留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

秸秆还田与施肥方式对稻麦轮作土壤细菌和真菌群落结构与多样性的影响

张翰林 白娜玲 郑宪清 李双喜 张娟琴 张海韵 周胜 孙会峰 吕卫光

张翰林, 白娜玲, 郑宪清, 李双喜, 张娟琴, 张海韵, 周胜, 孙会峰, 吕卫光. 秸秆还田与施肥方式对稻麦轮作土壤细菌和真菌群落结构与多样性的影响[J]. 中国生态农业学报(中英文), 2021, 29(3): 531-539. doi: 10.13930/j.cnki.cjea.200502
引用本文: 张翰林, 白娜玲, 郑宪清, 李双喜, 张娟琴, 张海韵, 周胜, 孙会峰, 吕卫光. 秸秆还田与施肥方式对稻麦轮作土壤细菌和真菌群落结构与多样性的影响[J]. 中国生态农业学报(中英文), 2021, 29(3): 531-539. doi: 10.13930/j.cnki.cjea.200502
ZHANG Hanlin, BAI Naling, ZHENG Xianqing, LI Shuangxi, ZHANG Juanqin, ZHANG Haiyun, ZHOU Sheng, SUN Huifeng, LYU Weiguang. Effects of straw returning and fertilization on soil bacterial and fungal community structures and diversities in rice-wheat rotation soil[J]. Chinese Journal of Eco-Agriculture, 2021, 29(3): 531-539. doi: 10.13930/j.cnki.cjea.200502
Citation: ZHANG Hanlin, BAI Naling, ZHENG Xianqing, LI Shuangxi, ZHANG Juanqin, ZHANG Haiyun, ZHOU Sheng, SUN Huifeng, LYU Weiguang. Effects of straw returning and fertilization on soil bacterial and fungal community structures and diversities in rice-wheat rotation soil[J]. Chinese Journal of Eco-Agriculture, 2021, 29(3): 531-539. doi: 10.13930/j.cnki.cjea.200502

秸秆还田与施肥方式对稻麦轮作土壤细菌和真菌群落结构与多样性的影响

doi: 10.13930/j.cnki.cjea.200502
基金项目: 

国家重点研发计划项目 2016YFD0200804

上海市科技兴农推广项目 T20180414

上海市农业科学院卓越团队建设计划项目 Nongke Chuang 2017(A-03)

详细信息
    作者简介:

    张翰林, 主要研究方向为农田微生物驱动碳氮循环。E-mail: zhanghanlinchick@163.com

    通讯作者:

    吕卫光, 主要研究方向为农田生态。E-mail: lvweiguang@saas.sh.cn

  • 中图分类号: S154.3

Effects of straw returning and fertilization on soil bacterial and fungal community structures and diversities in rice-wheat rotation soil

Funds: 

the National Key Research and Development Program of China 2016YFD0200804

the Shanghai Agriculture Applied Technology Development Program, China T20180414

the Outstanding Team Program of Shanghai Academy of Agricultural Sciences Nongke Chuang 2017(A-03)

More Information
  • 摘要: 为探索秸秆还田与施肥方式2种农田措施对水稻-小麦(稻麦)轮作土壤微生物群落的影响,阐释其对土壤细菌和真菌群落结构和多样性的影响机制,本研究通过7年稻麦轮作长期定位监测试验,设置无肥空白(CK)、常规施肥(RT)、秸秆还田+常规施肥(RS)和秸秆还田+缓释肥(SS)4个处理,采用Illumina Miseq高通量测序技术,分析土壤细菌和真菌群落结构和多样性,探索影响微生物群落的主控环境因子。结果表明,SS作物产量在2016年和2017年分别比RT显著提高11.6%和8.2%(水稻)、4.8%和3.6%(小麦),与RS无显著差异。相比RT,秸秆还田处理显著降低了土壤pH,提升了土壤有机碳和铵态氮含量;与RS相比,SS处理提高了铵态氮含量。秸秆还田处理提升了真菌群落多样性,但对细菌群落多样性无显著影响。SS与RS在细菌真菌群落多样性方面均无显著差异。相关性分析表明,细菌群落多样性与土壤pH呈负相关,与总氮含量呈正相关;真菌群落多样性则与土壤有机碳含量显著正相关。NMDS分析表明,施肥对于细菌群落结构影响较大(55.61%),真菌群落结构则对秸秆还田响应更明显(26.94%)。与RT相比,秸秆还田显著提升了细菌放线菌门、绿弯菌门、厚壁菌门的相对丰度,同时显著提升了真菌中子囊菌门的相对丰度,降低了担子菌门和接合菌门的相对丰度,加强了土壤碳氮循环能力并抑制了病原菌。SS与RS相比,仅提升了真菌中子囊菌门的相对丰度。综上,秸秆还田配施缓释肥有助于维持或者提高土壤养分有效性、作物产量及细菌真菌群落多样性,可以促进土壤碳氮循环。
  • 图  1  2015—2017年秸秆还田与施肥方式对水稻(a)和小麦(b)产量的影响

    CK: 不施肥空白; RT: 常规施肥; RS: 秸秆还田+常规施肥; SS: 秸秆还田+缓释肥。不同小写字母表示同一年份不同处理间差异显著(P < 0.05)。

    Figure  1.  Effects of straw returning and fertilization on rice (a) and wheat (b) yields in 2015-2017

    CK: no fertilizer; RT: conventional fertilization; RS: straw returning + conventional fertilization; SS: straw returning + slow-release fertilization. Different lowercase letters indicate significant differences among treatments in the same year at P < 0.05.

    图  2  秸秆还田与施肥方式对水稻-小麦轮作土壤细菌(a)和真菌(b)门水平群落组成的影响

    CK: 不施肥空白; RT: 常规施肥; RS: 秸秆还田+常规施肥; SS: 秸秆还田+缓释肥。

    Figure  2.  Effects of straw returning and fertilization on community composition of soil bacteria (a) and fungi (b) in phylum level of rice-wheat rotation fields

    CK: no fertilizer; RT: conventional fertilization; RS: straw returning + conventional fertilization; SS: straw returning + slow-release fertilization.

    图  3  秸秆还田与施肥方式下水稻-小麦轮作土壤细菌(a)和真菌(b)LEfSe分析(LDA值> 3)

    CK: 不施肥空白; RT: 常规施肥; RS: 秸秆还田+常规施肥; SS: 秸秆还田+缓释肥。

    Figure  3.  LEfSe analysis of soil bacterial (a) and fungal (b) taxa (LDA score > 3) of rice-wheat rotation fields under different treatments of straw returning and fertilization

    CK: no fertilizer; RT: conventional fertilization; RS: straw returning + conventional fertilization; SS: straw returning + slow-release fertilization.

    图  4  秸秆还田与施肥方式下水稻-小麦轮作土壤细菌(a)和真菌(b)群落NMDS分析

    CK: 不施肥空白; RT: 常规施肥; RS: 秸秆还田+常规施肥; SS: 秸秆还田+缓释肥。

    Figure  4.  NMDS analysis of soil bacterial (a) and fungal (b) communities of rice-wheat rotation fields under different treatments of straw returning and fertilization

    CK: no fertilizer; RT: conventional fertilization; RS: straw returning + conventional fertilization; SS: straw returning + slow-release fertilization.

    表  1  秸秆还田与施肥方式对水稻-小麦轮作土壤理化性质的影响

    Table  1.   Soil properties of rice-wheat rotation fields under different treatments of straw returning and fertilization

    处理
    Treatment
    pH 土壤有机碳
    Soil organiccarbon(g∙kg-1)
    总氮
    Totalnitrogen(g∙kg-1)
    铵态氮
    Ammonia nitrogen(mg∙kg-1)
    硝态氮
    Nitrate nitrogen(mg∙kg-1)
    总磷
    Total phosphorus(g∙kg-1)
    有效磷
    Available phosphorus(mg∙kg-1)
    CK 8.43±0.13a 8.43±0.31c 0.91±0.08b 63.51±2.74c 4.10±0.15a 0.95±0.06b 30.49±1.02c
    RT 8.21±0.15b 9.03±0.56b 1.01±0.10a 64.68±3.45c 4.33±0.18a 1.15±0.09a 31.91±1.31bc
    RS 8.03±0.16c 10.52±0.55a 1.04±0.09a 75.60±3.11b 4.42±0.21a 1.12±0.08a 33.12±1.25ab
    SS 8.09±0.11c 11.26±0.62a 1.05±0.11a 92.23±4.08a 4.34±0.16a 1.14±0.10a 34.27±1.33a
    CK: 不施肥空白; RT: 常规施肥; RS: 秸秆还田+常规施肥; SS: 秸秆还田+缓释肥。表中数据为3个数值的平均值±标准误; 同列数据后不同字母表示处理间差异显著(P < 0.05)。CK: no fertilizer; RT: conventional fertilization; RS: straw returning + conventional fertilization; SS: straw returning + slow-release fertilization. Date in the table are mean±SE. Values followed by different letters in a column are significantly different (P < 0.05).
    下载: 导出CSV

    表  2  秸秆还田与施肥方式对水稻-小麦轮作土壤细菌和真菌群落多样性指数(Chao1和Shannon)的影响

    Table  2.   Soil bacterial and fungal community diversity indexes (Chao 1 and Shannon) of rice-wheat rotation fields under different treatments of straw returning and fertilization

    处理 细菌Bacteria 真菌Fungi
    Chao1 Shannon Chao1 Shannon
    CK 2365±157b 9.52±0.07b 571±19b 5.83±0.23b
    RT 2766±121a 9.74±0.11a 559±31b 5.65±0.25b
    RS 2795±132a 9.77±0.10a 630±25a 6.51±0.35a
    SS 2760±89a 9.74±0.12a 631±40a 6.48±0.28a
    CK: 不施肥空白; RT: 常规施肥; RS: 秸秆还田+常规施肥; SS: 秸秆还田+缓释肥。表中数据为3个数值的平均值±标准误; 同列数据后不同字母表示处理间差异显著(P < 0.05)。CK: no fertilizer; RT: conventional fertilization; RS: straw returning + conventional fertilization; SS: straw returning + slow-release fertilization. Date in the table are mean ± SE. Values followed by different letters in a column are significantly different (P < 0.05).
    下载: 导出CSV

    表  3  水稻-小麦轮作土壤细菌和真菌多样性指数(Shannon和Chao1)与理化性质间的相关性分析

    Table  3.   Correlation analysis between bacterial and fungal diversity indexes (Shannon and Chao1) and soil properties of rice-wheat rotation fields

    指标
    Index
    pH 土壤有机碳
    Soil organiccarbon
    总氮
    Totalnitrogen
    铵态氮
    Ammonia nitrogen
    硝态氮
    Nitratenitrogen
    总磷
    Total phosphorus
    有效磷
    Available phosphorus
    细菌
    Bacteria
    Shannon -0.838** 0.516 0.766* 0.409 0.635 0.629 0.500
    Chao1 -0.824** 0.584 0.764* 0.407 0.625 0.650 0.496
    真菌
    Fungi
    Shannon -0.557 0.703* 0.448 0.527 0.375 0.137 0.588
    Chao1 -0.576 0.725* 0.479 0.553 0.396 0.176 0.535
    **和*分别表示P < 0.01和P < 0.05水平显著相关。** and * mean significant correlation at P < 0.01and P < 0.05 levels, respectively.
    下载: 导出CSV
  • [1] LI X B, HE H B, ZHANG X D, et al. Distinct responses of soil fungal and bacterial nitrate immobilization to land conversion from forest to agriculture[J]. Soil Biology and Biochemistry, 2019, 134: 81-89 doi: 10.1016/j.soilbio.2019.03.023
    [2] HAMM A C, TENUTA M, KRAUSE D O, et al. Bacterial communities of an agricultural soil amended with solid pig and dairy manures, and urea fertilizer[J]. Applied Soil Ecology, 2016, 103: 61-71 doi: 10.1016/j.apsoil.2016.02.015
    [3] 王小玲, 马琨, 伏云珍, 等. 免耕覆盖及有机肥施用对土壤真菌群落组成及多样性的影响[J]. 应用生态学报, 2020, 31(3): 890-898 https://www.cnki.com.cn/Article/CJFDTOTAL-YYSB202003024.htm

    WANG X L, MA K, FU Y Z, et al. Effects of no-tillage, mulching, and organic fertilization on soil fungal community composition and diversity[J]. Chinese Journal of Applied Ecology, 2020, 31(3): 890-898 https://www.cnki.com.cn/Article/CJFDTOTAL-YYSB202003024.htm
    [4] SILVA M C P E, SEMENOV A V, SCHMITT H, et al. Microbe-mediated processes as indicators to establish the normal operating range of soil functioning[J]. Soil Biology and Biochemistry, 2013, 57: 995-1002 doi: 10.1016/j.soilbio.2012.10.002
    [5] HOLLISTER E B, SCHADT C W, PALUMBO A V, et al. Structural and functional diversity of soil bacterial and fungal communities following woody plant encroachment in the southern Great Plains[J]. Soil Biology and Biochemistry, 2010, 42(10): 1816-1824 doi: 10.1016/j.soilbio.2010.06.022
    [6] 逯非, 王效科, 韩冰, 等. 稻田秸秆还田: 土壤固碳与甲烷增排[J]. 应用生态学报, 2010, 21(1): 99-108 https://www.cnki.com.cn/Article/CJFDTOTAL-YYSB201001016.htm

    LU F, WANG X K, HAN B, et al. Straw return to rice paddy: Soil carbon sequestration and increased methane emission[J]. Chinese Journal of Applied Ecology, 2010, 21(1): 99-108 https://www.cnki.com.cn/Article/CJFDTOTAL-YYSB201001016.htm
    [7] 郭梨锦, 曹凑贵, 张枝盛, 等. 耕作方式和秸秆还田对稻田表层土壤微生物群落的短期影响[J]. 农业环境科学学报, 2013, 32(8): 1577-1584 https://www.cnki.com.cn/Article/CJFDTOTAL-NHBH201308015.htm

    GUO L J, CAO C G, ZHANG Z S, et al. Short-term effects of tillage practices and wheat-straw returned to rice fields on topsoil microbial community structure and microbial diversity in central China[J]. Journal of Agro-Environment Science, 2013, 32(8): 1577-1584 https://www.cnki.com.cn/Article/CJFDTOTAL-NHBH201308015.htm
    [8] SUN R B, ZHANG X X, GUO X S, et al. Bacterial diversity in soils subjected to long-term chemical fertilization can be more stably maintained with the addition of livestock manure than wheat straw[J]. Soil Biology and Biochemistry, 2015, 88: 9-18 doi: 10.1016/j.soilbio.2015.05.007
    [9] CHEN Z M, WANG H Y, LIU X W, et al. Changes in soil microbial community and organic carbon fractions under short-term straw return in a rice-wheat cropping system[J]. Soil and Tillage Research, 2017, 165: 121-127 doi: 10.1016/j.still.2016.07.018
    [10] 萨如拉, 杨恒山, 邰继承, 等. 秸秆还田条件下腐熟剂对不同质地土壤真菌多样性的影响[J]. 中国生态农业学报(中英文), 2020, 28(7): 1061-1071 //www.primetvmedia.com/zgstny/ch/reader/view_abstract.aspx?file_no=2020-0713&flag=1

    SA R L, YANG H S, TAI J C, et al. Effect of straw maturing agents on fungal diversity in soil with different textures soil under return straw conditions[J]. Chinese Journal of Eco-Agriculture, 2020, 28(7): 1061-1071 //www.primetvmedia.com/zgstny/ch/reader/view_abstract.aspx?file_no=2020-0713&flag=1
    [11] YANG Y C, ZHANG M, LI Y C, et al. Controlled release urea improved nitrogen use efficiency, activities of leaf enzymes, and rice yield[J]. Soil Science Society of America Journal, 2012, 76(6): 2307-2317 doi: 10.2136/sssaj2012.0173
    [12] PAN P, JIANG H M, ZHANG J F, et al. Shifts in soil bacterial communities induced by the controlled-release fertilizer coatings[J]. Journal of Integrative Agriculture, 2016, 15(12): 2855-2864 doi: 10.1016/S2095-3119(15)61309-0
    [13] 孙会峰, 周胜, 付子轼, 等. 秸秆与缓释肥配施对水稻产量及氮素吸收利用率的影响[J]. 中国稻米, 2015, 21(4): 95-98 https://www.cnki.com.cn/Article/CJFDTOTAL-DAOM201504021.htm

    SUN H F, ZHOU S, FU Z S, et al. Effects of application of controlled-release fertilizer combined with wheat straw on rice yield and nitrogen use efficiency[J]. China Rice, 2015, 21(4): 95-98 https://www.cnki.com.cn/Article/CJFDTOTAL-DAOM201504021.htm
    [14] 中国科学院南京土壤研究所. 土壤理化分析[M]. 上海: 上海科学技术出版社, 1981: 62−142

    Nanjing Institute of Soil Science, Chinese Academy of Sciences. Soil Physical and Chemical Property Analysis[M]. Shanghai: Shanghai Scientific and Technical Publishers, 1981: 62−142
    [15] ZHOU J Z, WU L Y, DENG Y, et al. Reproducibility and quantitation of amplicon sequencing-based detection[J]. The ISME Journal, 2011, 5(8): 1303-1313 doi: 10.1038/ismej.2011.11
    [16] SCHOCH C L, SEIFERT K A, HUHNDORF S, et al. Nuclear ribosomal internal transcribed spacer (ITS) region as a universal DNA barcode marker for Fungi[J]. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109(16): 6241-6246 doi: 10.1073/pnas.1117018109
    [17] HU X J, LIU J J, WEI D, et al. Soil bacterial communities under different long-term fertilization regimes in three locations across the black soil region of Northeast China[J]. Pedosphere, 2018, 28(5): 751-763 doi: 10.1016/S1002-0160(18)60040-2
    [18] ZHU J, PENG H, JI X H, et al. Effects of reduced inorganic fertilization and rice straw recovery on soil enzyme activities and bacterial community in double-rice paddy soils[J]. European Journal of Soil Biology, 2019, 94: 103116 doi: 10.1016/j.ejsobi.2019.103116
    [19] ABUJABHAH I S, BOUND S A, DOYLE R, et al. Effects of biochar and compost amendments on soil physico- chemical properties and the total community within a temperate agricultural soil[J]. Applied Soil Ecology, 2016, 98: 243-253 doi: 10.1016/j.apsoil.2015.10.021
    [20] WU Y P, WU J X, MA Y J, et al. Dynamic changes in soil chemical properties and microbial community structure in response to different nitrogen fertilizers in an acidified celery soil[J]. Soil Ecology Letters, 2019, 1(3/4): 105-113 doi: 10.1007/s42832-019-0012-z
    [21] 张鑫, 周卫, 艾超, 等. 秸秆还田下氮肥运筹对夏玉米不同时期土壤酶活性及细菌群落结构的影响[J]. 植物营养与肥料学报, 2020, 26(2): 295-306 https://www.cnki.com.cn/Article/CJFDTOTAL-ZWYF202002010.htm

    ZHANG X, ZHOU W, AI C, et al. Effects of nitrogen management on soil enzyme activities and bacterial community structure in summer maize growing stagesunder straw incorporation[J]. Journal of Plant Nutrition and Fertilizers, 2020, 26(2): 295-306 https://www.cnki.com.cn/Article/CJFDTOTAL-ZWYF202002010.htm
    [22] 周阳, 黄旭, 赵海燕, 等. 麦秸秆和沼液配施对水稻苗期生长和土壤微生物的调控[J]. 土壤学报, 2020, 57(2): 479-489 https://www.cnki.com.cn/Article/CJFDTOTAL-TRXB202002021.htm

    ZHOU Y, HUANG X, ZHAO H Y, et al. Regulation of wheat straw and biogas slurry application on rice seedling growth and soil microorganism[J]. Acta Pedologica Sinica, 2020, 57(2): 479-489 https://www.cnki.com.cn/Article/CJFDTOTAL-TRXB202002021.htm
    [23] 张鹏, 贾志宽, 王维, 等. 秸秆还田对宁南半干旱地区土壤团聚体特征的影响[J]. 中国农业科学, 2012, 45(8): 1513-1520 doi: 10.3864/j.issn.0578-1752.2012.08.007

    ZHANG P, JIA Z K, WANG W, et al. Effects of straw returning on characteristics of soil aggregates in semi-arid areas in southern Ningxia of China[J]. Scientia Agricultura Sinica, 2012, 45(8): 1513-1520 doi: 10.3864/j.issn.0578-1752.2012.08.007
    [24] KAISER K, WEMHEUER B, KOROLKOW V, et al. Driving forces of soil bacterial community structure, diversity, and function in temperate grasslands and forests[J]. Scientific Reports, 2016, 6: 33696 doi: 10.1038/srep33696
    [25] 何敏红, 何跃军, 吴春玉, 等. 石漠化强度对喀斯特植被演替过程土壤真菌组成及多样性的影响[J]. 菌物学报, 2019, 38(4): 471-484 https://www.cnki.com.cn/Article/CJFDTOTAL-JWXT201904002.htm

    HE M H, HE Y J, WU C Y, et al. Effects of rocky desertification intensity on soil fungal composition and diversity during karst vegetation succession[J]. Mycosystema, 2019, 38(4): 471-484 https://www.cnki.com.cn/Article/CJFDTOTAL-JWXT201904002.htm
    [26] FAN F L, YIN C, TANG Y J, et al. Probing potential microbial coupling of carbon and nitrogen cycling during decomposition of maize residue by 13C-DNA-SIP[J]. Soil Biology and Biochemistry, 2014, 70: 12-21 doi: 10.1016/j.soilbio.2013.12.002
    [27] TRIVEDI P, ANDERSON I C, SINGH B K. Microbial modulators of soil carbon storage: integrating genomic and metabolic knowledge for global prediction[J]. Trends in Microbiology, 2013, 21(12): 641-651 doi: 10.1016/j.tim.2013.09.005
    [28] XU M, XIAN Y, WU J, et al. Effect of biogas slurry addition on soil properties, yields, and bacterial composition in the rice-rape rotation ecosystem over 3 years[J]. Journal of Soils and Sediments, 2019, 19(5): 2534-2542 https://www.zhangqiaokeyan.com/academic-journal-foreign_other_thesis/0204113063302.html
    [29] ZHAO S C, QIU S J, XU X P, et al. Change in straw decomposition rate and soil microbial community composition after straw addition in different long-term fertilization soils[J]. Applied Soil Ecology, 2019, 138: 123-133 http://www.sciencedirect.com/science/article/pii/S092913931830876X
    [30] SOUZA R C, MENDES I C, REIS-JUNIOR F B, et al. Shifts in taxonomic and functional microbial diversity with agriculture: How fragile is the Brazilian Cerrado?[J]. BMC Microbiology, 2016, 16: 42 http://europepmc.org/articles/PMC4794851/
    [31] WANG F, LIANG Y T, JIANG Y J, et al. Planting increases the abundance and structure complexity of soil core functional genes relevant to carbon and nitrogen cycling[J]. Scientific Reports, 2015, 5: 14345 http://www.nature.com/articles/srep14345
    [32] SUN Q Q, WANG R, HU Y X, et al. Spatial variations of soil respiration and temperature sensitivity along a steep slope of the semiarid Loess Plateau[J]. PLoS One, 2018, 13(4): e0195400 http://europepmc.org/abstract/MED/29624600
    [33] PROCTER A C, ELLIS J C, FAY P A, et al. Fungal community responses to past and future atmospheric CO2 differ by soil type[J]. Applied and Environmental Microbiology, 2014, 80(23): 7364-7377 http://med.wanfangdata.com.cn/Paper/Detail/PeriodicalPaper_PM25239904
    [34] SPATAFORA J W, CHANG Y, BENNY G L, et al. A phylum-level phylogenetic classification of zygomycete fungi based on genome-scale data[J]. Mycologia, 2016, 108(5): 1028-1046 http://www.ncbi.nlm.nih.gov/pubmed/27738200
    [35] GRYGANSKYI A P, HUMBER R A, SMITH M E, et al. Phylogenetic lineages in Entomophthoromycota[J]. Persoonia-Molecular Phylogeny and Evolution of Fungi, 2013, 30(1): 94-105 http://europepmc.org/articles/PMC3734969/
  • 加载中
图(4) / 表(3)
计量
  • 文章访问数:  515
  • HTML全文浏览量:  72
  • PDF下载量:  492
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-06-26
  • 录用日期:  2020-11-23
  • 刊出日期:  2021-03-01

目录

    /

    返回文章
    返回