留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

施用生物炭对土壤养分有效性和离子交换性能影响的整合分析

冉继伟 齐昕 武栋 黄敏 蔡泽江 黄亚萍 张文菊

冉继伟, 齐昕, 武栋, 黄敏, 蔡泽江, 黄亚萍, 张文菊. 施用生物炭对土壤养分有效性和离子交换性能影响的整合分析[J]. 中国生态农业学报 (中英文), 2023, 31(9): 1449−1459 doi: 10.12357/cjea.20230026
引用本文: 冉继伟, 齐昕, 武栋, 黄敏, 蔡泽江, 黄亚萍, 张文菊. 施用生物炭对土壤养分有效性和离子交换性能影响的整合分析[J]. 中国生态农业学报 (中英文), 2023, 31(9): 1449−1459 doi: 10.12357/cjea.20230026
RAN J W, QI X, WU D, HUANG M, CAI Z J, HUANG Y P, ZHANG W J. Impacts of biochar application on soil nutrient availability and exchangeable based cations: a meta-analysis[J]. Chinese Journal of Eco-Agriculture, 2023, 31(9): 1449−1459 doi: 10.12357/cjea.20230026
Citation: RAN J W, QI X, WU D, HUANG M, CAI Z J, HUANG Y P, ZHANG W J. Impacts of biochar application on soil nutrient availability and exchangeable based cations: a meta-analysis[J]. Chinese Journal of Eco-Agriculture, 2023, 31(9): 1449−1459 doi: 10.12357/cjea.20230026

施用生物炭对土壤养分有效性和离子交换性能影响的整合分析

doi: 10.12357/cjea.20230026
基金项目: 新疆维吾尔自治区重大科技专项项目(2022A02007-1)和国家重点研发计划项目(2021YFD1901201)资助
详细信息
    作者简介:

    冉继伟, 研究方向为土壤改良。E-mail: ranjiwei@163.com

    通讯作者:

    黄亚萍, 主要研究方向为农田养分循环。E-mail: huangyaping@caas.cn

  • 中图分类号: S156

Impacts of biochar application on soil nutrient availability and exchangeable based cations: a meta-analysis

Funds: This study was supported by the Major Science and Technology Special Project of Xinjiang Uygur Autonomous Region (2022A02007-1) and the National Key Research and Development Program of China (2021YFD1901201).
More Information
  • 摘要: 为准确评估施用生物炭对土壤养分有效性及交换性盐基离子的影响, 通过收集2000—2020年发表的文献, 获得不施生物炭(空白无添加)和单施生物炭648组匹配数据、不施生物炭和生物炭配施化肥430组匹配数据。采用数据整合分析(Meta-analysis)方法, 分析了不同方式施用生物炭对土壤氮磷含量(总氮、NH4+-N、NO3-N、Olsen-P)、交换性盐基离子(K+、Ca2+、Na+和Mg2+)及阳离子交换量(CEC)的影响。结果显示: 施用生物炭(单施或与化肥配施)土壤氮磷含量增加14.0%~128.1%、盐基离子含量增加22.5%~270.2%。对不同方式施用生物炭的效果比较可知, 生物炭与化肥配施对土壤养分的提升效果更加显著, 单施生物炭对土壤盐基离子提升效果更高。进一步分析显示, 当生物炭原料pH≥8时, 单施生物炭显著增加土壤Olsen-P含量达10.3%~58.5%; 制备温度>500 ℃时, 单施生物炭对土壤盐基离子含量的增加幅度为33.9%~384.7%; 生物炭施用量<10 t∙hm−2时, 生物炭与化肥配施对土壤Olsen-P含量增加幅度(374.1%)高于单施生物炭(2.1%); 在pH<6.5土壤施用生物炭提高土壤氮磷及交换性钙含量, 其中单施生物炭土壤Olsen-P含量和CEC的增幅分别达45.0%和17.9%。因此, 施用生物炭能有效改善土壤养分有效性和离子交换性能, 降低环境风险。实际应用中需要根据不同目的选择生物炭单施或配施化肥, 同时综合生物炭特性、施用量和土壤属性条件, 有效利用生物炭提升土壤肥力是未来农业高质量发展的重点方向。
  • 图  1  生物炭单施和与化肥配施对土壤养分有效性和盐基离子含量的影响

    点和误差线分别代表响应比和95%置信区间, 如果95%置信区间没有跨越零线, 表示处理与对照存在显著差异。括号内数值分别代表单独施用生物炭样本数(左边)和生物质炭与化肥配施样本数(右边)。TN: 总氮; TP: 总磷; TK: 总钾; Olsen-P: 有效磷; AK: 有效钾; CEC: 阳离子交换量。Dots with error bars denote the overall mean response ratio and 95% confidence interval (CI), respectively. The 95% CI no across the zero line means significant difference between the treatment and control. The values in parentheses represent the sample size of biochar applied alone (left) and the sample size of biochar combined with chemical fertilizers (right). TN: total N; TP: total P; TK: total K; Olsen-P: available phosphorus; AK: available K; CEC: cation exchange capacity.

    Figure  1.  Effects of biochar applied alone and biochar combined with chemical fertilizers on soil nutrient availability and salt-based ions contents

    图  2  生物炭单施和与化肥配施条件下生物炭特征对土壤有效性 [ 全氮(a)、NH4+-N (b)、NO3-N (c)和Olsen-P (d)含量 ] 的影响

    点和误差线分别代表响应比和95%置信区间, 如果95%置信区间没有跨越零线, 表示处理与对照存在显著差异。括号内数值分别代表单独施用生物炭样本数(左边)和生物质炭与化肥配施样本数(右边)。CEC: 阳离子交换量。Dots with error bars denote the overall mean response ratio and 95% confidence interval (CI), respectively. The 95% CI no across the zero line means significant difference between the treatment and control. The values in parentheses represent the sample size of biochar applied alone (left) and the sample size of biochar combined with chemical fertilizers (right). CEC: cation exchange capacity.

    Figure  2.  Effects of biochar applied alone and biochar combined with chemical fertilizers on soil nutrient availability (a: content of total nitrogen; b: content of NH4+-N; c: content of NO3-N; d: content of Olsen-P) under different biochar properties

    图  3  生物炭单施和与化肥配施条件下生物炭特征对土壤盐基离子 [K+(a)、Na+ (b)、Ca2+ (c)和Mg2+ (d)] 含量和阳离子交换量(CEC) (e)的影响

    点和误差线分别代表响应比和95%置信区间, 如果95%置信区间没有跨越零线, 表示处理与对照存在显著差异。括号内数值分别代表单独施用生物炭样本数(左边)和生物质炭与化肥配施样本数(右边)。Dots with error bars denote the overall mean response ratio and 95% confidence interval (CI), respectively. The 95% CI no across the zero line means significant difference between the treatment and control. The values in parentheses represent the sample size of biochar applied alone (left) and the sample size of biochar combined with chemical fertilizers (right).

    Figure  3.  Effect of biochar applied alone and biochar combined with chemical fertilizers on soil salt-based ions (a: K+; b: Na+; c: Ca2+; d: Mg2+) contents and soil cation exchange capacity (CEC, e) under different biochar properties

    图  4  生物炭单施和与化肥配施条件下生物炭施用量和施用时间对土壤有效性 [ 全氮(a)、NH4+-N (b)、NO3-N (c)和Olsen-P (d)含量 ] 的影响

    点和误差线分别代表响应比和95%置信区间, 如果95%置信区间没有跨越零线, 表示处理与对照存在显著差异。括号内数值分别代表单独施用生物炭样本数(左边)和生物质炭与化肥配施样本数(右边)。Dots with error bars denote the overall mean response ratio and 95% confidence interval (CI), respectively. The 95% CI no across the zero line means significant difference between the treatment and control. The values in parentheses represent the sample size of biochar applied alone (left) and the sample size of biochar combined with chemical fertilizers (right).

    Figure  4.  Effects of biochar applied alone and biochar combined with chemical fertilizers on soil nutrient availability (a: content of total nitrogen; b: content of NH4+-N; c: content of NO3-N; d: content of Olsen-P) under different application rates and application times

    图  5  生物炭单施和与化肥配施条件下生物炭施用量和施用时间对土壤盐基离子 [K+(a)、Na+ (b)、Ca2+(c)和Mg2+(d)] 含量和阳离子交换量(CEC) (e)的影响

    点和误差线分别代表响应比和95%置信区间, 如果95%置信区间没有跨越零线, 表示处理与对照存在显著差异。括号内数值分别代表单独施用生物炭样本数(左边)和生物质炭与化肥配施样本数(右边)。Dots with error bars denote the overall mean response ratio and 95% confidence interval (CI), respectively. The 95% CI no across the zero line means significant difference between the treatment and control. The values in parentheses represent the sample size of biochar applied alone (left) and the sample size of biochar combined with chemical fertilizers (right).

    Figure  5.  Effect of biochar applied alone and biochar combined with chemical fertilizers on soil salt-based ions (a: K+; b: Na+; c: Ca2+; d: Mg2+) contents and soil cation exchange capacity (CEC, e) under different amendment rates and application times

    图  6  生物炭单施和与化肥配施条件下土壤质地和pH对土壤有效性 [ 全氮(a)、NH4+-N (b)、NO3-N (c)和Olsen-P (d)含量 ] 的影响

    点和误差线分别代表响应比和95%置信区间, 如果95%置信区间没有跨越零线, 表示处理与对照存在显著差异。括号内数值分别代表单独施用生物炭样本数(左边)和生物质炭与化肥配施样本数(右边)。Dots with error bars denote the overall mean response ratio and 95% confidence interval (CI), respectively. The 95% CI no across the zero line means significant difference between the treatment and control. The values in parentheses represent the sample size of biochar applied alone (left) and the sample size of biochar combined with chemical fertilizers (right).

    Figure  6.  Effect of biochar applied alone and biochar combined with chemical fertilizers on soil nutrient availability (a: content of total nitrogen; b: content of NH4+-N; c: content of NO3-N; d: content of Olsen-P) under different soil textures and soil pH

    图  7  生物炭单施和与化肥配施条件下土壤质地和pH对土壤盐基离子 [K+(a)、Na+ (b) 、Ca2+(c)和Mg2+(d)] 含量和阳离子交换量(CEC) (e)的影响

    点和误差线分别代表响应比和95%置信区间, 如果95%置信区间没有跨越零线, 表示处理与对照存在显著差异。括号内数值分别代表单独施用生物炭样本数(左边)和生物质炭与化肥配施样本数(右边)。Dots with error bars denote the overall mean response ratio and 95% confidence interval (CI), respectively. The 95% CI no across the zero line means significant difference between the treatment and control. The values in parentheses represent the sample size of biochar applied alone (left) and the sample size of biochar combined with chemical fertilizers (right).

    Figure  7.  Effect of biochar applied alone and biochar combined with chemical fertilizers on soil salt-based ions (a: K+; b: Na+; c: Ca2+; d: Mg2+) contetns and soil cation exchange capacity (CEC, e) under different soil textures and soil pH

  • [1] IBI U. Standardized product definition and product testing guidelines for biochar that is used in soil[EB/OL]. International Biochar Initiative, 2012, www.walkingpointfarms.com
    [2] KRAMER R W, KUJAWINSKI E B, HATCHER P G. Identification of black carbon derived structures in a volcanic ash soil humic acid by Fourier transform ion cyclotron resonance mass spectrometry[J]. Environmental Science & Technology, 2004, 38(12): 3387−3395
    [3] 卜晓莉, 薛建辉. 生物炭对土壤生境及植物生长影响的研究进展[J]. 生态环境学报, 2014, 23(3): 535−540 doi: 10.3969/j.issn.1674-5906.2014.03.025

    BU X L, XUE J H. Biochar effects on soil habitat and plant growth: a review[J]. Ecology and Environmental Sciences, 2014, 23(3): 535−540 doi: 10.3969/j.issn.1674-5906.2014.03.025
    [4] 王月玲, 耿增超, 王强, 等. 生物炭对土土壤温室气体及土壤理化性质的影响[J]. 环境科学, 2016, 37(9): 3634−3641 doi: 10.13227/j.hjkx.2016.09.047

    WANG Y L, GENG Z C, WANG Q, et al. Influence of biochar on greenhouse gases emissions and physico-chemical properties of loess soil[J]. Environmental Science, 2016, 37(9): 3634−3641 doi: 10.13227/j.hjkx.2016.09.047
    [5] 何玉亭, 王昌全, 沈杰, 等. 两种生物质炭对红壤团聚体结构稳定性和微生物群落的影响[J]. 中国农业科学, 2016, 49(12): 2333−2342 doi: 10.3864/j.issn.0578-1752.2016.12.009

    HE Y T, WANG C Q, SHEN J, et al. Effects of two biochars on red soil aggregate stability and microbial community[J]. Scientia Agricultura Sinica, 2016, 49(12): 2333−2342 doi: 10.3864/j.issn.0578-1752.2016.12.009
    [6] 沈盟, 蒋芳玲, 王珊, 等. 生物质炭施用量对土壤性状和番茄产质量的影响[J]. 土壤, 2017, 49(3): 534−542

    SHEN M, JIANG F L, WANG S, et al. Effects of biochar application amount on soil characteristics, yield and fruit properties of tomato[J]. Soils, 2017, 49(3): 534−542
    [7] 杨卫君, 惠超, 邓天池, 等. 生物炭对砂壤土团聚体及其碳、氮分布的影响[J]. 中国土壤与肥料, 2022(12): 1−9

    YANG W J, HUI C, DENG T C, et al. Effects of biochar on aggregate and distribution of carbon and nitrogen in sandy loam[J]. Soil and Fertilizer Sciences in China, 2022(12): 1−9
    [8] 郭书亚, 尚赏, 张艳, 等. 生物炭施用五年后对土壤生物化学特性及夏玉米产量的影响[J]. 土壤与作物, 2022, 11(3): 290−297

    GUO S Y, SHANG S, ZHANG Y, et al. Effects of biochar application after five years on soil biochemical properties and summer maize yield[J]. Soils and Crops, 2022, 11(3): 290−297
    [9] HAEFELE S M, KONBOON Y, WONGBOON W, et al. Effects and fate of biochar from rice residues in rice-based systems[J]. Field Crops Research, 2011, 121(3): 430−440 doi: 10.1016/j.fcr.2011.01.014
    [10] DONG D, FENG Q B, MCGROUTHER K, et al. Effects of biochar amendment on rice growth and nitrogen retention in a waterlogged paddy field[J]. Journal of Soils and Sediments, 2015, 15(1): 153−162 doi: 10.1007/s11368-014-0984-3
    [11] 高天一, 李娜, 彭靖, 等. 连续施用生物炭对棕壤磷素形态及有效性的影响[J]. 植物营养与肥料学报, 2019, 25(9): 1451−1460 doi: 10.11674/zwyf.18405

    GAO T Y, LI N, PENG J, et al. Effect of consecutive application of biochar on phosphate morphology and availability in brown soil[J]. Journal of Plant Nutrition and Fertilizers, 2019, 25(9): 1451−1460 doi: 10.11674/zwyf.18405
    [12] JONES D L, MURPHY D V, KHALID M, et al. Short-term biochar-induced increase in soil CO2 release is both biotically and abiotically mediated[J]. Soil Biology and Biochemistry, 2011, 43(8): 1723−1731 doi: 10.1016/j.soilbio.2011.04.018
    [13] DEMPSTER D N, GLEESON D B, SOLAIMAN Z M, et al. Decreased soil microbial biomass and nitrogen mineralisation with Eucalyptus biochar addition to a coarse textured soil[J]. Plant and Soil, 2012, 354(1): 311−324
    [14] 王吉元, 夏浩, 李宇轩, 等. 不同原料生物炭对酸性红壤氮素转化及理化性质的影响[J]. 华中农业大学学报(自然科学版), 2022, 41(2): 61−70

    WANG J Y, XIA H, LI Y X, et al. Effects of biochar from different feedstocks on soil nitrogen transformation and physicochemical properties in acid red soil[J]. Journal of Huazhong Agricultural University (Natural Science Edition), 2022, 41(2): 61−70
    [15] 郑慧芬, 吴红慧, 翁伯琦, 等. 施用生物炭提高酸性红壤茶园土壤的微生物特征及酶活性[J]. 中国土壤与肥料, 2019(2): 68−74

    ZHENG H F, WU H H, WENG B Q, et al. Improved soil microbial characteristics and enzyme activities with wheat straw biochar addition to an acid tea plantation in red soil[J]. Soil and Fertilizer Sciences in China, 2019(2): 68−74
    [16] 王世斌, 高佩玲, 赵亚东, 等. 生物炭、有机肥连续施用对盐碱土壤改良效果研究[J]. 干旱地区农业研究, 2021, 39(3): 154−161 doi: 10.7606/j.issn.1000-7601.2021.03.19

    WANG S B, GAO P L, ZHAO Y D, et al. Effect of continuous application of biochar and organic fertilizers on saline-alkali soil improvement[J]. Agricultural Research in the Arid Areas, 2021, 39(3): 154−161 doi: 10.7606/j.issn.1000-7601.2021.03.19
    [17] 郭春雷, 李娜, 彭靖, 等. 秸秆直接还田及炭化还田对土壤酸度和交换性能的影响[J]. 植物营养与肥料学报, 2018, 24(5): 1205−1213 doi: 10.11674/zwyf.17482

    GUO C L, LI N, PENG J, et al. Direct returning of maize straw or as biochar to the field triggers change in acidity and exchangeable capacity in soil[J]. Journal of Plant Nutrition and Fertilizers, 2018, 24(5): 1205−1213 doi: 10.11674/zwyf.17482
    [18] 李九玉, 赵安珍, 袁金华, 等. 农业废弃物制备的生物质炭对红壤酸度和油菜产量的影响[J]. 土壤, 2015, 47(2): 334−339

    LI J Y, ZHAO A Z, YUAN J H, et al. Amelioration effects of crop residue-derived biochars on soil acidity and canola yield in red soil[J]. Soils, 2015, 47(2): 334−339
    [19] UZOMA K C, INOUE M, ANDRY H, et al. Effect of cow manure biochar on maize productivity under sandy soil condition[J]. Soil Use and Management, 2011, 27(2): 205−212 doi: 10.1111/j.1475-2743.2011.00340.x
    [20] 季雅岚, 解钰, 索龙, 等. 制备原料及温度对生物质炭酸碱度及盐基离子含量影响[J]. 云南农业大学学报(自然科学), 2019, 34(1): 145−151

    JI Y L, XIE Y, SUO L, et al. The effect of raw materials and temperature on the acidity and basicity ion content by the biochar[J]. Journal of Yunnan Agricultural University (Natural Science), 2019, 34(1): 145−151
    [21] 郭明, 李新. Meta分析及其在生态环境领域研究中的应用[J]. 中国沙漠, 2009, 29(5): 911−919

    GUO M, LI X. Meta-analysis: a new quantitative research approach in eco-environmental sciences[J]. Journal of Desert Research, 2009, 29(5): 911−919
    [22] BIEDERMAN L A, HARPOLE W S. Biochar and its effects on plant productivity and nutrient cycling: a meta-analysis[J]. GCB Bioenergy, 2013, 5(2): 202−214 doi: 10.1111/gcbb.12037
    [23] 肖婧, 王传杰, 黄敏, 等. 生物质炭对设施大棚土壤性质与果蔬产量影响的整合分析[J]. 植物营养与肥料学报, 2018, 24(1): 228−236

    XIAO J, WANG C J, HUANG M, et al. Meta-analysis of biochar application effects on soil fertility and yields of fruit and vegetables in greenhouse[J]. Journal of Plant Nutrition and Fertilizers, 2018, 24(1): 228−236
    [24] 肖婧, 徐虎, 蔡岸冬, 等. 生物质炭特性及施用管理措施对作物产量影响的整合分析[J]. 中国农业科学, 2017, 50(10): 1830−1840

    XIAO J, XU H, CAI A D, et al. A meta-analysis of effects of biochar properties and management practices on crop yield[J]. Scientia Agricultura Sinica, 2017, 50(10): 1830−1840
    [25] XU H, CAI A D, WU D, et al. Effects of biochar application on crop productivity, soil carbon sequestration, and global warming potential controlled by biochar C∶N ratio and soil pH: a global meta-analysis[J]. Soil and Tillage Research, 2021, 213: 105125 doi: 10.1016/j.still.2021.105125
    [26] 彭少麟, 郑凤英. Meta分析及MetaWin软件[J]. 土壤与环境, 1999(4): 295−299

    PENG S L, ZHENG F Y. Introduction of MetaWin software[J]. Soil and Environmental Sciences, 1999(4): 295−299
    [27] NIU L G, HAO J M, ZHANG B Z, et al. Influences of long-term fertilizer and tillage management on soil fertility of the North China Plain[J]. Pedosphere, 2011, 21(6): 813−820 doi: 10.1016/S1002-0160(11)60185-9
    [28] UPHOFF N T. Biological Approaches to Sustainable Soil Systems[M]. Boca Raton: CRC/Taylor & Francis, 2006
    [29] LIANG B, LEHMANN J, SOLOMON D, et al. Black carbon increases cation exchange capacity in soil[J]. Soil Science Society of America Journal, 2006, 70(5): 1719−1730 doi: 10.2136/sssaj2005.0383
    [30] LAIRD D A, FLEMING P, DAVIS D D, et al. Impact of biochar amendments on the quality of a typical Midwestern agricultural soil[J]. Geoderma, 2010, 158(3/4): 443−449
    [31] FAW W F, SHIH S C, JUNG G A. Extractant influence on the relationship between extractable proteins and cold tolerance of alfalfa[J]. Plant Physiology, 1976, 57(5): 720−723 doi: 10.1104/pp.57.5.720
    [32] NELSON N, AGUDELO S, YUAN W Q, et al. Nitrogen and phosphorus availability in biochar-amended soils[J]. Soil Science, 2011, 176(5): 218−266 doi: 10.1097/SS.0b013e3182171eac
    [33] PANDIAN K N, SUBRAMANIAYAN P, GNASEKARAN P, et al. Effect of biochar amendment on soil physical, chemical and biological properties and groundnut yield in rainfed Alfisol of semi-arid tropics[J]. Archives of Agronomy and Soil Science, 2016, 62(9): 1293−1310 doi: 10.1080/03650340.2016.1139086
    [34] DAI Z M, XIONG X Q, ZHU H, et al. Association of biochar properties with changes in soil bacterial, fungal and fauna communities and nutrient cycling processes[J]. Biochar, 2021, 3: 239−254 doi: 10.1007/s42773-021-00099-x
    [35] 占亚楠, 王智, 孟亚利. 生物炭提高土壤磷素有效性的整合分析[J]. 应用生态学报, 2020, 31(4): 1185−1193 doi: 10.13287/j.1001-9332.202004.024

    ZHAN Y N, WANG Z, MENG Y L. Biochar addition improves soil phosphorus availability: a meta-analysis[J]. Chinese Journal of Applied Ecology, 2020, 31(4): 1185−1193 doi: 10.13287/j.1001-9332.202004.024
    [36] DARI B, NAIR V D, HARRIS W G, et al. Relative influence of soil- vs. biochar properties on soil phosphorus retention[J]. Geoderma, 2016, 280: 82−87 doi: 10.1016/j.geoderma.2016.06.018
    [37] MUKHERJEE A, ZIMMERMAN A R. Organic carbon and nutrient release from a range of laboratory-produced biochars and biochar-soil mixtures[J]. Geoderma, 2013, 193/194: 122−130 doi: 10.1016/j.geoderma.2012.10.002
    [38] 林雪原, 荆延德, 巩晨, 等. 生物炭吸附重金属的研究进展[J]. 环境污染与防治, 2014, 36(5): 83−87 doi: 10.3969/j.issn.1001-3865.2014.05.017

    LIN X Y, JING Y D, GONG C, et al. Research progress on the sorption of heavy metals by biochar[J]. Environmental Pollution & Control, 2014, 36(5): 83−87 doi: 10.3969/j.issn.1001-3865.2014.05.017
    [39] 鲁艳红, 廖育林, 聂军, 等. 长期施用氮磷钾肥和石灰对红壤性水稻土酸性特征的影响[J]. 土壤学报, 2016, 53(1): 202−212 doi: 10.11766/trxb201507300280

    LU Y H, LIAO Y L, NIE J, et al. Effect of long-term fertilization and lime application on soil acidity of reddish paddy soil[J]. Acta Pedologica Sinica, 2016, 53(1): 202−212 doi: 10.11766/trxb201507300280
    [40] 罗煜, 赵立欣, 孟海波, 等. 不同温度下热裂解芒草生物质炭的理化特征分析[J]. 农业工程学报, 2013, 29(13): 208−217 doi: 10.3969/j.issn.1002-6819.2013.13.027

    LUO Y, ZHAO L X, MENG H B, et al. Physio-chemical characterization of biochars pyrolyzed from miscanthus under two different temperatures[J]. Transactions of the Chinese Society of Agricultural Engineering, 2013, 29(13): 208−217 doi: 10.3969/j.issn.1002-6819.2013.13.027
    [41] 吴伟祥, 孙雪, 董达. 生物质炭土壤环境效应[M]. 北京: 科学出版社, 2015

    WU W X, SUN X, DONG D. Environmental Effects of Biochar in Soil[M]. Beijing: Science Press, 2015
    [42] GUL S, WHALEN J K, THOMAS B W, et al. Physico-chemical properties and microbial responses in biochar-amended soils: mechanisms and future directions[J]. Agriculture, Ecosystems & Environment, 2015, 206: 46−59
    [43] MURPHY B W. Impact of soil organic matter on soil properties−a review with emphasis on Australian soils[J]. Soil Research, 2015, 53(6): 605−635 doi: 10.1071/SR14246
    [44] 何绪生, 张树清, 佘雕, 等. 生物炭对土壤肥料的作用及未来研究[J]. 中国农学通报, 2011, 27(15): 16−25

    HE X S, ZHANG S Q, SHE D, et al. Effects of biochar on soil and fertilizer and future research[J]. Chinese Agricultural Science Bulletin, 2011, 27(15): 16−25
    [45] 袁帅, 赵立欣, 孟海波, 等. 生物炭主要类型、理化性质及其研究展望[J]. 植物营养与肥料学报, 2016, 22(5): 1402−1417

    YUAN S, ZHAO L X, MENG H B, et al. The main types of biochar and their properties and expectative researches[J]. Journal of Plant Nutrition and Fertilizer, 2016, 22(5): 1402−1417
    [46] YUAN J H, XU R K, ZHANG H. The forms of alkalis in the biochar produced from crop residues at different temperatures[J]. Bioresource Technology, 2011, 102(3): 3488−3497 doi: 10.1016/j.biortech.2010.11.018
    [47] IPPOLITO J A, STROMBERGER M E, LENTZ R D, et al. Hardwood biochar and manure co-application to a calcareous soil[J]. Chemosphere, 2016, 142: 84−91 doi: 10.1016/j.chemosphere.2015.05.039
    [48] MAJOR J, RONDON M, MOLINA D, et al. Maize yield and nutrition during 4 years after biochar application to a Colombian savanna oxisol[J]. Plant and Soil, 2010, 333(1): 117−128
    [49] REVERCHON F, FLICKER R C, YANG H, et al. Changes in δ15N in a soil-plant system under different biochar feedstocks and application rates[J]. Biology and Fertility of Soils, 2014, 50(2): 275−283 doi: 10.1007/s00374-013-0850-2
    [50] 葛顺峰, 彭玲, 任饴华, 等. 秸秆和生物质炭对苹果园土壤容重、阳离子交换量和氮素利用的影响[J]. 中国农业科学, 2014, 47(2): 366−373

    GE S F, PENG L, REN Y H, et al. Effect of straw and biochar on soil bulk density, cation exchange capacity and nitrogen absorption in apple orchard soil[J]. Scientia Agricultura Sinica, 2014, 47(2): 366−373
    [51] 孙向阳. 土壤学[M]. 北京: 中国林业出版社, 2005

    SUN X Y. Edaphology[M]. Beijing: China Forestry Publishing House, 2005
    [52] LIANG F, LI G T, LIN Q M, et al. Crop yield and soil properties in the first 3 years after biochar application to a calcareous soil[J]. Journal of Integrative Agriculture, 2014, 13(3): 525−532 doi: 10.1016/S2095-3119(13)60708-X
    [53] UCHIMIYA M, WARTELLE L H, KLASSON K T, et al. Influence of pyrolysis temperature on biochar property and function as a heavy metal sorbent in soil[J]. Journal of Agricultural and Food Chemistry, 2011, 59(6): 2501−2510 doi: 10.1021/jf104206c
    [54] 黄超, 刘丽君, 章明奎. 生物质炭对红壤性质和黑麦草生长的影响[J]. 浙江大学学报(农业与生命科学版), 2011, 37(4): 439−445

    HUANG C, LIU L J, ZHANG M K. Effects of biochar on properties of red soil and ryegrass growth[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2011, 37(4): 439−445
    [55] 勾芒芒, 屈忠义, 杨晓, 等. 生物炭对砂壤土节水保肥及番茄产量的影响研究[J]. 农业机械学报, 2014, 45(1): 137−142

    GOU M M, QU Z Y, YANG X, et al. Study on the effects of biochar on saving water, preserving fertility and tomato yield[J]. Transactions of the Chinese Society for Agricultural Machinery, 2014, 45(1): 137−142
    [56] 罗煜, 赵小蓉, 李贵桐, 等. 生物质炭对不同pH值土壤矿质氮含量的影响[J]. 农业工程学报, 2014, 30(19): 166−173 doi: 10.3969/j.issn.1002-6819.2014.19.20

    LUO Y, ZHAO X R, LI G T, et al. Effect of biochar on mineral nitrogen content in soils with different pH values[J]. Transactions of the Chinese Society of Agricultural Engineering, 2014, 30(19): 166−173 doi: 10.3969/j.issn.1002-6819.2014.19.20
    [57] VAN ZWIETEN L, KIMBER S, MORRIS S, et al. Effects of biochar from slow pyrolysis of papermill waste on agronomic performance and soil fertility[J]. Plant and Soil, 2010, 327(1): 235−246
  • 加载中
图(7)
计量
  • 文章访问数:  242
  • HTML全文浏览量:  119
  • PDF下载量:  50
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-01-11
  • 录用日期:  2023-03-31
  • 网络出版日期:  2023-06-07
  • 刊出日期:  2023-09-19

目录

    /

    返回文章
    返回