留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于多GCMs模式的气候变化对河北棉花生产与耗水影响评估

王柯宇 杨艳敏 杨永辉 刘德立 陈丽

王柯宇, 杨艳敏, 杨永辉, 刘德立, 陈丽. 基于多GCMs模式的气候变化对河北棉花生产与耗水影响评估[J]. 中国生态农业学报 (中英文), 2023, 31(0): 1−13 doi: 10.12357/cjea.20230016
引用本文: 王柯宇, 杨艳敏, 杨永辉, 刘德立, 陈丽. 基于多GCMs模式的气候变化对河北棉花生产与耗水影响评估[J]. 中国生态农业学报 (中英文), 2023, 31(0): 1−13 doi: 10.12357/cjea.20230016
WANG K Y, YANG Y M, YANG Y H, LIU D L, CHEN L. Evaluation of the effect of future climatic change on Hebei cotton production and water consumption using multiple GCMs[J]. Chinese Journal of Eco-Agriculture, 2023, 31(0): 1−13 doi: 10.12357/cjea.20230016
Citation: WANG K Y, YANG Y M, YANG Y H, LIU D L, CHEN L. Evaluation of the effect of future climatic change on Hebei cotton production and water consumption using multiple GCMs[J]. Chinese Journal of Eco-Agriculture, 2023, 31(0): 1−13 doi: 10.12357/cjea.20230016

基于多GCMs模式的气候变化对河北棉花生产与耗水影响评估

doi: 10.12357/cjea.20230016
基金项目: 国家自然科学基金项目(31871518)、河北省自然科学基金项目(C2022503008)和政府间国际科技创新合作项目(2022YFE0119500)资助
详细信息
    作者简介:

    王柯宇, 主要研究方向为气候变化评估。E-mail: wangkeyu20@mails.ucas.edu.cn

    通讯作者:

    杨艳敏, 主要研究方向为作物模型应用与气候变化评估。E-mail: ymyang@sjziam.ac.cn

  • 中图分类号: S562

Evaluation of the effect of future climatic change on Hebei cotton production and water consumption using multiple GCMs

Funds: This study was supported by the National Natural Science Foundation of China (31871518), the Natural Science Foundation of Hebei Province (C2022503008) and the International Cooperation Program of Ministry of Science and Technology of China (2022YFE0119500).
More Information
  • 摘要: 气候模式是气候变化影响评估中不确定性的主要来源, 前人的研究多采用单个或较少的气候模式进行评估, 采用多种气候模式进行驱动可以降低由于气候模式的选择带来的误差。本研究在两年大田试验的基础上对作物模型APSIM-COTTON进行了精细的校验, 并选择22个GCMs(Global Climate Models)模式驱动作物模型评估了气候变化对河北棉花生产和耗水的影响。结果显示, 在所有气候情景下, 未来所有时间段, 播期提前, 各个发育时期(出苗、现蕾、吐絮、成熟)都较基准期缩短, 例如收获期在2090s 年代的SSP1-2.6、SSP2-4.5、SSP3-7.0和SSP5-8.5情景下分别提前15.3d、21.0 d、30.3 d和35.2 d。年内总蒸散量在多数情景下呈总的增加的趋势, 在SSP5-8.5情景下2030s、2050s、2070s和2090s分别增加6.5 mm、7.8 mm、14.3 mm和32.7 mm , 而灌水量减少25.7 mm、23.8 mm、30.5 mm和29.0 mm。棉花产量在未来则表现出在低辐射强迫下不同年代差异不大, 而在高辐射胁迫强迫下随着年代增加而降低的趋势。在SSP1-2.6、SSP2-4.5、SSP3-7.0和SSP5-8.5情景下2090s皮棉产量相比基准期分别减少61.5 kg∙hm−2、46.6 kg∙hm−2、407.1 kg∙hm−2和432.5 kg∙hm−2。棉花生产和耗水对未来气候变化的响应是气候要素CO2浓度、太阳辐射强度、温度、降雨等综合作用的结果, 本研究模拟结果为未来农业措施的响应提供理论支撑。
  • 图  1  ‘中植棉2号’棉花干物质量模拟结果的验证

    Figure  1.  Verification of simulated dry matter of cotton cultivar ‘Zhongzhimian 2’ with results of field experiment

    图  2  ‘中植棉2号’棉花叶面积指数(LAI)、株高、蕾数和吐絮数的验证结果

    Figure  2.  Verification results of leaf area index (LAI), plant height, squares number and open bolls number of cotton cultivar ‘Zhongzhimian 2’ with results of field experiment

    图  3  SSP1-2.6、SSP2-4.5、SSP3-7.0和SSP5-8.5气候情景下各气候指标变化趋势

    Figure  3.  Annual change trend of climate indexes at Baoding Station under SSP1-2.6, SSP2-4.5, SSP3-7.0 and SSP5-8.5 climate scenarios

    图  4  SSP1-2.6、SSP2-4.5、SSP3-7.0和SSP5-8.5气候情景下22种GCMs模拟的棉花物候期变化预测

    在箱型图里, 箱体为25%~75%的范围, 箱体内横线为中位线, 方形表示平均值, 上下两须线是1.5倍IQR(四分位间距)内的范围, 图中为左箱体、右数据的分布类型。Y轴题中,DOY是年内天数 (Day of year)的简写, DAS是播种后天数 (Day after sowing day)的简写, DAE是出苗后天数(Day after emergence day)的简写。In the box plots, the box is 25%~75% of the range, the horizontal line is the median line, the square represents the average value, the upper and lower two muster lines are within the range of 1.5IQR (Interquartile Quartile Range), and the point beyond the muster line is the abnormal value. The figure shows the distribution type of the left box body and the right data. In the Y-axis title, DOY is the abbreviation of Day of year, DAS is the abbreviation of Day after seeding day and DAE is the abbreviation of Day after emergence day.

    Figure  4.  Prediction of cotton phenology change simulated by 22 GCMs under SSP1-2.6, SSP2-4.5, SSP3-7.0 and SSP5-8.5 climate scenarios

    图  5  SSP1-2.6、SSP2-4.5、SSP3-7.0和SSP5-8.5气候情景下22种GCMs模拟的棉花耗水指标的变化预测

    在箱型图里, 箱体为25%~75%的范围, 箱体内横线为中位线, 方形表示平均值, 上下两须线是1.5倍IQR(四分位间距)内的范围, 图中为左箱体、右数据的分布类型。在Y轴题目中, ET是蒸散发的缩写, ES是土壤蒸发的缩写。In the box plots, the box is 25%~75% of the range, the horizontal line is the median line, the square represents the average value, the upper and lower two muster lines are within the range of 1.5IQR (Interquartile Quartile Range), and the point beyond the muster line is the abnormal value. The figure shows the distribution type of the left box body and the right data. In the Y-axis title, ET is the abbreviation of evapotranspiration and ES is the abbreviation of soil evaporation

    Figure  5.  Prediction of cotton water consumption indexes change simulated by 22 GCMs under SSP1-2.6, SSP2-4.5, SSP3-7.0 and SSP5-8.5 climate scenarios

    图  6  SSP1-2.6、SSP2-4.5、SSP3-7.0和SSP5-8.5气候情景下22种GCMs模拟的棉花产量、地上干物质重量和LAI的变化预测

    在箱型图里, 箱体为25%~75%的范围, 箱体内横线为中位线, 方形表示平均值, 上下两须线是1.5倍IQR(四分位间距)内的范围, 图中为左箱体、右数据的分布类型。In the box plots, the box is 25%~75% of the range, the horizontal line is the median line, the square represents the average value, the upper and lower two muster lines are within the range of 1.5IQR (Interquartile Quartile Range), and the point beyond the muster line is the abnormal value. The figure shows the distribution type of the left box body and the right data.

    Figure  6.  Prediction of cotton yield, dry matter aboveground and LAI change simulated by 22 GCMs under SSP1-2.6, SSP2-4.5, SSP3-7.0 and SSP5-8.5 climate scenarios

    表  1  本研究所涉及的22个全球气候模式(GCMs)信息

    Table  1.   Information of the 22 Global Climate Models (GCMs) applied in the study

    编号 Number代码 GCM code名称 GCM name机构 Institution ID国家 Country
    1ACC1ACCESS-CM2BoM澳大利亚 Australia
    2ACC2ACCESS-ESM1-5BoM澳大利亚 Australia
    3BCCBCC-CSM2-MRBCC中国 China
    4Can1CanESM5CCCMA加拿大 Canada
    5Can2CanESM5-CanOECCCMA加拿大 Canada
    6CNR1CNRM-ESM2-1CNRM法国 France
    7CNR2CNRM-CM6-1CNRM法国 France
    8CNR3CNRM-CM6-1-HRCNRM法国 France
    9ECE1EC-Earth3-VegEC-EARTH欧盟 European Union
    10ECE2EC-Earth3EC-EARTH欧盟 European Union
    11FGOAFGOALS-g3FGOALS中国 China
    12GFDGFDL-ESM4NOAA GFDL美国 United States
    13GISSGISS-E2-1-GNASA GISS美国 United States
    14INM1INM-CM4-8INM俄罗斯 Russia
    15INM2INM-CM5-0INM俄罗斯 Russia
    16LPSLIPSL-CM6A-LRLPSL法国 France
    17MIR1MIROC6MIROC日本 Japan
    18MIR2MIROC-ES2LMIROC日本 Japan
    19MPI1MPI-ESM1-2-HRMPI-M德国 Germany
    20MPI2MPI-ESM1-2-LRMPI-M德国 Germany
    21MTIEMRI-ESM2-0MIR日本 Japan
    22UKESUKESM1-0-LLMOHC英国 Britain
    下载: 导出CSV

    表  2  不同深度的土壤参数

    Table  2.   Soil parameters in different depths

    深度
    Soil depth
    (cm)
    容重
    Bulk density
    (g∙cm−3)
    风干含水量
    Air-dried moisture
    (mm∙mm−1)
    凋萎系数
    Wilting coefficient
    (mm∙mm−1)
    田间最大持
    Field capacity
    (mm∙mm−1)
    饱和含水量
    Saturated moisture
    (mm∙mm−1)
    0~151.4700.0600.1190.2740.425
    15~301.4600.0590.1190.2730.448
    30~601.3900.0500.1090.2640.444
    60~901.5100.0600.1090.2740.430
    90~1201.5100.0580.0970.2720.430
    120~1501.5530.0550.0970.2690.414
    150~1801.5100.0650.0970.3130.430
    下载: 导出CSV

    表  3  APSIM-COTTON中棉花‘中植棉2号’的作物品种遗传参数

    Table  3.   Genetic parameters of cotton cultivar ‘Zhongzhimian 2’ used in APSIM-COTTON model

    参数名称
    Parameter name
    单位
    Unit
    描述
    Description
    赋值
    Value
    Percent_l%衣分 Percent lint43
    Scbollg∙Boll−1单个棉铃籽棉重量 Seed cotton per boll3.8
    Respcon呼吸常量 Respiration constant0.01593
    Sqcon果节产生经验系数 Squaring constant0.0181
    Fcutout引起果节产生停止的蕾铃承载量与可能载铃量的比值
    Fruiting cutout
    0.5411
    Flai叶面积生长速率修正值 Cultivar adjustment for leaf ares per sites0.52
    DDISQ℃·d播种到现蕾的光热时间 Degree-day to 1st square402
    TIPOUT单铃开花到吐絮积温经验常数
    Degree-day from flowering to boll opening per boll constant
    52
    FRUDD(1~8)℃·d蕾铃铃级对应的有效积温 Fruit development in degree-day50, 169, 329, 356, 499, 642, 857, 1099
    BLTME(1~8)蕾铃铃级对应的发育程度 Boll time (fraction of period from)0.00, 0.00, 0.00, 0.07, 0.21, 0.33, 0.55, 1.00
    Dlds_max每节位叶面积增加的平方根 Max LAI increase per site0.12
    Rate_emergence出苗发育速率 Rate of emergence1
    Popcon群体因子经验常数 Population constant0.03633
    Fburr棉铃质量与籽棉质量的比值 Factor sc/boll to sc+burr/boll1.23
    ACOTYLmm2初始子叶面积 Area of cotyledons525
    RLAI现蕾之前叶面积相对生长率 LAI increase rate pre squaring0.01
    下载: 导出CSV

    表  4  APSIM-COTTON模型模拟结果的评价指标

    Table  4.   Evaluation indexes of APSIM-COTTON model simulation results

    总干物重
    Dry matter-total
    weight
    叶干物重
    Dry matter-leaf
    weight
    茎干物重
    Dry matter-stem
    weight
    铃干物重
    Dry matter-boll
    weight
    叶面积指数
    Leaf area index
    株高
    Plant height
    绿铃数
    Bolls number
    吐絮数
    Open bolls
    number
    R20.99370.88330.86350.95380.72340.81030.70590.9849
    RMSE193.1381219.4410502.2122688.12900.6812269.965623.89674.5918
    NRMSE2.23590.21860.32270.37990.44840.43490.50020.8266
      R2 为决定系数; RMSE 为均方根误差; NRMSE 为相对均方根误差。R2 is the determination coefficient; RMSE is the root mean square error; NRMSE is the relative root mean square error.
    下载: 导出CSV
  • [1] MASSON-DELMOTTE V, ZHAI P, PIRANI A, et al. IPCC, Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change[M]. Cambridge: Cambridge University Press, 2021
    [2] 刘彦随, 刘玉, 郭丽英. 气候变化对中国农业生产的影响及应对策略[J]. 中国生态农业学报, 2010, 18(4): 905−910 doi: 10.3724/SP.J.1011.2010.00905

    LIU Y S, LIU Y, GUO L Y. Impact of climatic change on agricultural production and response strategies in China[J]. Chinese Journal of Eco-Agriculture, 2010, 18(4): 905−910 doi: 10.3724/SP.J.1011.2010.00905
    [3] JONES J W, HOOGENBOOM G, PORTER C H, et al. The DSSAT cropping system model[J]. European Journal of Agronomy, 2003, 18(3/4): 235−265
    [4] KEATING B A, CARBERRY P S, HAMMER G L, et al. An overview of APSIM, a model designed for farming systems simulation[J]. European Journal of Agronomy, 2003, 18(3/4): 267−288
    [5] KO J, AHUJA L R, SASEENDRAN S A, et al. Climate change impacts on dryland cropping systems in the Central Great Plains, USA[J]. Climatic Change, 2012, 111(2): 445−472 doi: 10.1007/s10584-011-0175-9
    [6] SOUSSANA J F, GRAUX A I, TUBIELLO F N. Improving the use of modelling for projections of climate change impacts on crops and pastures[J]. Journal of Experimental Botany, 2010, 61(8): 2217−2228 doi: 10.1093/jxb/erq100
    [7] YANG Y M, YANG Y H, HAN S M, et al. Prediction of cotton yield and water demand under climate change and future adaptation measures[J]. Agricultural Water Management, 2014, 144: 42−53 doi: 10.1016/j.agwat.2014.06.001
    [8] CHEN X P, QI Z M, GUI D W, et al. Simulating impacts of climate change on cotton yield and water requirement using RZWQM2[J]. Agricultural Water Management, 2019, 222: 231−241 doi: 10.1016/j.agwat.2019.05.030
    [9] VOLOUDAKIS D, KARAMANOS A, ECONOMOU G, et al. Prediction of climate change impacts on cotton yields in Greece under eight climatic models using the AquaCrop crop simulation model and discriminant function analysis[J]. Agricultural Water Management, 2015, 147: 116−128 doi: 10.1016/j.agwat.2014.07.028
    [10] ADHIKARI P, ALE S, BORDOVSKY J P, et al. Simulating future climate change impacts on seed cotton yield in the Texas High Plains using the CSM-CROPGRO-Cotton model[J]. Agricultural Water Management, 2016, 164: 317−330 doi: 10.1016/j.agwat.2015.10.011
    [11] WANG Z B, CHEN J, XING F F, et al. Response of cotton phenology to climate change on the North China Plain from 1981 to 2012[J]. Scientific Reports, 2017, 7: 6628 doi: 10.1038/s41598-017-07056-4
    [12] BASSU S, BRISSON N, DURAND J L, et al. How do various maize crop models vary in their responses to climate change factors?[J]. Global Change Biology, 2014, 20(7): 2301−2320 doi: 10.1111/gcb.12520
    [13] BROUGHTON K J, SMITH R A, DUURSMA R A, et al. Warming alters the positive impact of elevated CO2 concentration on cotton growth and physiology during soil water deficit[J]. Functional Plant Biology:FPB, 2017, 44(2): 267−278 doi: 10.1071/FP16189
    [14] NASIM W, AMIN A, FAHAD S, et al. Future risk assessment by estimating historical heat wave trends with projected heat accumulation using SimCLIM climate model in Pakistan[J]. Atmospheric Research, 2018, 205: 118−133 doi: 10.1016/j.atmosres.2018.01.009
    [15] 国家统计局. 中国统计年鉴[J]. 北京: 中国统计出版社, 2021

    National Bureau of Statistics. China Statistical Yearbook [J]. Beijing: China Statistics Press, 2021
    [16] BROCK T D. Calculating solar radiation for ecological studies[J]. Ecological Modelling, 1981, 14(1/2): 1−19
    [17] LIUD L, ZUO H P. Statistical downscaling of daily climate variables for climate change impact assessment over New South Wales, Australia[J]. Climatic Change, 2012, 115(3): 629−666
    [18] MCCOWN R L, HAMMER G L, HARGREAVES J N G, et al. APSIM: a novel software system for model development, model testing and simulation in agricultural systems research[J]. Agricultural Systems, 1996, 50(3): 255−271 doi: 10.1016/0308-521X(94)00055-V
    [19] HEARN A B, DA ROZA G D. A simple model for crop management applications for cotton (Gossypium hirsutum L.)[J]. Field Crops Research, 1985, 12: 49−69 doi: 10.1016/0378-4290(85)90053-X
    [20] RITCHIE J T. Model for predicting evaporation from a row crop with incomplete cover[J]. Water Resources Research, 1972, 8(5): 1204−1213 doi: 10.1029/WR008i005p01204
    [21] 陈超, 潘学标, 张立祯, 等. 气候变化对石羊河流域棉花生产和耗水的影响[J]. 农业工程学报, 2011, 27(1): 57−65 doi: 10.3969/j.issn.1002-6819.2011.01.009

    CHEN C, PAN X B, ZHANG L Z, et al. Impact of climate change on cotton production and water consumption in Shiyang River Basin[J]. Transactions of the Chinese Society of Agricultural Engineering, 2011, 27(1): 57−65 doi: 10.3969/j.issn.1002-6819.2011.01.009
    [22] 王凯旋. 气候和种植结构变化对黄淮海地区灌溉需水的影响评价[D]. 杨凌: 西北农林科技大学, 2022

    WANG K X. Impact assessment of climate and cropping structure changes on irrigation water requirement in Huang-Huai-Hai region[D]. Yangling: Northwest A & F University, 2022
    [23] LUO Q Y, BANGE M, JOHNSTON D, et al. Cotton crop water use and water use efficiency in a changing climate[J]. Agriculture, Ecosystems & Environment, 2015, 202: 126−134
    [24] LI N, YAO N, LI Y, et al. A meta-analysis of the possible impact of climate change on global cotton yield based on crop simulation approaches[J]. Agricultural Systems, 2021, 193: 103221 doi: 10.1016/j.agsy.2021.103221
    [25] YANG Y M, Liu D L, Anwar M R, et al. Water use efficiency and crop water balance of rainfed wheat in a semi-arid environment: sensitivity of future changes to projected climate changes and soil type[J]. Theoretical and applied climatology, 2016, 123: 565−579 doi: 10.1007/s00704-015-1376-3
    [26] PASSIOURA J. Increasing crop productivity when water is scarce—from breeding to field management. Agricultural Water Management, 2006, 80: 176–196
    [27] LAWES RA, Oliver Y M, Robertson M J. Integrating the effects of climate and plant available soil water holding capacity on wheat yield. Field Crops Research, 2009, 113: 297–305
    [28] 李娜. 气候变化对棉花生长和产量的影响[D]. 杨凌: 西北农林科技大学, 2021

    LI N. Effects of climate change on cotton growth and yield[D]. Yangling: Northwest A & F University, 2021
    [29] RAHMAN M H U, AHMAD A, WANG X C, et al. Multi-model projections of future climate and climate change impacts uncertainty assessment for cotton production in Pakistan[J]. Agricultural and Forest Meteorology, 2018, 253/254: 94−113 doi: 10.1016/j.agrformet.2018.02.008
    [30] ANWAR M R, WANG B, LIU D L, et al. Late planting has great potential to mitigate the effects of future climate change on Australian rain-fed cotton[J]. Science of the Total Environment, 2020, 714: 136806 doi: 10.1016/j.scitotenv.2020.136806
  • 加载中
图(6) / 表(4)
计量
  • 文章访问数:  31
  • HTML全文浏览量:  10
  • PDF下载量:  4
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-01-06
  • 录用日期:  2023-02-14
  • 修回日期:  2023-02-13
  • 网络出版日期:  2023-02-14

目录

    /

    返回文章
    返回