Volume 31 Issue 3
Mar.  2023
Turn off MathJax
Article Contents
TAO R R, LU Y, YU Q, MA Q, DING Y G, QIAN J, DING J F, LI C Y, ZHU X K, GUO W S, ZHU M. Effects of salt stress on physiological characteristics and yield of different salt-tolerant wheat varieties[J]. Chinese Journal of Eco-Agriculture, 2023, 31(3): 428−437 doi: 10.12357/cjea.20220164
Citation: TAO R R, LU Y, YU Q, MA Q, DING Y G, QIAN J, DING J F, LI C Y, ZHU X K, GUO W S, ZHU M. Effects of salt stress on physiological characteristics and yield of different salt-tolerant wheat varieties[J]. Chinese Journal of Eco-Agriculture, 2023, 31(3): 428−437 doi: 10.12357/cjea.20220164

Effects of salt stress on physiological characteristics and yield of different salt-tolerant wheat varieties

doi: 10.12357/cjea.20220164
Funds:  This study was supported by Young Scientists Fund of the National Natural Science Foundation of China (31901433) and Jiangsu Province Graduate Research and Innovation Program (KYCX21-3241).
More Information
  • Soil salinity is a global issue that affects wheat production, and it is of great interest to improve the production efficiency of wheat in saline fields. A comprehensive understanding of salt-tolerance mechanisms and the selection of reliable screening indices are crucial for breeding salt-tolerant wheat cultivars. Previous studies have reported the performance of wheat under salt stress and controlled experimental conditions, such as potted plants, seawater (saltwater) irrigation, hydroponics, and salt ponds, but could not simulate the actual production environment in the field and reflect the law of crop growth in a natural state. How salinity stress affects wheat yield, and the physiological indicators that contribute to yield formation under saline field conditions are not yet to be established. Five spring wheat varieties with significant differences in salt tolerance (salt-tolerant varieties: ‘NM21’ ‘YM20’ ‘YFM4’; salt-sensitive varieties: ‘YM23’ ‘AN1124’) screened in a previous experiment were grown at two sites with significantly different soil salinity, namely: non-saline (control, soil salinity before sowing was 0.770±0.062 g∙kg−1) and saline (soil salinity before sowing was 3.294±0.198 g∙kg−1) fields, in Dafeng, Jiangsu, China. The yield and its components, post-anthesis chlorophyll content, chlorophyll fluorescence Fv/Fm, malondialdehyde content, and proline content were measured. The results showed that the leaf area index, dry matter accumulation, and tillers number decreased significantly in saline field. Moreover, compared with the control, wheat yield in saline field decreased significantly and was only 26.2% of the control. The number of spikes, kernels per spike, and 1000-grain weight also decreased significantly. The number of spikes, which decreased by 60.7%, was the main constraint on yield production, followed by the 1000-grain weight, which also decreased. Salt stress also caused a significant decrease in chlorophyll relative content (SPAD value) and chlorophyll fluorescence Fv/Fm but significantly increased the malondialdehyde and proline contents; the range of change differed among varieties. Salt-tolerant varieties had a lower decrease in chlorophyll content and chlorophyll fluorescence Fv/Fm and a lower increase in malondialdehyde content but a higher increase in proline content, therefore, there was a lower decrease in yield. Correlation analysis was carried out for the physiological characteristics at the flowering stage, yield, and its constituent factors in wheat with different salt tolerances. The results showed that there was a significant positive correlation between chlorophyll fluorescence Fv/Fm and the number of spikes, 1000-grain weight, and yield, and SPAD value was positively correlated with dry matter accumulation. A significant positive correlation was observed between dry matter accumulation and the number of spikes, 1000-grain weight, and yield, indicating that salt stress inhibits photosynthesis in wheat by reducing chlorophyll content and chlorophyll fluorescence Fv/Fm, reducing the production of photosynthetic products, consequently resulting in a final yield reduction. Hence, in field identification, SPAD value and chlorophyll fluorescence Fv/Fm at the flowering stage can be used as fast and reliable indices for salt tolerance in wheat. Furthermore, ‘YM20’ had the lowest yield reduction rate and better overall performance, making it suitable for planting in Dafeng saline land.
  • loading
  • [1]
    MICKELBART M V, HASEGAWA P M, BAILEY-SERRES J. Genetic mechanisms of abiotic stress tolerance that translate to crop yield stability[J]. Nature Reviews Genetics, 2015, 16(4): 237−251 doi: 10.1038/nrg3901
    [2]
    SMAJGL A, TOAN T Q, NHAN D K, et al. Responding to rising sea levels in the Mekong Delta[J]. Nature Climate Change, 2015, 5(2): 167−174 doi: 10.1038/nclimate2469
    [3]
    HASSAN M U, CHATTHA M U, KHAN I, et al. Heat stress in cultivated plants: nature, impact, mechanisms, and mitigation strategies—a review[J]. Plant Biosystems, 2021, 155(2): 211−234 doi: 10.1080/11263504.2020.1727987
    [4]
    KHAN M S, RIZVI A, SAIF S, et al. Phosphate-solubilizing microorganisms in sustainable production of wheat: Current perspective[M]//KUMAR V, KUAMR M, SHARMA S, et al. Probiotics in Agroecosystem. Singapore: Springer, 2017: 51−81
    [5]
    马雅琴, 翁跃进. 引进春小麦种质耐盐性的鉴定评价[J]. 作物学报, 2005, 31(1): 58−64 doi: 10.3321/j.issn:0496-3490.2005.01.011

    MA Y Q, WENG Y J. Evaluation for salt tolerance in spring wheat cultivars introduced from abroad[J]. Acta Agronomica Sinica, 2005, 31(1): 58−64 doi: 10.3321/j.issn:0496-3490.2005.01.011
    [6]
    宫文萍, 李洪振, 付希强, 等. 部分CIMMYT小麦种质的耐盐性鉴定与评价[J]. 麦类作物学报, 2018, 38(9): 1065−1071 doi: 10.7606/j.issn.1009-1041.2018.09.07

    GONG W P, LI H Z, FU X Q, et al. Identification and evaluation of salinity tolerance in some CIMMYT wheat germplasm[J]. Journal of Triticeae Crops, 2018, 38(9): 1065−1071 doi: 10.7606/j.issn.1009-1041.2018.09.07
    [7]
    郭超, 胡思远, 郑青焕, 等. 部分美国小麦种质资源的耐盐性鉴定[J]. 麦类作物学报, 2015, 35(8): 1076−1084 doi: 10.7606/j.issn.1009-1041.2015.08.07

    GUO C, HU S Y, ZHENG Q H, et al. Identification of salinity tolerance of some American wheat germplasm[J]. Journal of Triticeae Crops, 2015, 35(8): 1076−1084 doi: 10.7606/j.issn.1009-1041.2015.08.07
    [8]
    彭智, 李龙, 柳玉平, 等. 小麦芽期和苗期耐盐性综合评价[J]. 植物遗传资源学报, 2017, 18(4): 638−645

    PENG Z, LI L, LIU Y P, et al. Evaluation of salinity tolerance in wheat (Triticum aestium) genotypes at germination and seedling stages[J]. Journal of Plant Genetic Resources, 2017, 18(4): 638−645
    [9]
    TAO R R, DING J F, LI C Y, et al. Evaluating and screening of agro-physiological indices for salinity stress tolerance in wheat at the seedling stage[J]. Frontiers in Plant Science, 2021, 12: 646175 doi: 10.3389/fpls.2021.646175
    [10]
    鲍士旦. 土壤农化分析[M]. 3版. 北京: 中国农业出版社, 2000

    BAO S D. Soil and Agricultural Chemistry Analysis[M]. Beijing: China Agriculture Press, 2000
    [11]
    郝建军, 刘延吉. 植物生理学实验技术[M]. 2版. 沈阳: 辽宁科学技术出版社, 2001

    HAO J J, LIU Y J. Experimental Technology of Plant Physiology [M]. Shenyang: Liaoning Science and Technology Press, 2001
    [12]
    BATES L S, WALDREN R P, TEARE I D. Rapid determination of free proline for water-stress studies[J]. Plant and Soil, 1973, 39(1): 205−207 doi: 10.1007/BF00018060
    [13]
    傅秀云, 戚好智, 张桂欣, 等. 小麦耐盐突变体的耐盐性鉴定[J]. 山东农业科学, 1991(2): 23−26

    FU X Y, QI H Z, ZHANG G X, et al. Salt tolerance identification of salt tolerant mutants in wheat[J]. Shandong Agricultural Sciences, 1991(2): 23−26
    [14]
    彭新华, 王云强, 贾小旭, 等. 新时代中国土壤物理学主要领域进展与展望[J]. 土壤学报, 2020, 57(5): 1071−1087

    PENG X H, WANG Y Q, JIA X X, et al. Some key research fields of Chinese soil physics in the new era: progresses and perspectives[J]. Acta Pedologica Sinica, 2020, 57(5): 1071−1087
    [15]
    李树华, 许兴, 惠红霞, 等. 不同小麦品种(系)对盐碱胁迫的生理及农艺性状反应[J]. 麦类作物学报, 2000, 20(4): 63−67 doi: 10.3969/j.issn.1009-1041.2000.04.014

    LI S H, XU X, HUI H X, et al. Salinity stress on the physiological and agronomic traits of wheat[J]. Acta Tritical Crops, 2000, 20(4): 63−67 doi: 10.3969/j.issn.1009-1041.2000.04.014
    [16]
    王秀芹, 徐媛婧, 高杰, 等. 土壤盐碱度对小麦主要农艺性状和产量的影响[J]. 农业科技通讯, 2018(7): 123−128, 305 doi: 10.3969/j.issn.1000-6400.2018.07.043

    WANG X Q, XU Y J, GAO J, et al. Effects of soil salinity on main agronomic traits and yield of wheat[J]. Bulletin of Agricultural Science and Technology, 2018(7): 123−128, 305 doi: 10.3969/j.issn.1000-6400.2018.07.043
    [17]
    孟祥浩, 刘义国, 张玉梅, 等. 盐胁迫对不同耐盐类型小麦花后光合特性及产量的影响[J]. 中国农学通报, 2015, 31(24): 46−52 doi: 10.11924/j.issn.1000-6850.casb15030052

    MENG X H, LIU Y G, ZHANG Y M, et al. Effects of salt stress on photosynthetic characteristics and yield of different salt-tolerant wheat varieties[J]. Chinese Agricultural Science Bulletin, 2015, 31(24): 46−52 doi: 10.11924/j.issn.1000-6850.casb15030052
    [18]
    马洪波, 宁运旺, 陈杰, 等. 不同基因型小麦品种(系)的耐盐性评价[J]. 麦类作物学报, 2012, 32(6): 1049−1054 doi: 10.7606/j.issn.1009-1041.2012.06.007

    MA H B, NING Y W, CHEN J, et al. Evaluation on salt tolerance of different genotypes of wheat cultivars (strains)[J]. Journal of Triticeae Crops, 2012, 32(6): 1049−1054 doi: 10.7606/j.issn.1009-1041.2012.06.007
    [19]
    申玉香, 郭文善, 周影, 等. 盐分胁迫对小麦花后剑叶衰老特性和产量的影响[J]. 扬州大学学报(农业与生命科学版), 2007, 28(1): 59−63

    SHEN Y X, GUO W S, ZHOU Y, et al. Effects of salt stress on flag leaf senescence after anthesis and yield in wheat[J]. Journal of Yangzhou University (Agricultural and Life Science Edition), 2007, 28(1): 59−63
    [20]
    王美娥, 陈明, 郎有忠, 等. 盐分胁迫对小麦光合生产及产量的影响[J]. 江苏农业学报, 2013, 29(4): 727−733 doi: 10.3969/j.issn.1000-4440.2013.04.006

    WANG M E, CHEN M, LANG Y Z, et al. Effects of salt stress on photosynthetic production and yield of wheat[J]. Jiangsu Journal of Agricultural Sciences, 2013, 29(4): 727−733 doi: 10.3969/j.issn.1000-4440.2013.04.006
    [21]
    MAAS E V, POSS J A. Salt sensitivity of wheat at various growth stages[J]. Irrigation Science, 1989, 10(1): 29−40
    [22]
    MAAS E V, GRIEVE C M. Spike and leaf development of sal-stressed wheat[J]. Crop Science, 1990, 30(6): 1309−1313 doi: 10.2135/cropsci1990.0011183X003000060031x
    [23]
    孟祥浩, 张玉梅, 薛远赛, 等. 滨海盐碱地条件下不同小麦品种(系)花后旗叶可溶性物质、灌浆速率及产量因素的分析[J]. 作物杂志, 2016(1): 135−139

    MENG X H, ZHANG Y M, XUE Y S, et al. Analysis of soluble substances, filling rate and yield of wheat under the coastal saline at post floral stage[J]. Crops, 2016(1): 135−139
    [24]
    刘宛, 胡文玉, 谢甫绨, 等. NaCl胁迫及外源自由基对离体小麦叶片O2和膜脂质过氧化的影响(简报)[J]. 植物生理学通讯, 1995, 31(1): 26−29

    LIU W, HU W Y, XIE F T, et al. Effects of NaCl stress and exogenous free radicals and membrane lipid peroxidation of isolated wheat leaves[J]. Plant Physiology Communications, 1995, 31(1): 26−29
    [25]
    陈刘平, 陈巧艳, 李新华, 等. NaCl胁迫对小麦苗期和灌浆期生理生化特性及产量性状的影响[J]. 江苏农业科学, 2019, 47(13): 85−90

    CHEN L P, CHEN Q Y, LI X H, et al. Impacts of NaCl stress on physiological-biochemical characteristics and yield traits of wheat at seedling and filling stage[J]. Jiangsu Agricultural Sciences, 2019, 47(13): 85−90
    [26]
    靖姣姣, 张颖, 白志英, 等. 盐胁迫对小麦代换系渗透调节物质的影响及染色体效应[J]. 植物遗传资源学报, 2015, 16(4): 743−750

    JING J J, ZHANG Y, BAI Z Y, et al. The effects of salt stress on osmoregulation substance and chromosome of wheat substitution lines[J]. Journal of Plant Genetic Resources, 2015, 16(4): 743−750
    [27]
    黄勇, 郭猛, 张红瑞, 等. 盐胁迫对石竹种子萌发和幼苗生长的影响[J]. 草业学报, 2020, 29(12): 105−111 doi: 10.11686/cyxb2020027

    HUANG Y, GUO M, ZHANG H R, et al. Effects of salt stress on seed germination and seedling growth of carnation[J]. Acta Prataculturae Sinica, 2020, 29(12): 105−111 doi: 10.11686/cyxb2020027
    [28]
    HOSHIDA H, TANAKA Y, HIBINO T, et al. Enhanced tolerance to salt stress in transgenic rice that overexpresses chloroplast glutamine synthetase[J]. Plant Molecular Biology, 2000, 43(1): 103−111 doi: 10.1023/A:1006408712416
    [29]
    许大全, 张玉忠, 张荣铣. 植物光合作用的光抑制[J]. 植物生理学通讯, 1992, 28(4): 237−243

    XU D Q, ZHANG Y Z, ZHANG R X. Photoinhibition of photosynthesis in plants[J]. Plant Physiology Communications, 1992, 28(4): 237−243
    [30]
    彭建云. 不同抗盐性小麦品种叶绿素荧光特性与其抗盐性关系的研究[D]. 济南: 山东师范大学, 2008

    PENG J Y. Study on the relationship of chlorophyll fluorescence characters and salt resistance of different salt-resistant wheat varieties[D]. Ji’nan: Shandong Normal University, 2008
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Tables(8)

    Article Metrics

    Article views (261) PDF downloads(53) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return