留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

土壤有机碳同位素组成在农田生态系统碳循环中的应用进展

李发东 栗照鑫 乔云峰 刘山宝 田超 朱农 Hubert Hirwa Simon Measho

李发东, 栗照鑫, 乔云峰, 刘山宝, 田超, 朱农, Hubert Hirwa, Simon Measho. 土壤有机碳同位素组成在农田生态系统碳循环中的应用进展[J]. 中国生态农业学报 (中英文), 2023, 31(2): 194−205 doi: 10.12357/cjea.20230029
引用本文: 李发东, 栗照鑫, 乔云峰, 刘山宝, 田超, 朱农, Hubert Hirwa, Simon Measho. 土壤有机碳同位素组成在农田生态系统碳循环中的应用进展[J]. 中国生态农业学报 (中英文), 2023, 31(2): 194−205 doi: 10.12357/cjea.20230029
LI F D, LI Z X, QIAO Y F, LIU S B, TIAN C, ZHU N, HIRWA H, MEASHO S. Using soil organic carbon isotope composition analysis to elucidate the carbon cycle of agroecosystems[J]. Chinese Journal of Eco-Agriculture, 2023, 31(2): 194−205 doi: 10.12357/cjea.20230029
Citation: LI F D, LI Z X, QIAO Y F, LIU S B, TIAN C, ZHU N, HIRWA H, MEASHO S. Using soil organic carbon isotope composition analysis to elucidate the carbon cycle of agroecosystems[J]. Chinese Journal of Eco-Agriculture, 2023, 31(2): 194−205 doi: 10.12357/cjea.20230029

土壤有机碳同位素组成在农田生态系统碳循环中的应用进展

doi: 10.12357/cjea.20230029
基金项目: 国家自然科学基金项目(U2006212, 41761144053, U1906219, 42007155, U1803244, 41771292)资助
详细信息
    通讯作者:

    李发东, 主要从事农业生态水文与水环境研究。E-mail: lifadong@igsnrr.ac.cn

  • 中图分类号: S153

Using soil organic carbon isotope composition analysis to elucidate the carbon cycle of agroecosystems

Funds: This study was supported by the National Natural Science Foundation of China (U2006212, 41761144053, U1906219, 42007155, U1803244, 41771292).
More Information
  • 摘要: 土壤有机碳是地球表层储量最高且储存周期最长的生态系统碳库之一。如何提高土壤有机碳稳定性和增强土壤固碳减排能力, 是陆地生态系统碳管理可持续战略的关键科学问题。国际学术界一致认为农田生态系统在固碳方面的作用越来越明显, 在实现碳中和的进程中发挥重要的作用。农田管理实践方式会扰动土壤碳循环过程, 采取有效的管理方式会使其成为碳汇。目前, 国内研究主要集中在耕作方式、施肥和灌溉水平、秸秆还田对农田生产力、碳固持速率、温室气体排放方面的影响, 但就农田生态系统有机碳稳定性对不同农田管理方式的响应机制以及与土壤碳排放之间的关系认识尚未明确。13C同位素技术是研究农田土壤碳循环过程的有力工具, 通过测定土壤碳排放过程中不同有机碳组分的同位素丰度, 能够精准区别土壤呼吸组分和来源, 从而更好地揭示土壤有机碳稳定性对农田管理措施的响应机制, 为增强土壤碳汇效应和农业可持续发展提供科学依据。以往的研究大多集中在模拟试验以及小范围、短时间监测, 与实际差距较大, 测量结果会高估或低估实际值。因此, 在未来的农田土壤碳循环研究过程中要采取多点、长时间实时原位监测, 并结合13C同位素技术, 实现土壤CO2排放实时分解, 达到揭示土壤有机碳稳定性机制的目的。
  • 图  1  耕作方式影响土壤CO2排放的过程和监测方法展望

    Figure  1.  Prospect of processes and measuring methods of soil CO2 emission affected by tillage method

    图  2  典型农田生态系统土壤呼吸组分结构图(华北平原)[69,79-81]

    Figure  2.  Structure of soil respiration components in a typical farmland ecosystem (North China Plain)[69,79-81]

    图  3  土壤CO2排放实时原位监测系统

    Figure  3.  Real time in situ monitoring system for soil carbon dioxide emission

  • [1] FABIYI T. Trends in atmospheric carbon dioxide[R]. National Oceanic and Atmospheric Administration, Earth System Research Laboratory (NOAA/ESRL), 2020. http://www.esrl.noaa.gov/gmd/ccgg/trends/global.html
    [2] SHANG Q Y, CHENG C, WANG J J, et al. Net global warming potential, greenhouse gas intensity and carbon footprint as affected by different tillage systems from Chinese double-cropping paddy fields[J]. Soil and Tillage Research, 2021, 209: 104947 doi: 10.1016/j.still.2021.104947
    [3] SUN W L, LIU X H. Review on carbon storage estimation of forest ecosystem and applications in China[J]. Forest Ecosystems, 2020, 7: 4 doi: 10.1186/s40663-019-0210-2
    [4] PADBHUSHAN R, SHARMA S, RANA D S, et al. Delineate soil characteristics and carbon pools in grassland compared to native forestland of India: a meta-analysis[J]. Agronomy, 2020, 10(12): 1969 doi: 10.3390/agronomy10121969
    [5] ZAMORA S, SANDOVAL-HERAZO L C, BALLUT-DAJUD G, et al. Carbon fluxes and stocks by Mexican tropical forested wetland soils: a critical review of its role for climate change mitigation[J]. International Journal of Environmental Research and Public Health, 2020, 17(20): 7372 doi: 10.3390/ijerph17207372
    [6] 潘根兴, 李恋卿, 张旭辉. 土壤有机碳库与全球变化研究的若干前沿问题−兼开展中国水稻土有机碳固定研究的建议[J]. 南京农业大学学报, 2002, 25(3): 100−109

    PAN G X, LI L Q, ZHANG X H. Perspectives on issues of soil carbon pools and global change — With suggestions for studying organic carbon sequestration in paddy soils of China[J]. Journal of Nanjing Agricultural University, 2002, 25(3): 100−109
    [7] TARIYAL K, GUSAIN S S. Climate change and agro-ecosystems: a positive correlation analysis[J]. Asian Man (The) - An International Journal, 2017, 11(2): 125 doi: 10.5958/0975-6884.2017.00020.2
    [8] ZHAO Y C, WANG M Y, HU S J, et al. Economics- and policy-driven organic carbon input enhancement dominates soil organic carbon accumulation in Chinese croplands[J]. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115(16): 4045−4050 doi: 10.1073/pnas.1700292114
    [9] 金鑫鑫, 汪景宽, 孙良杰, 等. 稳定13C同位素示踪技术在农田土壤碳循环和团聚体固碳研究中的应用进展[J]. 土壤, 2017, 49(2): 217−224

    JIN X X, WANG J K, SUN L J, et al. Progress of carbon cycle in farmland and sequestration in soil aggregates revealed by stable 13C isotope[J]. Soils, 2017, 49(2): 217−224
    [10] 张昊, 李建平. 稳定碳同位素在草地生态系统碳循环中的应用与展望[J]. 水土保持研究, 2021, 28(1): 394−400

    ZHANG H, LI J P. Application and prospect of stable carbon isotope to the study of carbon cycle in grassland ecosystem[J]. Research of Soil and Water Conservation, 2021, 28(1): 394−400
    [11] DOU X L, HE P, ZHU P, et al. Soil organic carbon dynamics under long-term fertilization in a black soil of China: evidence from stable C isotopes[J]. Scientific Reports, 2016, 6: 21488 doi: 10.1038/srep21488
    [12] FUENTES M, GOVAERTS B, HIDALGO C, et al. Organic carbon and stable 13C isotope in conservation agriculture and conventional systems[J]. Soil Biology and Biochemistry, 2010, 42(4): 551−557 doi: 10.1016/j.soilbio.2009.11.020
    [13] MIDWOOD A J, MILLARD P. Challenges in measuring the δ13C of the soil surface CO2 efflux[J]. Rapid Communications in Mass Spectrometry: RCM, 2011, 25(1): 232−242 doi: 10.1002/rcm.4857
    [14] DANNOURA M, MAILLARD P, FRESNEAU C, et al. In situ assessment of the velocity of carbon transfer by tracing 13C in trunk CO2 efflux after pulse labelling: variations among tree species and seasons[J]. The New Phytologist, 2011, 190(1): 181−192 doi: 10.1111/j.1469-8137.2010.03599.x
    [15] LACOMBE R J S, BAZINET R P. Natural abundance carbon isotope ratio analysis and its application in the study of diet and metabolism[J]. Nutrition Reviews, 2021, 79(8): 869−888 doi: 10.1093/nutrit/nuaa109
    [16] 陈世苹, 白永飞, 韩兴国. 稳定性碳同位素技术在生态学研究中的应用[J]. 植物生态学报, 2002, 26(5): 549−560 doi: 10.3321/j.issn:1005-264X.2002.05.007

    CHEN S P, BAI Y F, HAN X G. Applications of stable carbon isotope techniques to ecological research[J]. Acta Phytoecologica Sinica, 2002, 26(5): 549−560 doi: 10.3321/j.issn:1005-264X.2002.05.007
    [17] 林光辉. 稳定同位素生态学[M]. 北京: 高等教育出版社, 2013

    LIN G H. Stable Isotope Ecology[M]. Beijing: Higher Education Press, 2013
    [18] 葛体达, 王东东, 祝贞科, 等. 碳同位素示踪技术及其在陆地生态系统碳循环研究中的应用与展望[J]. 植物生态学报, 2020, 44(4): 360–372

    GE T D, WANG D D, ZHU Z K, et al. Tracing technology of carbon isotope and its applications to studies of carbon cycling in terrestrial ecosystem[J]. Chinese Journal of Plant Ecology, 2020, 44(4): 360–372
    [19] DING J L, WU J C, DING D Y, et al. Effects of tillage and straw mulching on the crop productivity and hydrothermal resource utilization in a winter wheat-summer maize rotation system[J]. Agricultural Water Management, 2021, 254: 106933 doi: 10.1016/j.agwat.2021.106933
    [20] 李春越, 常顺, 钟凡心, 等. 种植模式和施肥对黄土旱塬农田土壤团聚体及其碳分布的影响[J]. 应用生态学报, 2021, 32(1): 191−200

    LI C Y, CHANG S, ZHONG F X, et al. Effects of fertilization and planting patterns on soil aggregate and carbon distribution in farmland of the Loess Plateau, Northwest China[J]. Journal of Applied Ecology, 2021, 32(1): 191−200
    [21] WANG H H, SHEN M X, HUI D F, et al. Straw incorporation influences soil organic carbon sequestration, greenhouse gas emission, and crop yields in a Chinese rice (Oryza sativa L.)-wheat (Triticum aestivum L.) cropping system[J]. Soil and Tillage Research, 2019, 195: 104377 doi: 10.1016/j.still.2019.104377
    [22] TIEFENBACHER A, SANDÉN T, HASLMAYR H P, et al. Optimizing carbon sequestration in croplands: a synthesis[J]. Agronomy, 2021, 11(5): 882 doi: 10.3390/agronomy11050882
    [23] PAUSTIAN K, LEHMANN J, OGLE S, et al. Climate-smart soils[J]. Nature, 2016, 532(7597): 49−57 doi: 10.1038/nature17174
    [24] 于贵瑞, 王绍强, 陈泮勤, 等. 碳同位素技术在土壤碳循环研究中的应用[J]. 地球科学进展, 2005, 20(5): 568−577 doi: 10.3321/j.issn:1001-8166.2005.05.013

    YU G R, WANG S Q, CHEN P Q, et al. Isotope tracer approaches in soil organic carbon cycle research[J]. Advance in Earth Sciences, 2005, 20(5): 568−577 doi: 10.3321/j.issn:1001-8166.2005.05.013
    [25] VAN DE BROEK M, BAERT L, TEMMERMAN S, et al. Soil organic carbon stocks in a tidal marsh landscape are dominated by human marsh embankment and subsequent marsh progradation[J]. European Journal of Soil Science, 2019, 70(2): 338−349 doi: 10.1111/ejss.12739
    [26] CHENU C, ANGERS D A, BARRÉ P, et al. Increasing organic stocks in agricultural soils: knowledge gaps and potential innovations[J]. Soil and Tillage Research, 2019, 188: 41−52 doi: 10.1016/j.still.2018.04.011
    [27] BEARE M H, MCNEILL S J, CURTIN D, et al. Estimating the organic carbon stabilisation capacity and saturation deficit of soils: a New Zealand case study[J]. Biogeochemistry, 2014, 120(1/2/3): 71−87
    [28] OLSON K R, AL-KAISI M M, LAL R, et al. Experimental consideration, treatments, and methods in determining soil organic carbon sequestration rates[J]. Soil Science Society of America Journal, 2014, 78(2): 348−360 doi: 10.2136/sssaj2013.09.0412
    [29] CHAUDHARY S, DHERI G S, BRAR B S. Long-term effects of NPK fertilizers and organic manures on carbon stabilization and management index under rice-wheat cropping system[J]. Soil and Tillage Research, 2017, 166: 59−66 doi: 10.1016/j.still.2016.10.005
    [30] 张霞, 张育林, 刘丹, 等. 种植方式和耕作措施对土壤结构与水分利用效率的影响[J]. 农业机械学报, 2019, 50(3): 250−261 doi: 10.6041/j.issn.1000-1298.2019.03.027

    ZHANG X, ZHANG Y L, LIU D, et al. Effects of planting methods and tillage systems on soil structure and water use efficiency[J]. Transactions of the Chinese Society for Agricultural Machinery, 2019, 50(3): 250−261 doi: 10.6041/j.issn.1000-1298.2019.03.027
    [31] DIGNAC M F, DERRIEN D, BARRÉ P, et al. Increasing soil carbon storage: mechanisms, effects of agricultural practices and proxies. A review[J]. Agronomy for Sustainable Development, 2017, 37(2): 1−27
    [32] VELOSO M G, CECAGNO D, BAYER C. Legume cover crops under no-tillage favor organomineral association in microaggregates and soil C accumulation[J]. Soil and Tillage Research, 2019, 190: 139−146 doi: 10.1016/j.still.2019.03.003
    [33] MAZZONCINI M, ANTICHI D, DI BENE C, et al. Soil carbon and nitrogen changes after 28 years of no-tillage management under Mediterranean conditions[J]. European Journal of Agronomy, 2016, 77: 156−165 doi: 10.1016/j.eja.2016.02.011
    [34] BENISTON J W, SHIPITALO M J, LAL R, et al. Carbon and macronutrient losses during accelerated erosion under different tillage and residue management[J]. European Journal of Soil Science, 2015, 66(1): 218−225 doi: 10.1111/ejss.12205
    [35] ABID M, LAL R. Tillage and drainage impact on soil quality: II. Tensile strength of aggregates, moisture retention and water infiltration[J]. Soil and Tillage Research, 2009, 103(2): 364−372 doi: 10.1016/j.still.2008.11.004
    [36] DE CLERCQ T, HEILING M, DERCON G, et al. Predicting soil organic matter stability in agricultural fields through carbon and nitrogen stable isotopes[J]. Soil Biology and Biochemistry, 2015, 88: 29−38 doi: 10.1016/j.soilbio.2015.05.011
    [37] CRYSTAL-ORNELAS R, THAPA R, TULLY K L. Soil organic carbon is affected by organic amendments, conservation tillage, and cover cropping in organic farming systems: a meta-analysis[J]. Agriculture, Ecosystems & Environment, 2021, 312: 107356
    [38] CHELLAPPA J, SAGAR K L, SEKARAN U, et al. Soil organic carbon, aggregate stability and biochemical activity under tilled and no-tilled agroecosystems[J]. Journal of Agriculture and Food Research, 2021, 4: 100139 doi: 10.1016/j.jafr.2021.100139
    [39] LI S, HU M J, SHI J L, et al. Integrated wheat-maize straw and tillage management strategies influence economic profit and carbon footprint in the Guanzhong Plain of China[J]. Science of the Total Environment, 2021, 767: 145347 doi: 10.1016/j.scitotenv.2021.145347
    [40] LUO Z K, WANG E L, SUN O J. Can no-tillage stimulate carbon sequestration in agricultural soils? A meta-analysis of paired experiments[J]. Agriculture, Ecosystems & Environment, 2010, 139(1/2): 224−231
    [41] SHEN X L, WANG L L, YANG Q C, et al. Dynamics of soil organic carbon and labile carbon fractions in soil aggregates affected by different tillage managements[J]. Sustainability, 2021, 13(3): 1541 doi: 10.3390/su13031541
    [42] TRAJANOV A, SPIEGEL H, DEBELJAK M, et al. Using data mining techniques to model primary productivity from international long-term ecological research (ILTER) agricultural experiments in Austria[J]. Regional Environmental Change, 2019, 19(2): 325−337 doi: 10.1007/s10113-018-1361-3
    [43] CHEN J, HEILING M, RESCH C, et al. Does maize and legume crop residue mulch matter in soil organic carbon sequestration?[J]. Agriculture, Ecosystems & Environment, 2018, 265: 123−131
    [44] WIESMEIER M, HÜBNER R, KÖGEL-KNABNER I. Stagnating crop yields: an overlooked risk for the carbon balance of agricultural soils?[J]. The Science of the Total Environment, 2015, 536: 1045−1051 doi: 10.1016/j.scitotenv.2015.07.064
    [45] ZHANG H C, GOLL D S, MANZONI S, et al. Modeling the effects of litter stoichiometry and soil mineral N availability on soil organic matter formation using CENTURY-CUE (v1.0)[J]. Geoscientific Model Development, 2018, 11(12): 4779−4796 doi: 10.5194/gmd-11-4779-2018
    [46] LEHTINEN T, SCHLATTER N, BAUMGARTEN A, et al. Effect of crop residue incorporation on soil organic carbon and greenhouse gas emissions in European agricultural soils[J]. Soil Use and Management, 2014, 30(4): 524−538 doi: 10.1111/sum.12151
    [47] WANG X, JING Z H, HE C, et al. Temporal variation of SOC storage and crop yield and its relationship — A fourteen year field trial about tillage practices in a double paddy cropping system, China[J]. Science of the Total Environment, 2021, 759: 143494 doi: 10.1016/j.scitotenv.2020.143494
    [48] RECOUS S, ROBIN D, DARWIS D, et al. Soil inorganic N availability: effect on maize residue decomposition[J]. Soil Biology and Biochemistry, 1995, 27(12): 1529−1538 doi: 10.1016/0038-0717(95)00096-W
    [49] LADHA J K, REDDY C K, PADRE A T, et al. Role of nitrogen fertilization in sustaining organic matter in cultivated soils[J]. Journal of Environmental Quality, 2011, 40(6): 1756−1766 doi: 10.2134/jeq2011.0064
    [50] VAN GROENIGEN J W, VAN KESSEL C, HUNGATE B A, et al. Sequestering soil organic carbon: a nitrogen dilemma[J]. Environmental Science & Technology, 2017, 51(9): 4738−4739
    [51] LU M, ZHOU X H, LUO Y Q, et al. Minor stimulation of soil carbon storage by nitrogen addition: a meta-analysis[J]. Agriculture, Ecosystems & Environment, 2011, 140(1/2): 234−244
    [52] SCHMIDT M W I, TORN M S, ABIVEN S, et al. Persistence of soil organic matter as an ecosystem property[J]. Nature, 2011, 478(7367): 49−56 doi: 10.1038/nature10386
    [53] GMACH M R, CHERUBIN M R, KAISER K, et al. Processes that influence dissolved organic matter in the soil: a review[J]. Scientia Agricola, 2020, 77(3): https://doi.org/10.1590/1678-992X-2018-0164
    [54] CHEN R R, SENBAYRAM M, BLAGODATSKY S, et al. Soil C and N availability determine the priming effect: microbial N mining and stoichiometric decomposition theories[J]. Global Change Biology, 2014, 20(7): 2356−2367 doi: 10.1111/gcb.12475
    [55] KIRKBY C A, RICHARDSON A E, WADE L J, et al. Nutrient availability limits carbon sequestration in arable soils[J]. Soil Biology and Biochemistry, 2014, 68: 402−409 doi: 10.1016/j.soilbio.2013.09.032
    [56] ERHART E, TOMASETTI A, PANTIC S, et al. Carbon storage in soil size-density fractions after 20 years of compost fertilization[J]. Acta Fytotechnica et Zootechnica, 2015, 18(Special Issue): 110–112
    [57] GUO Z C, ZHANG Z B, ZHOU H, et al. The effect of 34-year continuous fertilization on the SOC physical fractions and its chemical composition in a Vertisol[J]. Scientific Reports, 2019, 9(1): 2505 doi: 10.1038/s41598-019-38952-6
    [58] ZHAO H, SUN B F, LU F, et al. Roles of nitrogen, phosphorus, and potassium fertilizers in carbon sequestration in a Chinese agricultural ecosystem[J]. Climatic Change, 2017, 142(3/4): 587−596
    [59] LIANG F, LI J W, YANG X Y, et al. Three-decade long fertilization-induced soil organic carbon sequestration depends on edaphic characteristics in six typical croplands[J]. Scientific Reports, 2016, 6: 30350 doi: 10.1038/srep30350
    [60] LIU J, ZHANG J, LI D M, et al. Differential responses of arbuscular mycorrhizal fungal communities to mineral and organic fertilization[J]. Microbiology Open, 2020, 9(1): e00920
    [61] PARIHAR M, RAKSHIT A, MEENA V S, et al. The potential of arbuscular mycorrhizal fungi in C cycling: a review[J]. Archives of Microbiology, 2020, 202(7): 1581−1596 doi: 10.1007/s00203-020-01915-x
    [62] LIANG C, SCHIMEL J P, JASTROW J D. The importance of anabolism in microbial control over soil carbon storage[J]. Nature Microbiology, 2017, 2: 17105 doi: 10.1038/nmicrobiol.2017.105
    [63] CROWTHER T W, RIGGS C, LIND E M, et al. Sensitivity of global soil carbon stocks to combined nutrient enrichment[J]. Ecology Letters, 2019, 22(6): 936−945 doi: 10.1111/ele.13258
    [64] SMITH P, DAVIES C A, OGLE S, et al. Towards an integrated global framework to assess the impacts of land use and management change on soil carbon: current capability and future vision[J]. Global Change Biology, 2012, 18(7): 2089−2101 doi: 10.1111/j.1365-2486.2012.02689.x
    [65] ZHANG G S, NI Z W. Winter tillage impacts on soil organic carbon, aggregation and CO2 emission in a rainfed vegetable cropping system of the mid-Yunnan Plateau, China[J]. Soil and Tillage Research, 2017, 165: 294−301 doi: 10.1016/j.still.2016.09.008
    [66] TESSEMA B, SOMMER R, PIIKKI K, et al. Potential for soil organic carbon sequestration in grasslands in East African countries: a review[J]. Grassland Science, 2020, 66(3): 135−144 doi: 10.1111/grs.12267
    [67] ABAKUMOV E, POLYAKOV V. Carbon polygons and carbon offsets: current state, key challenges and pedological aspects[J]. Agronomy, 2021, 11(10): 2013 doi: 10.3390/agronomy11102013
    [68] TANG X L, DU J, SHI Y H, et al. Global patterns of soil heterotrophic respiration — A meta-analysis of available dataset[J]. CATENA, 2020, 191: 104574 doi: 10.1016/j.catena.2020.104574
    [69] DU K, LI F D, LENG P F, et al. Differential influence of no-tillage and precipitation pulses on soil heterotrophic and autotrophic respiration of summer maize in the North China Plain[J]. Agronomy, 2020, 10(12): 2004 doi: 10.3390/agronomy10122004
    [70] KUZYAKOV Y. Response to the comments by Peter Högberg, Nina Buchmann and David J. Read on the review ‘Sources of CO2 efflux from soil and review of partitioning methods’ (Soil Biology & Biochemistry 38, 425–448) Object- versus method-oriented terminology[J]. Soil Biology and Biochemistry, 2006, 38(9): 2999−3000 doi: 10.1016/j.soilbio.2006.04.002
    [71] ZACHÁRY D, FILEP T, JAKAB G, et al. Carbon isotope measurements to determine the turnover of soil organic matter fractions in a temperate forest soil[J]. Agronomy, 2020, 10(12): 1944 doi: 10.3390/agronomy10121944
    [72] WU J P, DENG Q, HUI D F, et al. Reduced lignin decomposition and enhanced soil organic carbon stability by acid rain: evidence from 13C isotope and 13C NMR analyses[J]. Forests, 2020, 11(11): 1191 doi: 10.3390/f11111191
    [73] XIONG X, ZHANG H L, DENG Q, et al. Soil organic carbon turnover following forest restoration in South China: evidence from stable carbon isotopes[J]. Forest Ecology and Management, 2020, 462: 117988 doi: 10.1016/j.foreco.2020.117988
    [74] PAUL A, BALESDENT J, HATTÉ C. 13C-14C relations reveal that soil 13C-depth gradient is linked to historical changes in vegetation 13C[J]. Plant and Soil, 2020, 447(1/2): 305−317
    [75] CHANG S X, SHI Z, THOMAS B R. Soil respiration and net ecosystem productivity in a chronosequence of hybrid poplar plantations[J]. Canadian Journal of Soil Science, 2020, 100(4): 488−502 doi: 10.1139/cjss-2020-0006
    [76] HUANG K P, LI Y F, HU J G, et al. Rates of soil respiration components in response to inorganic and organic fertilizers in an intensively-managed Moso bamboo forest[J]. Geoderma, 2021, 403: 115212 doi: 10.1016/j.geoderma.2021.115212
    [77] DUTTA K, SCHUUR E A G, NEFF J C, et al. Potential carbon release from permafrost soils of Northeastern Siberia[J]. Global Change Biology, 2006, 12(12): 2336−2351 doi: 10.1111/j.1365-2486.2006.01259.x
    [78] KUZYAKOV Y, GAVRICHKOVA O. REVIEW: Time lag between photosynthesis and carbon dioxide efflux from soil: a review of mechanisms and controls[J]. Global Change Biology, 2010, 16(12): 3386−3406 doi: 10.1111/j.1365-2486.2010.02179.x
    [79] HURSH A, BALLANTYNE A, COOPER L, et al. The sensitivity of soil respiration to soil temperature, moisture, and carbon supply at the global scale[J]. Global Change Biology, 2017, 23(5): 2090−2103 doi: 10.1111/gcb.13489
    [80] DONG L Z, ZENG W J, WANG A K, et al. Response of soil respiration and its components to warming and dominant species removal along an elevation gradient in alpine meadow of the Qinghai-Tibetan Plateau[J]. Environmental Science & Technology, 2020, 54(17): 10472−10482
    [81] WANG Q K, ZHANG W D, SUN T, et al. N and P fertilization reduced soil autotrophic and heterotrophic respiration in a young Cunninghamia lanceolata forest[J]. Agricultural and Forest Meteorology, 2017, 232: 66−73 doi: 10.1016/j.agrformet.2016.08.007
    [82] 罗梅, 郭龙, 张海涛, 等. 基于环境变量的中国土壤有机碳空间分布特征[J]. 土壤学报, 2020, 57(1): 48−59

    LUO M, GUO L, ZHANG H T, et al. Characterization of spatial distribution of soil organic carbon in China based on environmental variables[J]. Acta Pedologica Sinica, 2020, 57(1): 48−59
    [83] LAL R. Soil carbon sequestration to mitigate climate change[J]. Geoderma, 2004, 123(1/2): 1−22
    [84] LAL R, BRUCE J P. The potential of world cropland soils to sequester C and mitigate the greenhouse effect[J]. Environmental Science & Policy, 1999, 2(2): 177−185
    [85] SMITH P, MARTINO D, CAI Z C, et al. Greenhouse gas mitigation in agriculture[J]. Philosophical Transactions of the Royal Society B: Biological Sciences, 2008, 363(1492): 789−813 doi: 10.1098/rstb.2007.2184
    [86] NATH C P, DAS T K, RANA K S, et al. Greenhouse gases emission, soil organic carbon and wheat yield as affected by tillage systems and nitrogen management practices[J]. Archives of Agronomy and Soil Science, 2017, 63(12): 1644−1660 doi: 10.1080/03650340.2017.1300657
    [87] MYERS S S, SMITH M R, GUTH S, et al. Climate change and global food systems: potential impacts on food security and undernutrition[J]. Annual Review of Public Health, 2017, 38: 259−277 doi: 10.1146/annurev-publhealth-031816-044356
    [88] 黄耀, 孙文娟. 近20年来中国大陆农田表土有机碳含量的变化趋势[J]. 科学通报, 2006, 51(7): 750−763 doi: 10.3321/j.issn:0023-074X.2006.07.002

    HUANG Y, SUN W J. Changes of soil organic carbon content in farmland in Chinese mainland in recent 20 years[J]. Chinese Science Bulletin, 2006, 51(7): 750−763 doi: 10.3321/j.issn:0023-074X.2006.07.002
    [89] WYNN J G, BIRD M I. Environmental controls on the stable carbon isotopic composition of soil organic carbon: implications for modelling the distribution of C3 and C4 plants, Australia[J]. Tellus B: Chemical and Physical Meteorology, 2008, 60(4): 604−621 doi: 10.1111/j.1600-0889.2008.00361.x
    [90] YANG B, WEN X F, SUN X M. Irrigation depth far exceeds water uptake depth in an oasis cropland in the middle reaches of Heihe River Basin[J]. Scientific Reports, 2015, 5: 15206 doi: 10.1038/srep15206
    [91] GRIMM N B, FAETH S H, GOLUBIEWSKI N E, et al. Global change and the ecology of cities[J]. Science, 2008, 319(5864): 756−760 doi: 10.1126/science.1150195
    [92] PETERSON B J, WOLLHEIM W M, MULHOLLAND P J, et al. Control of nitrogen export from watersheds by headwater streams[J]. Science, 2001, 292(5514): 86−90 doi: 10.1126/science.1056874
    [93] ZACHÁRY D. Applications of stable carbon isotopes in soil science with special attention to natural 13C abundance approach[J]. Hungarian Geographical Bulletin, 2019, 68(1): 3−19
    [94] FAN Y, LI H, MIGUEZ-MACHO G. Global patterns of groundwater table depth[J]. Science, 2013, 339(6122): 940−943 doi: 10.1126/science.1229881
    [95] KODAMA N, FERRIO J P, BRÜGGEMANN N, et al. Short-term dynamics of the carbon isotope composition of CO2 emitted from a wheat agroecosystem — Physiological and environmental controls[J]. Plant Biology (Stuttgart, Germany), 2011, 13(1): 115−125 doi: 10.1111/j.1438-8677.2010.00329.x
    [96] 冉珊珊, 时宇, 黄黄, 等. 用13C脉冲标记法研究互花米草光合碳的分配[J]. 生态环境学报, 2019, 28(2): 270−275

    RAN S S, SHI Y, HUANG H, et al. Researching photosynthesized carbon allocation of S. alterniflora following 13C pulse-labeling[J]. Ecology and Environmental Sciences, 2019, 28(2): 270−275
    [97] 孙昭安, 陈清, 韩笑, 等. 13C脉冲标记法定量冬小麦光合碳分配及其向地下的输入[J]. 环境科学, 2018, 39(6): 2837−2844

    SUN Z A, CHEN Q, HAN X, et al. Estimation of winter wheat photosynthesized carbon distribution and allocation belowground via 13C pulse-labeling[J]. Environmental Science, 2018, 39(6): 2837−2844
    [98] WANG Z G, QIU J X, VAN OOST K. A multi-isotope model for simulating soil organic carbon cycling in eroding landscapes (WATEM_C v1.0)[J]. Geoscientific Model Development, 2020, 13(10): 4977−4992 doi: 10.5194/gmd-13-4977-2020
    [99] PARTON W J, SCHIMEL D S, COLE C V, et al. Analysis of factors controlling soil organic matter levels in Great Plains grasslands[J]. Soil Science Society of America Journal, 1987, 51(5): 1173−1179 doi: 10.2136/sssaj1987.03615995005100050015x
    [100] ANDRÉN O, KÄTTERER T. ICBM: the introductory carbon balance model for exploration of soil carbon balances[J]. Ecological Applications, 1997, 7(4): 1226−1236 doi: 10.1890/1051-0761(1997)007[1226:ITICBM]2.0.CO;2
    [101] BOUCHOMS S, WANG Z G, VANACKER V, et al. Evaluating the effects of soil erosion and productivity decline on soil carbon dynamics using a model-based approach[J]. SOIL, 2019, 5(2): 367−382 doi: 10.5194/soil-5-367-2019
    [102] ROSENBLOOM N A, HARDEN J W, NEFF J C, et al. Geomorphic control of landscape carbon accumulation[J]. Journal of Geophysical Research, 2006, 111(G1): G01004
    [103] YOO K, AMUNDSON R, HEIMSATH A M, et al. Erosion of upland hillslope soil organic carbon: Coupling field measurements with a sediment transport model[J]. Global Biogeochemical Cycles, 2005, 19(3): 1−19
    [104] BAISDEN W T, AMUNDSON R, BRENNER D L, et al. A multiisotope C and N modeling analysis of soil organic matter turnover and transport as a function of soil depth in a California annual grassland soil chronosequence[J]. Global Biogeochemical Cycles, 2002, 16(4): 1−26
    [105] ACTON P, FOX J, CAMPBELL E, et al. Carbon isotopes for estimating soil decomposition and physical mixing in well-drained forest soils[J]. Journal of Geophysical Research: Biogeosciences, 2013, 118(4): 1532−1545 doi: 10.1002/2013JG002400
    [106] AHRENS B, REICHSTEIN M, BORKEN W, et al. Bayesian calibration of a soil organic carbon model using Δ14C measurements of soil organic carbon and heterotrophic respiration as joint constraints[J]. Biogeosciences, 2014, 11(8): 2147−2168 doi: 10.5194/bg-11-2147-2014
    [107] AHRENS B, BRAAKHEKKE M C, GUGGENBERGER G, et al. Contribution of sorption, DOC transport and microbial interactions to the 14C age of a soil organic carbon profile: Insights from a calibrated process model[J]. Soil Biology and Biochemistry, 2015, 88: 390−402 doi: 10.1016/j.soilbio.2015.06.008
    [108] BERHE A A, HARDEN J W, TORN M S, et al. Linking soil organic matter dynamics and erosion-induced terrestrial carbon sequestration at different landform positions[J]. Journal of Geophysical Research: Biogeosciences, 2008, 113(G4): 1−12
    [109] ZHANG Q, WU J J, LEI Y, et al. Agricultural land use change impacts soil CO2 emission and its 13C-isotopic signature in central China[J]. Soil and Tillage Research, 2018, 177: 105−112 doi: 10.1016/j.still.2017.11.017
    [110] WERTH M, KUZYAKOV Y. Three-source partitioning of CO2 efflux from maize field soil by 13C natural abundance[J]. Journal of Plant Nutrition and Soil Science, 2009, 172(4): 487−499 doi: 10.1002/jpln.200700085
  • 加载中
图(3)
计量
  • 文章访问数:  245
  • HTML全文浏览量:  72
  • PDF下载量:  74
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-01-03
  • 录用日期:  2023-01-13
  • 网络出版日期:  2023-01-16
  • 刊出日期:  2023-02-10

目录

    /

    返回文章
    返回