Turn off MathJax
Article Contents
MA X Q, HE H Y, ZHAO J Y, FANG T, ZHANG J Z, PAN X B, PAN Z H, WANG J, HU Q. Spatiotemporal variation of dry-wet climate during wheat growing seasons from 1961 to 2020 in China[J]. Chinese Journal of Eco-Agriculture, 2022, 31(0): 1−11 doi: 10.12357/cjea.20220371
Citation: MA X Q, HE H Y, ZHAO J Y, FANG T, ZHANG J Z, PAN X B, PAN Z H, WANG J, HU Q. Spatiotemporal variation of dry-wet climate during wheat growing seasons from 1961 to 2020 in China[J]. Chinese Journal of Eco-Agriculture, 2022, 31(0): 1−11 doi: 10.12357/cjea.20220371

Spatiotemporal variation of dry-wet climate during wheat growing seasons from 1961 to 2020 in China

doi: 10.12357/cjea.20220371
Funds:  This study was supported by the National Key Research and Development Program of China (2021YFD1901104), the Major Science and Technology Program of Inner Mongolia Autonomous Region (2020ZD0005).
More Information
  • Corresponding author: E-mail: huq@cau.edu.cn
  • Received Date: 2022-05-13
  • Accepted Date: 2022-08-01
  • Available Online: 2022-09-05
  • As the intensity of climate change increases, global warming continues to affect the hydrological cycle and precipitation characteristics. Changes occur at various locations owing to interregional differences in the intensity and distribution of precipitation and evapotranspiration. To determine the dry-wet climate distribution during the wheat growing season in wheat planting regions of China and the changes that have occurred over the past 60 years, we analyzed the temporal and spatial variation characteristics of China’s dry-wet climate over the inter-annual and inter-decadal periods from 1961 to 2020 (P1: 1961–1990; P2: 1991–2020). To explore how dry-wet climate changes, a series of dry-wet indices, such as effective precipitation, crop water demand, and water surplus and deficiency (difference between effective precipitation and crop water demand) were used. A Standardized Precipitation Evapotranspiration Index was used in this study for drought risk assessment in cropping regions. In this study, 524 meteorological stations with 60-year data records of China’s wheat planting regions were selected and divided into ten wheat planting regions. These regions are as follows. Spring wheat: Northeast China Spring Wheat Region, NES; Northern Inner Mongolia Spring Wheat Region, NIMS; Northwest China Spring Wheat Region, NWS; Northern Xinjiang Spring Wheat Region, NXJS. Winter wheat: Northern China Winter Wheat Region, NW; North China Plain Winter Wheat Region, NCW; Middle-Lower Reach of Yangtze River Winter Wheat Region, MLYRW; Southwest China Winter Wheat Region, SWS; South China Winter Wheat Region, SCW; Xinjiang Winter Wheat Region, XJW. The results showed that precipitation exceeded the crop water requirements during the wheat growing season in the SCW, SWW, and MLYRW regions over the past 60 years. Other regions experienced water deficits during wheat the growing season, with XJW (443 mm) and NXJS (495 mm) exhibiting the highest water deficit values. Estimates of effective precipitation, crop water demand, water surplus and deficit for the national wheat growing season ranged from 2.0–1320.0, 156.0–832.0, and 828.0–1081.0 mm, respectively. Both values showed a clear zonal distribution from southeast to northwest. In this study, drought frequency was calculated as 35.2%–59.6% for the national wheat growing season; it was more than 50.0% in the spring wheat regions and MLYRW regions. The frequencies of mild, moderate, and severe droughts during the wheat growing seasons were 18.7%–46.0%, 0–21.5%, and 1.7%–11.6%, respectively. The analysis showed that during the wheat growing season, effective precipitation volatility increased from 1961 to 2020, and crop water demand decreased and then increased again. The NCW and NW regions exhibited a drying climate, while the other regions showed a wetting climate trend. Further analysis revealed interregional differences in the climatic mechanisms of the wet-dry crisis in wheat planting regions. In NES, NIMS, NXJS, and XJW regions, effective precipitation increased and crop water demand decreased. Meanwhile, in MLYRW, effective precipitation and crop water demand increased, but the increase in precipitation was higher than that in crop water demand. Interdecadal variability in effective precipitation indicated a modest rising tendency; crop water demand declined in the P1 period and grew in the P2 period, whereas water surplus and deficit increased in the P1 period and decreased in the P2 period, respectively. This study makes an essential contribution to the research on the proper response of agriculture to climate change by showing the temporal and spatial variations of the dry-wet climate in China’s wheat regions.
  • loading
  • [1]
    DOUVILLE H, RAGHAVAN K, RENWICK J, et al. Water Cycle Changes[M]. IPCC. Climate change 2021: the physical science basis. Cambridge: Cambridge University Press, 2021
    [2]
    申双和, 张方敏, 盛琼. 1975—2004年中国湿润指数时空变化特征[J]. 农业工程学报, 2009, 25(1): 11−15

    SHEN S H, ZHANG F M, SHENG Q. Spatio-temporal changes of wetness index in China from 1975 to 2004[J]. Transactions of the Chinese Society of Agricultural Engineering, 2009, 25(1): 11−15
    [3]
    赵俊芳, 郭建平, 徐精文, 等. 基于湿润指数的中国干湿状况变化趋势[J]. 农业工程学报, 2010, 26(8): 18−24,386

    ZHAO J F, GUO J P, XU J W, et al. Trends of Chinese dry-wet condition based on wetness index[J]. Transactions of the Chinese Society of Agricultural Engineering, 2010, 26(8): 18−24,386
    [4]
    胡琦, 董蓓, 潘学标, 等. 1961—2014年中国干湿气候时空变化特征及成因分析[J]. 农业工程学报, 2017, 33(6): 124−132,315

    HU Q, DONG B, PAN X B, et al. Spatiotemporal variation and causes analysis of dry-wet climate over period of 1961–2014 in China[J]. Transactions of the Chinese Society of Agricultural Engineering, 2017, 33(6): 124−132,315
    [5]
    中华人民共和国统计局. 中国统计年鉴[M]. 北京: 中国统计出版社, 2020

    National Bureau of Statistics of China. China Statistical Yearbook[M]. Beijing: China Statistics Press, 2020
    [6]
    姜大膀, 王娜. IPCC AR6报告解读: 水循环变化[J]. 气候变化研究进展, 2021, 17(6): 699−704

    JIANG D B, WANG N. Water cycle changes: interpretation of IPCC AR6[J]. Climate Change Research, 2021, 17(6): 699−704
    [7]
    卫捷, 马柱国. Palmer干旱指数、地表湿润指数与降水距平的比较[J]. 地理学报, 2003, 58(7s): 117–124

    WEI J, MA Z G. Comparison of palmer drought severity index, percentage of precipitation anomaly and surface humid index[J]. Acta Geographica Sinica, 2003, 58(7s): 117–124
    [8]
    VICENTE-SERRANO S M, BEGUERÍA S, LÓPEZ-MORENO J I. A multiscalar drought index sensitive to global warming: the standardized precipitation evapotranspiration index[J]. Journal of Climate, 2010, 23(7): 1696−1718 doi: 10.1175/2009JCLI2909.1
    [9]
    史建国, 严昌荣, 何文清, 等. 黄河流域水分亏缺时空格局变化研究[J]. 自然资源学报, 2008, 23(1): 113−119

    SHI J G, YAN C R, HE W Q, et al. Study on spatial and temporal variation of water surplus and deficiency in Yellow River Basin[J]. Journal of Natural Resources, 2008, 23(1): 113−119
    [10]
    房全孝, 王建林, 于舜章. 华北平原小麦-玉米两熟制节水潜力与灌溉对策[J]. 农业工程学报, 2011, 27(7): 37−44

    FANG Q X, WANG J L, YU S Z. Water-saving potential and irrigation strategies for wheat-maize double cropping system in the North China Plain[J]. Transactions of the Chinese Society of Agricultural Engineering, 2011, 27(7): 37−44
    [11]
    ZENG R Y, YAO F M, ZHANG S, et al. Assessing the effects of precipitation and irrigation on winter wheat yield and water productivity in North China Plain[J]. Agricultural Water Management, 2021, 256: 107063 doi: 10.1016/j.agwat.2021.107063
    [12]
    赵彦茜, 肖登攀, 齐永青, 等. 华北平原不同降水年型和作物种植模式下的产量和耗水模拟[J]. 农业工程学报, 2018, 34(20): 108−116

    ZHAO Y X, XIAO D P, QI Y Q, et al. Crop yield and water consumption of different cropping patterns under different precipitation years in North China Plain[J]. Transactions of the Chinese Society of Agricultural Engineering, 2018, 34(20): 108−116
    [13]
    李亮. 气候变化条件下中国西北地区主要作物需水量时空演变及干旱指标研究[D]. 杨凌: 西北农林科技大学, 2019

    LI L. Impact of climate change on crop water requirement and drought indices in Northwest China[D]. Yangling: Northwest A & F University, 2019
    [14]
    张永, 陈发虎, 勾晓华, 等. 中国西北地区季节间干湿变化的时空分布−基于PDSI数据[J]. 地理学报, 2007, 62(11): 1142−1152

    ZHANG Y, CHEN F H, GOU X H, et al. The temporal and spatial distribution of seasonal dry-wet changes over the northwesterina: based on PDSI[J]. Acta Geographica Sinica, 2007, 62(11): 1142−1152
    [15]
    靳立亚, 李静, 王新, 等. 近50年来中国西北地区干湿状况时空分布[J]. 地理学报, 2004, 59(6): 847−854 doi: 10.3321/j.issn:0375-5444.2004.06.006

    JIN L Y, LI J, WANG X, et al. The temporal and spatial distribution of surface dry-wet conditions over northwestern China in recent 50 years[J]. Acta Geographica Sinica, 2004, 59(6): 847−854 doi: 10.3321/j.issn:0375-5444.2004.06.006
    [16]
    赵茹欣, 王会肖, 董宇轩. 气候变化对关中地区粮食产量的影响及趋势分析[J]. 中国生态农业学报(中英文), 2020, 28(4): 467−479

    ZHAO R X, WANG H X, DONG Y X. Impact of climate change on grain yield and its trend across Guanzhong region[J]. Chinese Journal of Eco-Agriculture, 2020, 28(4): 467−479
    [17]
    周晓红, 赵景波. 历史时期关中地区气候变化与灾害关系的分析[J]. 干旱区资源与环境, 2006, 20(3): 75−7

    ZHOU X H, ZHAO J B. Analysis on the relation between climatic changes and calamities in Guanzhong regional within the past 3000 years[J]. Journal of Arid Land Resources and Environment, 2006, 20(3): 75−7
    [18]
    王允, 刘普幸, 曹立国, 等. 基于湿润指数的1960—2011年中国西南地区地表干湿变化特征[J]. 自然资源学报, 2014, 29(5): 830−838

    WANG Y, LIU P X, CAO L G, et al. Characteristics of southwestern China dry-wet condition based on wetness index in 1960−2011[J]. Journal of Natural Resources, 2014, 29(5): 830−838
    [19]
    陆双飞, 殷晓洁, 韦晴雯, 等. 气候变化下西南地区植物功能型地理分布响应[J]. 生态学报, 2020, 40(1): 310−324

    LU S F, YIN X J, WEI Q W, et al. The geographical distribution response of plant functional types to climate change in southwestern China[J]. Acta Ecologica Sinica, 2020, 40(1): 310−324
    [20]
    戴声佩, 李海亮, 刘海清, 等. 全球气候变暖背景下华南地区农业气候资源时空变化特征[J]. 中国农业资源与区划, 2014, 35(1): 52−60

    DAI S P, LI H L, LIU H Q, et al. The spatio-temporal change characteristics of agriculture climate resources in Southern China under the background of global warming[J]. Chinese Journal of Agricultural Resources and Regional Planning, 2014, 35(1): 52−60
    [21]
    伍红雨, 杜尧东. 1961—2008年华南区域寒潮变化的气候特征[J]. 气候变化研究进展, 2010, 6(3): 192−197

    WU H Y, DU Y D. Climatic characteristics of cold waves in South China in the period 1961–2008[J]. Advances in Climate Change Research, 2010, 6(3): 192−197
    [22]
    中国科学院编辑委员会. 中国自然地理: 气侯[M]. 北京: 科学出版社, 1984

    Chinese Academy of Sciences Editorial Committee. Natural Geography of China: Meteorology[M]. Beijing: Science Press, 1984
    [23]
    吴绍洪, 尹云鹤, 郑度, 等. 近30年中国陆地表层干湿状况研究[J]. 中国科学(D辑: 地球科学), 2005, 35(3): 276–283

    WU S H, YIN Y H, ZHENG D, et al. Dry and wet conditions of land surface in China in recent 30 years[J. ] Scientia Sinica (D: Terrae), 2005, 35(3): 276–283
    [24]
    赵广才. 中国小麦种植区划研究(一)[J]. 麦类作物学报, 2010, 30(5): 886−895

    ZHAO G C. Study on Chinese wheat planting regionalization (I)[J]. Journal of Triticeae Crops, 2010, 30(5): 886−895
    [25]
    王文玉, 张强, 阳伏林. 半干旱榆中地区最小有效降水量及降水转化率的研究[J]. 气象学报, 2013, 71(5): 952−961

    WANG W Y, ZHANG Q, YANG F L. Study of the minimum available precipitation and the precipitation conversion rate in the semiarid Yuzhong region[J]. Acta Meteorologica Sinica, 2013, 71(5): 952−961
    [26]
    ALLEN R G, PEREIRA L S, RAES D, et al. Crop evapotranspiration guidelines for computing crop water requirements[J]. FAO Irrigation and drainage paper 56, 1998: 1−50
    [27]
    GAO X R, ZHAO Q, ZHAO X N, et al. Temporal and spatial evolution of the standardized precipitation evapotranspiration index (SPEI) in the Loess Plateau under climate change from 2001 to 2050[J]. Science of the Total Environment, 2017, 595: 191−200 doi: 10.1016/j.scitotenv.2017.03.226
    [28]
    马雪晴, 胡琦, 王靖, 等. 基于SPEI_KC的华北平原小麦玉米周年干旱特征分析[J]. 农业工程学报, 2020, 36(21): 164−174

    MA X Q, HU Q, WANG J, et al. Spatiotemporal variation characteristics of drought trend at annual of wheat-maize in the North China Plain based on SPEI_KC index[J]. Transactions of the Chinese Society of Agricultural Engineering, 2020, 36(21): 164−174
    [29]
    刘钰, Pereira L S. 对FAO推荐的作物系数计算方法的验证[J]. 农业工程学报, 2000, 16(5): 26−30

    LIU Y, PEREIRA L S. Validation of FAO methods for estimating crop coefficients[J]. Transactions of the Chinese Society of Agricultural Engineering, 2000, 16(5): 26−30
    [30]
    栗健, 岳耀杰, 潘红梅. 中国主要小麦种植区雨养条件下水分胁迫发生规律模拟[J]. 干旱地区农业研究, 2015, 33(1): 105−112

    LI J, YUE Y J, PAN H M. Simulation of water stress regularity in main wheat planting regions in China under rainfed conditions[J]. Agricultural Research in the Arid Areas, 2015, 33(1): 105−112
    [31]
    张雅芳. 全球主要农业生产国作物需水及缺水程度研究[D]. 石家庄: 河北师范大学, 2020

    ZHANG Y F. Study on global crop water demand and water shortage in major agricultural production countries[D]. Shijiazhuang: Hebei Normal University, 2020
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)  / Tables(2)

    Article Metrics

    Article views (111) PDF downloads(8) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return