Turn off MathJax
Article Contents
CHEN P, WANG J T, DONG X L, TIAN L, ZHANG X J, LIU X J, SUN H Y. Regulation of fulvic acid on tomato yield and quality under saline water irrigation[J]. Chinese Journal of Eco-Agriculture, 2023, 31(3): 1−11 doi: 10.12357/cjea.20220178
Citation: CHEN P, WANG J T, DONG X L, TIAN L, ZHANG X J, LIU X J, SUN H Y. Regulation of fulvic acid on tomato yield and quality under saline water irrigation[J]. Chinese Journal of Eco-Agriculture, 2023, 31(3): 1−11 doi: 10.12357/cjea.20220178

Regulation of fulvic acid on tomato yield and quality under saline water irrigation

doi: 10.12357/cjea.20220178
Funds:  This study was supported by the National Key Research and Development Project (2021YFD1900904) and the CAS Engineering Laboratory for Efficient Utilization of Saline Resources (KFJ-PTXM-017).
More Information
  • Corresponding author: E-mail: hysun@sjziam.ac.cn
  • Received Date: 2022-03-10
  • Accepted Date: 2022-07-12
  • Available Online: 2022-08-23
  • In view of the problem that the lack of freshwater resources restricts crop growth in saline-alkali areas around Bohai Sea, the regulation effect of fulvic acid on the yield and quality of tomato under saline water irrigation was studied according to the regional salt water resource endowment. In this study, the integrated water and fertilizer test method for substrate cultivation was adopted, and three fulvic acid concentrations were set: 0 mg·L−1, 450 mg·L−1, and 900 mg·L−1; five saltwater concentrations : 1 g·L−1, 3 g·L−1, 5 g·L−1, 7 g·L−1, 9 g·L−1, a total of 15 treatments. The results showed that compared with no fulvic acid addition, fulvic acid addition had obvious yield-increasing effects on tomatoes under different saline water concentrations. The yields of 450 and 900 mg·L−1 fulvic acid were increased by 6.14%−21.08% and 12.83%−34.63%, respectively. With the increase of salt water concentration, tomato fruit weight, fruit number per plant, water consumption, yield water use efficiency, vitamin C and lycopene content per fruit dry matter decreased significantly, and fruit reducing sugar increased first and then decreased. Under saline water irrigation, the application of 450 and 900 mg·L−1 fulvic acid could increase tomato single fruit weight, fruit number per plant, water consumption, yield water use efficiency, Vitamin C, lycopene and reducing sugar content per fruit dry matter. With the increase of fulvic acid concentration, proline content and K+/Na+ in tomato leaves increased significantly, while MDA and Na+ decreased significantly. The yield and water consumption per plant were positively correlated with K+/Na+, and negatively correlated with proline, malondialdehyde and Na+; Vitamin C and lycopene in tomato fruit were significantly positively correlated with K+/Na+, and negatively correlated with malondialdehyde and Na+; There was a significant negative correlation between reducing sugar and malondialdehyde and Na+. The above results showed that fulvic acid could alleviate the inhibition of salt water irrigation on tomato yield, and also promote the yield water use efficiency, Vitamin C, lycopene and reducing sugar content of dry matter per unit fruit. It could alleviate salt stress mainly by promoting the accumulation of organic osmotic adjustment substance proline, increasing K+/Na+ and reducing the production of membrane lipid peroxidation product malondialdehyde.
  • loading
  • [1]
    王树强. 地下水资源可持续利用的制度架构−以华北平原为例[J]. 地下水, 2012, 34(3): 6−8 doi: 10.3969/j.issn.1004-1184.2012.03.03t

    WANG S Q. Sustainable use of groundwater resources in the system frame — As an example of the North China Plain[J]. Ground Water, 2012, 34(3): 6−8 doi: 10.3969/j.issn.1004-1184.2012.03.03t
    [2]
    闫宗正, 房琴, 路杨, 等. 河北省地下水压采政策下水价机制调控冬小麦灌水量研究[J]. 灌溉排水学报, 2018, 37(8): 91−97, 128

    YAN Z Z, FANG Q, LU Y, et al. Changing water price to regulate groundwater extraction for irrigating winter wheat in North China Plain[J]. Journal of Irrigation and Drainage, 2018, 37(8): 91−97, 128
    [3]
    张喜英, 刘小京, 陈素英, 等. 环渤海低平原农田多水源高效利用机理和技术研究[J]. 中国生态农业学报, 2016, 24(8): 995−1004 doi: 10.13930/j.cnki.cjea.160162

    ZHANG X Y, LIU X J, CHEN S Y, et al. Efficient utilization of various water sources in farmlands in the low plain nearby Bohai Sea[J]. Chinese Journal of Eco-Agriculture, 2016, 24(8): 995−1004 doi: 10.13930/j.cnki.cjea.160162
    [4]
    李四强, 荷洁, 贺书宏. 营养与健康 宏兴隆发展战略之路[J]. 中国食品, 2012(18): 46−47 doi: 10.3969/j.issn.1000-1085.2012.18.020

    LI S Q, HE J, HE S H. Nutrition and health Hongxinglong development strategy[J]. China Food, 2012(18): 46−47 doi: 10.3969/j.issn.1000-1085.2012.18.020
    [5]
    谢碧霞, 李安平. 膳食纤维[M]. 北京: 科学出版社, 2006

    XIE B X, LI A P. Dietary Fiber[M]. Beijing: Science Press, 2006
    [6]
    祁春节. 中国园艺产业国际竞争力研究[M]. 北京: 中国农业出版社, 2006

    QI C J. A study on the international competitiveness of horticultural industry in China[M]. Beijing: China Agriculture Press, 2006
    [7]
    MAGGIO A, PASCALE S D, ANGELINO G, et al. Physiological response of tomato to saline irrigation in long-term salinized soils[J]. European Journal of Agronomy, 2004, 21(2): 149−159 doi: 10.1016/S1161-0301(03)00092-3
    [8]
    SHALHEVET J, YARON B. Effect of soil and water salinity on tomato growth[J]. Plant and Soil, 1973, 39(2): 285−292 doi: 10.1007/BF00014795
    [9]
    CUARTERO J, FERNÁNDEZ-MUÑOZ R. Tomato and salinity[J]. Scientia Horticulturae, 1998, 78(1/2/3/4): 83−125
    [10]
    MARSIC N K, VODNIK D, MIKULIC-PETKOVSEK M, et al. Photosynthetic traits of plants and the biochemical profile of tomato fruits are influenced by grafting, salinity stress, and growing season[J]. Journal of Agricultural and Food Chemistry, 2018, 66(22): 5439−5450 doi: 10.1021/acs.jafc.8b00169
    [11]
    NEBAUER S G, SÁNCHEZ M, MARTÍNEZ L, et al. Differences in photosynthetic performance and its correlation with growth among tomato cultivars in response to different salts[J]. Plant Physiology and Biochemistry: PPB, 2013, 63: 61−69 doi: 10.1016/j.plaphy.2012.11.006
    [12]
    ZHU J K. Salt and drought stress signal transduction in plants[J]. Annual Review of Plant Biology, 2002, 53: 247−273 doi: 10.1146/annurev.arplant.53.091401.143329
    [13]
    MAGÁN J J, GALLARDO M, THOMPSON R B, et al. Effects of salinity on fruit yield and quality of tomato grown in soil-less culture in greenhouses in Mediterranean climatic conditions[J]. Agricultural Water Management, 2008, 95(9): 1041−1055 doi: 10.1016/j.agwat.2008.03.011
    [14]
    QARYOUTI M M, QAWASMI W, HAMDAN H, et al. Influence of nacl salinity stress on yield, plant water uptake and drainage water of tomato grown in soilless culture[J]. Acta Horticulturae, 2007(747): 539−545
    [15]
    BOARI F, CANTORE V, DI VENERE D, et al. Pyraclostrobin can mitigate salinity stress in tomato crop[J]. Agricultural Water Management, 2019, 222: 254−264 doi: 10.1016/j.agwat.2019.06.003
    [16]
    CANTORE V, PACE B, TODOROVIĆ M, et al. Influence of salinity and water regime on tomato for processing[J]. Italian Journal of Agronomy, 2012, 7(1): 10 doi: 10.4081/ija.2012.e10
    [17]
    EL-MOGY M M, GARCHERY C, STEVENS R. Irrigation with salt water affects growth, yield, fruit quality, storability and marker-gene expression in cherry tomato[J]. Acta Agriculturae Scandinavica, Section B — Soil & Plant Science, 2018, 68(8): 727−737
    [18]
    MITCHELL J P, SHENNAN C, GRATTAN S R, et al. Tomato fruit yields and quality under water deficit and salinity[J]. Journal of the American Society for Horticultural Science, 1991, 116(2): 215−221 doi: 10.21273/JASHS.116.2.215
    [19]
    王斌, 张强, 黄高鉴, 等. 水盐胁迫下脱硫石膏对苏打型碱化土理化性质及玉米产量的影响[J]. 安徽农业科学, 2011, 39(5): 2734−2736 doi: 10.3969/j.issn.0517-6611.2011.05.080

    WANG B, ZHANG Q, HUANG G J, et al. Effect of desulphurization gypsum on physical and chemical characteristics of soda-type of alkaline soil and maize yield under water-salt stress[J]. Journal of Anhui Agricultural Sciences, 2011, 39(5): 2734−2736 doi: 10.3969/j.issn.0517-6611.2011.05.080
    [20]
    宓永宁, 左建. 沸石对盐碱地玉米增产效果的研究[J]. 盐碱地利用, 1995, 25(1): 26−28

    MI Y N, ZUO J. Effect of zeolite on increase production of maize in saline-alkali soil[J]. Utilization of Saline-Alkali Soil, 1995, 25(1): 26−28
    [21]
    SHE D L, SUN X Q, GAMARELDAWLA A H D, et al. Benefits of soil biochar amendments to tomato growth under saline water irrigation[J]. Scientific Reports, 2018, 8(1): 14743 doi: 10.1038/s41598-018-33040-7
    [22]
    DU S T, LIU Y, ZHANG P, et al. Atmospheric application of trace amounts of nitric oxide enhances tolerance to salt stress and improves nutritional quality in spinach (Spinacia oleracea L.)[J]. Food Chemistry, 2015, 173: 905−911 doi: 10.1016/j.foodchem.2014.10.115
    [23]
    何庆元, 向仕华, 吴萍, 等. 硫化氢对盐胁迫条件下大豆抗氧化酶活性的影响[J]. 大豆科学, 2015, 34(3): 427−431

    HE Q Y, XIANG S H, WU P, et al. Effects of hydrogen sulfide alleviates salt stress in soybean (Glycine max) antioxidative system[J]. Soybean Science, 2015, 34(3): 427−431
    [24]
    张春平, 何平, 刘海英, 等. 外源CO供体高铁血红蛋白对盐胁迫下决明种子萌发及幼苗生理特性的影响[J]. 中国中药杂志, 2012, 37(2): 189−197

    ZHANG C P, HE P, LIU H Y, et al. Effect of exogenous carbon monoxide donor hematin on seed germination and physiological characteristics of Cassia obtusifolia seedlings under NaCl stress[J]. China Journal of Chinese Materia Medica, 2012, 37(2): 189−197
    [25]
    MIAO Y X, LUO X Y, GAO X X, et al. Exogenous salicylic acid alleviates salt stress by improving leaf photosynthesis and root system architecture in cucumber seedlings[J]. Scientia Horticulturae, 2020, 272: 109577 doi: 10.1016/j.scienta.2020.109577
    [26]
    张林青. 盐胁迫下油菜素内酯对番茄产量和品质的影响[J]. 北方园艺, 2012(20): 23−25

    ZHANG L Q. Effect of brassinolide on yield and quality of tomato under salt stress[J]. Northern Horticulture, 2012(20): 23−25
    [27]
    郭小俊, 谢成俊. 外源ABA对NaCl胁迫下黄瓜幼苗不同离子含量的影响[J]. 中国蔬菜, 2008(9): 27−30

    GUO X J, XIE C J. Effect of exogenous ABA on ionic contents of cucumber seedlings under NaCl stress[J]. China Vegetables, 2008(9): 27−30
    [28]
    束胜, 孙锦, 郭世荣, 等. 外源腐胺对盐胁迫下黄瓜幼苗叶片PSⅡ光化学特性和体内离子分布的影响[J]. 园艺学报, 2010, 37(7): 1065−1072 doi: 10.16420/j.issn.0513-353x.2010.07.005

    SHU S, SUN J, GUO S R, et al. Effects of exogenous putrescine on PSⅡ photochemistry and ion distribution of cucumber seedlings under salt stress[J]. Acta Horticulturae Sinica, 2010, 37(7): 1065−1072 doi: 10.16420/j.issn.0513-353x.2010.07.005
    [29]
    周艳, 刘慧英, 崔金霞, 等. 外源GSH对NaCl胁迫下番茄幼苗叶片及根系离子微域分布的影响[J]. 植物营养与肥料学报, 2017, 23(4): 964−972 doi: 10.11674/zwyf.16311

    ZHOU Y, LIU H Y, CUI J X, et al. Effects of exogenous glutathione on ions micro-distribution in leaf and root of tomato seedlings under NaCl stress[J]. Journal of Plant Nutrition and Fertilizer, 2017, 23(4): 964−972 doi: 10.11674/zwyf.16311
    [30]
    崔云浩, 梁祎, 王军娥, 等. 纳米硅对盐胁迫下甜椒幼苗生长及抗氧化特性的影响[J]. 山西农业科学, 2021, 49(10): 1162−1165 doi: 10.3969/j.issn.1002-2481.2021.10.05

    CUI Y H, LIANG Y, WANG J E, et al. Effects of nano-silicon on seedling growth and antioxidant characteristics of sweet pepper under salt stress[J]. Journal of Shanxi Agricultural Sciences, 2021, 49(10): 1162−1165 doi: 10.3969/j.issn.1002-2481.2021.10.05
    [31]
    于学健. 黄腐酸调控甜菊糖苷合成的机理及甜菊糖苷的酶法转化[D]. 北京: 中国农业大学, 2016

    YU X J. Mechanism of stevioside synthesis regulation by fulvic acid and its enzymatic modification[D]. Beijing: China Agricultural University, 2016
    [32]
    王学奎, 黄见良. 植物生理生化实验原理与技术[M]. 北京: 高等教育出版社, 2015

    WANG X K, HUANG J L. Principles and Techniques of Plant Physiological Biochemical Experiment[M]. Beijing: Higher Education Press, 2015
    [33]
    鲍士旦. 土壤农化分析[M]. 3版. 北京: 中国农业出版社, 2000

    BAO S D. Soil and Agricultural Chemistry Analysis[M]. Beijing: China Agriculture Press, 2000
    [34]
    马芸, 姜瑞, 吴燕. 西瓜中番茄红素含量的测定方法评价[J]. 宁夏农林科技, 2013, 54(10): 88−89 doi: 10.3969/j.issn.1002-204X.2013.10.041

    MA Y, JIANG R, WU Y. Evaluation of determination method of lycopene content in watermelon[J]. Ningxia Journal of Agriculture and Forestry Science and Technology, 2013, 54(10): 88−89 doi: 10.3969/j.issn.1002-204X.2013.10.041
    [35]
    ZHANG P F, DAI Y Y, MASATERU S, et al. Interactions of salinity stress and flower thinning on tomato growth, yield, and water use efficiency[J]. Communications in Soil Science and Plant Analysis, 2017, 48(22): 2601−2611
    [36]
    MUNNS R, TESTER M. Mechanisms of salinity tolerance[J]. Annual Review of Plant Biology, 2008, 59: 651−681 doi: 10.1146/annurev.arplant.59.032607.092911
    [37]
    亓艳艳, 骆洪义, 公华锐, 等. 黄腐酸对基质栽培番茄生长、产量及品质的影响[J]. 山东农业科学, 2018, 50(5): 87−91

    QI Y Y, LUO H Y, GONG H R, et al. Effects of fulvic acid treatments on development, yield and quality of tomato in substrate culture[J]. Shandong Agricultural Sciences, 2018, 50(5): 87−91
    [38]
    李静, 李世莹, 李青松. 黄腐酸用量对番茄产量及品质的影响[J]. 农学学报, 2022, 12(2): 54−59 doi: 10.11923/j.issn.2095-4050.cjas2020-0002

    LI J, LI S Y, LI Q S. Effects of different amounts of fulvic acid on tomato yield and quality[J]. Journal of Agriculture, 2022, 12(2): 54−59 doi: 10.11923/j.issn.2095-4050.cjas2020-0002
    [39]
    孙倩. 提取腐殖酸及其对土壤环境和植物生长的影响[D]. 南京: 南京农业大学, 2016

    SUN Q. Derived humic acids and its effects on soil environment and growth of plants[D]. Nanjing: Nanjing Agricultural University, 2016
    [40]
    朱会调, 高登涛, 白茹, 等. 黄腐酸对阳光玫瑰葡萄果实品质及产量的影响[J]. 石河子大学学报(自然科学版), 2021, 39(5): 590−596

    ZHU H T, GAO D T, BAI R, et al. Effects of fulvic acid on berry quality and yield of Shine Muscat grape[J]. Journal of Shihezi University (Natural Science), 2021, 39(5): 590−596
    [41]
    卢林纲. 黄腐酸及其在农业上的应用[J]. 现代化农业, 2001(5): 9−10 doi: 10.3969/j.issn.1001-0254.2001.05.030

    LU L G. Fulvic acid and its application in agriculture[J]. Modernizing Agriculture, 2001(5): 9−10 doi: 10.3969/j.issn.1001-0254.2001.05.030
    [42]
    REINA-SÁNCHEZ A, ROMERO-ARANDA R, CUARTERO J. Plant water uptake and water use efficiency of greenhouse tomato cultivars irrigated with saline water[J]. Agricultural Water Management, 2005, 78(1/2): 54−66
    [43]
    SHRIVASTAVA P, KUMAR R. Soil salinity: a serious environmental issue and plant growth promoting bacteria as one of the tools for its alleviation[J]. Saudi Journal of Biological Sciences, 2015, 22(2): 123−131 doi: 10.1016/j.sjbs.2014.12.001
    [44]
    高原, 郭晓青, 李福德, 等. 基施黄腐酸肥料情况下减施化肥提高设施辣椒产量和品质[J]. 植物营养与肥料学报, 2020, 26(3): 594−602

    GAO Y, GUO X Q, LI F D, et al. Improvement of yield and quality of greenhouse-grown pepper through basal application of fulvic acid fertilizer under chemical fertilizer reduction[J]. Journal of Plant Nutrition and Fertilizers, 2020, 26(3): 594−602
    [45]
    闫嘉欣, 常青, 杨治平, 等. 黄腐酸液体配方肥对大棚黄瓜产量及品质的影响[J]. 中国农学通报, 2019, 35(10): 47−51 doi: 10.11924/j.issn.1000-6850.casb18120108

    YAN J X, CHANG Q, YANG Z P, et al. Fulvic acid formulated liquid fertilizer: effect on greenhouse cucumber yield and quality[J]. Chinese Agricultural Science Bulletin, 2019, 35(10): 47−51 doi: 10.11924/j.issn.1000-6850.casb18120108
    [46]
    姚东伟. 黄腐酸对番茄生长、产量及光合特性的影响[D]. 太谷: 山西农业大学, 2003

    YAO D W. Effect of fulvic acid on growth, yield and photosynthetic characteristic of tomato[D]. Taigu: Shanxi Agricultural University, 2003
    [47]
    海霞, 米俊珍, 赵宝平, 等. 外源亚精胺对盐胁迫下燕麦幼苗生长及生理特性的影响[J]. 西北植物学报, 2021, 41(6): 1003−1011

    HAI X, MI J Z, ZHAO B P, et al. Effects of exogenous spermidine on the growth and physiological characteristics in oat seedlings under salt stress[J]. Acta Botanica Boreali-Occidentalia Sinica, 2021, 41(6): 1003−1011
    [48]
    刘晓涵. 外源添加生物炭和黄腐酸钾缓解烟草盐胁迫机理研究[D]. 郑州: 河南农业大学, 2020

    LIU X H. The study on relieving response mechanism of tobacco in salt stress by exogenous biochar and potassium fulvic acid[D]. Zhengzhou: Henan Agricultural University, 2020
    [49]
    DINLER B S, GUNDUZER E, TEKINAY T. Pre-treatment of fulvic acid plays a stimulant role in protection of soybean (Glycine max L.) leaves against heat and salt stress[J]. Acta Biologica Cracoviensia Series Botanica, 2016, 58(1): 29−41 doi: 10.1515/abcsb-2016-0002
    [50]
    张小冰, 王晓丽. 腐植酸钾浸种对玉米幼苗保护酶及MDA的影响[J]. 运城学院学报, 2011, 29(5): 42−44 doi: 10.3969/j.issn.1008-8008.2011.05.012

    ZHANG X B, WANG X L. Effects of soaking seed with potassium humate on the activity of protective enzymes and the level of MDA in maize seedlings[J]. Journal of Yuncheng University, 2011, 29(5): 42−44 doi: 10.3969/j.issn.1008-8008.2011.05.012
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(3)  / Tables(5)

    Article Metrics

    Article views (161) PDF downloads(23) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return