days after treatment (d)
    0153045607590
    W1N028.68±3.33a47.65±1.32a71.91±2.02a82.69±2.40a88.64±3.61a93.46±7.02a90.38±5.20a
    W2N028.24±2.76b42.35±2.65b63.97±2.02b74.23±1.76b81.36±2.08b86.54±5.03ab82.69±5.45ab
    W1N127.35±2.02bc41.03±2.65b61.32±2.02b70.77±1.76b78.18±2.08bc82.31±3.53bc79.23±2.90bc
    W2N126.91±2.02cd37.06±2.29c56.47±0.76c63.85±2.90c72.73±2.08cd76.15±1.15cd73.46±2.40cd
    W1N225.15±2.65d36.62±2.76c54.26±1.32c60.38±2.90c68.64±1.57de73.85±3.05de70.00±4.37de
    W2N224.71±3.33e31.32±3.33d42.35±2.29d53.08±2.31d62.73±2.73e67.31±4.37e64.62±4.62e
    水分 Water (W)ns************
    施氮 Nitrogen application (N)ns************
    水分×氮肥 W×Nnsnsnsnsnsnsns
      W1: 相对含水量为45%±5%; W2: 相对含水量为70%±5%; N0: 不施氮肥; N1: 施氮69 mg(N)·kg−1; N2: 施氮138 mg(N)·kg−1。同列不同小写字母表示同一时间不同处理间在P<0.05水平差异显著。ns表示未达到显著水平, *代表P<0.05显著水平, **代表P<0.01极显著水平。W1: relative water content of 45%±5%; W2: relative water content of 70%±5%; N0: no nitrogen fertilizer; N1: nitrogen application rate of 69 mg(N)·kg−1; N2: nitrogen application rate of 138 mg(N)·kg−1. Different lowercase letters in the same column indicate significant differences at P<0.05 level among treatments in the same date. ns means no significant difference. * means significant differences at P<0.05 level. ** means significant differences at P<0.01 level.
    下载: 导出CSV
  • [1] 郭艳阳, 刘佳, 朱亚利, 等. 玉米叶片光合和抗氧化酶活性对干旱胁迫的响应[J]. 植物生理学报, 2018, 54(12): 1839−1846 doi: 10.13592/j.cnki.ppj.2018.0437

    GUO Y Y, LIU J, ZHU Y L, et al. Responses of photosynthetic and antioxidant enzyme activities in maize leaves to drought stress[J]. Plant Physiology Journal, 2018, 54(12): 1839−1846 doi: 10.13592/j.cnki.ppj.2018.0437
    [2] ŠESTÁK Z. JONES R L, BOHNERT H J, et al. Annual review of plant physiology and plant molecular, biology. vol. 50, 1999[J]. Biologia Plantarum, 2001, 44(3): 396 doi: 10.1023/A:1012473011461
    [3] 于文颖, 纪瑞鹏, 冯锐, 等. 干旱胁迫对玉米叶片光响应及叶绿素荧光特性的影响[J]. 干旱区资源与环境, 2016, 30(10): 82−87

    YU W Y, JI R P, FENG R, et al. Effect of drought stress on light response and chlorophyll fluorescence of maize leaf[J]. Journal of Arid Land Resources and Environment, 2016, 30(10): 82−87
    [4] DUBEY R, PANDEY B K, SAWANT S V, et al. Drought stress inhibits stomatal development to improve water use efficiency in cotton[J]. Acta Physiologiae Plantarum, 2023, 45(2): 30 doi: 10.1007/s11738-022-03511-6
    [5] 王允. 不同生育期水分亏缺对盆栽棉花生长发育的影响[D]. 武汉: 华中农业大学, 2016

    WANG Y. Effects of water deficit at different growing stage on growth and development characteristics of potted cotton[D]. Wuhan: Huazhong Agricultural University, 2016
    [6] CRALLE H, EL-HALAWANY S, COTHREN J T, et al. Drought-induced changes in shoot and root growth of young cotton plants[J]. Journal of Cotton Science, 1999, 3(4): 183−187
    [7] WANG H M, CHEN Y L, HU W, et al. Short-term soil-waterlogging contributes to cotton cross tolerance to chronic elevated temperature by regulating ROS metabolism in the subtending leaf[J]. Plant Physiology and Biochemistry, 2019, 139: 333−341 doi: 10.1016/j.plaphy.2019.03.038
    [8] ZHAO W Q, DONG H R, ZHOU Z G, et al. Potassium (K) application alleviates the negative effect of drought on cotton fiber strength by sustaining higher sucrose content and carbohydrates conversion rate[J]. Plant Physiology and Biochemistry, 2020, 157: 105−113 doi: 10.1016/j.plaphy.2020.10.014
    [9] ZHU L X, LIU L T, SUN H C, et al. The responses of lateral roots and root hairs to nitrogen stress in cotton based on daily root measurements[J]. Journal of Agronomy and Crop Science, 2022, 208(1): 89−105 doi: 10.1111/jac.12525
    [10] 刘连涛, 李存东, 孙红春, 等. 氮素营养水平对棉花不同部位叶片衰老的生理效应[J]. 植物营养与肥料学报, 2007, 13(5): 910−914 doi: 10.3321/j.issn:1008-505x.2007.05.023

    LIU L T, LI C D, SUN H C, et al. Physiological effects of nitrogen nutrition on the senescence of cotton leaves at different positions[J]. Plant Nutrition and Fertilizer Science, 2007, 13(5): 910−914 doi: 10.3321/j.issn:1008-505x.2007.05.023
    [11] 段文静, 马彤彤, 张永江, 等. 氮肥中不同硝化抑制剂DCD添加比例对棉花生长发育及产量的影响[J]. 植物营养与肥料学报, 2020, 26(11): 2095−2106 doi: 10.11674/zwyf.20092

    DUAN W J, MA T T, ZHANG Y J, et al. Effects of different nitrification inhibitor DCD addition ratios in nitrogen fertilizer on cotton growth and yield[J]. Journal of Plant Nutrition and Fertilizers, 2020, 26(11): 2095−2106 doi: 10.11674/zwyf.20092
    [12] 张绪成, 上官周平. 施氮量对小麦叶片硝酸还原酶活性、一氧化氮含量和气体交换的影响[J]. 应用生态学报, 2007, 18(7): 1447−1452 doi: 10.3321/j.issn:1001-9332.2007.07.007

    ZHANG X C, SHANGGUAN Z P. Effects of nitrogen application rate on nitrate reductase activity, nitric oxide content and gas exchange in winter wheat leaves[J]. Chinese Journal of Applied Ecology, 2007, 18(7): 1447−1452 doi: 10.3321/j.issn:1001-9332.2007.07.007
    [13] 王月福, 于振文, 李尚霞, 等. 氮素营养水平对冬小麦氮代谢关键酶活性变化和籽粒蛋白质含量的影响[J]. 作物学报, 2002, 28(6): 743−748 doi: 10.3321/j.issn:0496-3490.2002.06.005

    WANG Y F, YU Z W, LI S X, et al. Effect of nitrogen nutrition on the change of key enzyme activity during the nitrogen metabolism and kernel protein content in winter wheat[J]. Acta Agronomica Sinica, 2002, 28(6): 743−748 doi: 10.3321/j.issn:0496-3490.2002.06.005
    [14] 李文娆, 李永竞, 冯士珍. 不同施氮量和分施比例对棉花幼苗生长和水分利用效率的影响及其根源ABA调控效应[J]. 生态学报, 2017, 37(20): 6712−6723

    LI W R, LI Y J, FENG S Z. Regulation of root-sourced ABA to growth and water use efficiency of cotton seedlings and their response to different nitrogen levels and distribution ratios[J]. Acta Ecologica Sinica, 2017, 37(20): 6712−6723
    [15] 刘海光. 亏缺灌溉下施氮量对棉花GhNRT基因表达和氮素利用效率的影响[D]. 济南: 山东师范大学, 2021

    LIU H G. Effects of nitrogen rate on GhNRT genes expression and nitrogen use efficiency of cotton under deficit irrigation[D]. Jinan: Shandong Normal University, 2021
    [16] 杜红霞, 冯浩, 吴普特, 等. 水、氮调控对夏玉米根系特性的影响[J]. 干旱地区农业研究, 2013, 31(1): 89−94, 100 doi: 10.3969/j.issn.1000-7601.2013.01.017

    DU H X, FENG H, WU P T, et al. Influence of water and N fertilizer regulation on root growth characteristics of summer maize[J]. Agricultural Research in the Arid Areas, 2013, 31(1): 89−94, 100 doi: 10.3969/j.issn.1000-7601.2013.01.017
    [17] 何佩云, 张余, 周良, 等. 干旱胁迫及氮肥调控对苦荞植株形态、生理特性及产量的影响[J]. 应用与环境生物学报, 2022, 28(1): 128−134

    HE P Y, ZHANG Y, ZHOU L, et al. Effects of drought stress and nitrogen fertilizer regulation on morphology, physiological characteristics, and yield of Fagopyrum tataricum[J]. Chinese Journal of Applied and Environmental Biology, 2022, 28(1): 128−134
    [18] GAO M, SNIDER J L, BAI H, et al. Drought effects on cotton (Gossypium hirsutum L.) fibre quality and fibre sucrose metabolism during the flowering and boll-formation period[J]. Journal of Agronomy and Crop Science, 2020, 206(3): 309−321 doi: 10.1111/jac.12389
    [19] ZHANG N, ZHAO B, ZHANG H J, et al. Melatonin promotes water-stress tolerance, lateral root formation, and seed germination in cucumber (Cucumis sativus L.)[J]. Journal of Pineal Research, 2013, 54(1): 15−23 doi: 10.1111/j.1600-079X.2012.01015.x
    [20] 陈建勋, 王晓峰. 植物生理学实验指导[M]. 广州: 华南理工大学出版社, 2002

    CHEN J X, WANG X F. Experimental Instruction of Plant Physiology[M]. Guangzhou: South China University of Technology Press, 2002
    [21] ZHANG C F, PENG S B, PENG X X, et al. Response of glutamine synthetase isoforms to nitrogen sources in rice (Oryza sativa L.) roots[J]. Plant Science, 1997, 125(2): 163−170 doi: 10.1016/S0168-9452(97)00075-7
    [22] 刘洁, 王省芬, 张桂寅, 等. 棉花叶片硝酸还原酶活性的测定方法[J]. 河北农业大学学报, 2010, 33(4): 1−4 doi: 10.3969/j.issn.1000-1573.2010.04.001

    LIU J, WANG X F, ZHANG G Y, et al. Determination method of nitrate reductase activity in cotton leaves[J]. Journal of Agricultural University of Hebei, 2010, 33(4): 1−4 doi: 10.3969/j.issn.1000-1573.2010.04.001
    [23] ZHANG S H, XU X F, SUN Y M, et al. Influence of drought hardening on the resistance physiology of potato seedlings under drought stress[J]. Journal of Integrative Agriculture, 2018, 17(2): 336−347 doi: 10.1016/S2095-3119(17)61758-1
    [24] 刘朝霞. 土壤干旱胁迫对番茄根系生长、气孔特性及保护酶活性的影响[D]. 南京: 南京信息工程大学, 2016

    LIU Z X. Effects of soil drought stress on root growth, stomatal characteristics and antioxidant enzyme of tomato crops[D]. Nanjing: Nanjing University of Information Science & Technology, 2016
    [25] MI G, CHEN F, YUAN L, et al. Ideotype root system architecture for maize to achieve high yield and resource use efficiency in intensive cropping systems[J]. Advances in Agronomy, 2016, 139: 73−97
    [26] LI C Y, KONG X Q, LUO Z, et al. Exogenous application of acetic acid improves the survival rate of cotton by increasing abscisic acid and jasmonic acid contents under drought stress[J]. Acta Physiologiae Plantarum, 2021, 43(2): 1−10
    [27] 李鹏程, 董合林, 刘爱忠, 等. 施氮量对棉花功能叶片生理特性、氮素利用效率及产量的影响[J]. 植物营养与肥料学报, 2015, 21(1): 81−91 doi: 10.11674/zwyf.2015.0109

    LI P C, DONG H L, LIU A Z, et al. Effects of nitrogen application rates on physiological characteristics of functional leaves, nitrogen use efficiency and yield of cotton[J]. Journal of Plant Nutrition and Fertilizer, 2015, 21(1): 81−91 doi: 10.11674/zwyf.2015.0109
    [28] 丁红, 成波, 张冠初, 等. 施用氮肥对干旱胁迫下花生生理特性的影响[J]. 花生学报, 2021, 50(2): 64−68, 72 doi: 10.14001/j.issn.1002-4093.2021.02.011

    DING H, CHENG B, ZHANG G C, et al. Effects of nitrogen fertilizer application on physiological characteristics of peanut leaves under drought stress[J]. Journal of Peanut Science, 2021, 50(2): 64−68, 72 doi: 10.14001/j.issn.1002-4093.2021.02.011
    [29] LI J P, LIU J, ZHU T T, et al. The role of melatonin in salt stress responses[J]. International Journal of Molecular Sciences, 2019, 20(7): 1735 doi: 10.3390/ijms20071735
    [30] ZHOU Z G, OOSTERHUIS D M. Physiological mechanism of nitrogen mediating cotton (Gossypium hirsutum L.) seedlings growth under water-stress conditions[J]. American Journal of Plant Sciences, 2012, 3(6): 721−730 doi: 10.4236/ajps.2012.36087
    [31] ZHANG L X, LI S X, ZHANG H, et al. Nitrogen rates and water stress effects on production, lipid peroxidation and antioxidative enzyme activities in two maize (Zea mays L.) genotypes[J]. Journal of Agronomy and Crop Science, 2007, 193(6): 387−397 doi: 10.1111/j.1439-037X.2007.00276.x
    [32] 李鹏程. 棉花氮经济利用及其高效机理研究[D]. 北京: 中国农业科学院, 2015

    LI P C. Study on nitrogen economic use and its high-efficiency mechanism in cotton (Gossypium hirsutum L.)[D]. Beijing: Chinese Academy of Agricultural Sciences, 2015
    [33] 孙永健, 孙园园, 李旭毅, 等. 水氮互作下水稻氮代谢关键酶活性与氮素利用的关系[J]. 作物学报, 2009, 35(11): 2055−2063

    SUN Y J, SUN Y Y, LI X Y, et al. Relationship of activities of key enzymes involved in nitrogen metabolism with nitrogen utilization in rice under water-nitrogen interaction[J]. Acta Agronomica Sinica, 2009, 35(11): 2055−2063
    [34] 谈建鑫. 水氮互作对复播油葵生长发育和水氮利用效率的影响[D]. 石河子: 石河子大学, 2015

    TAN J X. Effects of water and nitrogen fertilization on growth and development, water and nitrogen use efficiency of drip no-till cropping oil sunflower[D]. Shihezi: Shihezi University, 2015
    [35] HU W, ZHANG J P, YAN K, et al. Beneficial effects of abscisic acid and melatonin in overcoming drought stress in cotton (Gossypium hirsutum L.)[J]. Physiologia Plantarum, 2021, 173(4): 2041−2054 doi: 10.1111/ppl.13550
    [36] DONG H Z, LI W J, ENEJI A E, et al. Nitrogen rate and plant density effects on yield and late-season leaf senescence of cotton raised on a saline field[J]. Field Crops Research, 2012, 126: 137−144 doi: 10.1016/j.fcr.2011.10.005
    [37] 宋兴虎, Tufail Ahmed Wagan, Biangkham Souliyanonh, 等. 氮肥用量及其后效对棉花产量和生物质累积动态的影响[J]. 棉花学报, 2018, 30(2): 145−154 doi: 10.11963/1002-7807.sxhygz.20180315

    SONG X H, WAGAN T A, SOULIYANONH B, et al. Nitrogen fertilizer and its residual effect on cotton yield and biomass accumulation[J]. Cotton Science, 2018, 30(2): 145−154 doi: 10.11963/1002-7807.sxhygz.20180315
    [38] STAMATIADIS S, TSADILAS C, SAMARAS V, et al. Nitrogen uptake and N-use efficiency of mediterranean cotton under varied deficit irrigation and N fertilization[J]. European Journal of Agronomy, 2016, 73: 144−151 doi: 10.1016/j.eja.2015.11.013
    [39] 王艳哲, 刘秀位, 孙宏勇, 等. 水氮调控对冬小麦根冠比和水分利用效率的影响研究[J]. 中国生态农业学报, 2013, 21(3): 282−289

    WANG Y Z, LIU X W, SUN H Y, et al. Effects of water and nitrogen on root/shoot ratio and water use efficiency of winter wheat[J]. Chinese Journal of Eco-Agriculture, 2013, 21(3): 282−289
  • 加载中
图(4) / 表(7)
计量
  • 文章访问数:  247
  • HTML全文浏览量:  110
  • PDF下载量:  65
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-01-02
  • 录用日期:  2023-03-27
  • 网络出版日期:  2023-03-29
  • 刊出日期:  2023-09-19

目录

    /

    返回文章
    返回