Volume 31 Issue 2
Feb.  2023
Turn off MathJax
Article Contents
WANG J, LI P, ZONG Y Z, ZHANG D S, SHI X R, YANG J, HAO X Y. Effects of increased atmospheric CO2 concentration and temperature on carbon and nitrogen metabolism in maize at the grain filling stage[J]. Chinese Journal of Eco-Agriculture, 2023, 31(2): 325−335 doi: 10.12357/cjea.20220395
Citation: WANG J, LI P, ZONG Y Z, ZHANG D S, SHI X R, YANG J, HAO X Y. Effects of increased atmospheric CO2 concentration and temperature on carbon and nitrogen metabolism in maize at the grain filling stage[J]. Chinese Journal of Eco-Agriculture, 2023, 31(2): 325−335 doi: 10.12357/cjea.20220395

Effects of increased atmospheric CO2 concentration and temperature on carbon and nitrogen metabolism in maize at the grain filling stage

doi: 10.12357/cjea.20220395
Funds:  This work was supported by the National Natural Science Foundation of China (31871517), the Program for Selected Young Scientists Studying Abroad of Shanxi Province (20210041) and the Fundamental Research Program of Youth Scientists of Shanxi Province (20210302124656).
More Information
  • Corresponding author: E-mail: haoxingyu1976@126.com
  • Received Date: 2022-05-23
  • Accepted Date: 2022-09-15
  • Available Online: 2022-11-07
  • Publish Date: 2023-02-10
  • Future climate change will bring considerable challenges to agricultural production and food security. Presently, research on the effects of elevated CO2 concentration and increased temperature on crops is mostly focused on C3 crops, while research on C4 crops is rare. Maize is the most widely planted C4 crop in the world, it is of great significance to explore the response of maize to elevated CO2 concentration, increased temperature, and their combination to assess the impacts of future climate change on C4 crops. The maize variety ‘Xianyu-335’ was used. Four treatments were set up in controlled chambers: CK (CO2 concentration 400 μmol·mol−1, ambient temperature), EC (CO2 concentration 600 μmol·mol−1, ambient temperature), ET (CO2 concentration 400 μmol·mol−1, 2 ℃ higher than ambient temperature), and ECT (CO2 concentration 600 μmol·mol−1, 2 ℃ higher than ambient temperature). The related indices of photosynthetic physiology, glucose metabolism, and nitrogen metabolism of maize leaves were measured at the grain-filling stage, and the biomass of maize was measured after ripening. The results showed that: 1) under elevated CO2 concentrations, the chlorophyll content, sucrose content, net photosynthetic rate, sucrose synthase activity, pyruvate kinase activity, and α-ketoglutarate dehydrogenase activity in leaves were significantly increased (P<0.05), while glutamate synthase activity was significantly decreased (P<0.05). Additionally, aboveground biomass and spike mass were significantly increased by 35.8% and 170.2%, respectively (P<0.05). 2) At increased temperatures, the net photosynthetic rate, and activities of sucrose synthase and pyruvate kinase of leaves were significantly increased (P<0.05), while α-ketoglutarate dehydrogenase and glutamate synthase activities were significantly decreased (P<0.05), and the above-ground biomass and the biomasses of leaf, stem, and spike were significantly decreased by 37.0%, 28.7%, 32.3%, and 62.2%, respectively (P<0.05). 3) Under the combination of elevated CO2 concentration and increased temperature, the net photosynthetic rate and pyruvate kinase activity of leaves were significantly increased (P<0.05), whereas the chlorophyll content, and activities of α-ketoglutarate dehydrogenase and glutamate synthase were significantly decreased (P<0.05), and the leaf biomass was significantly decreased by 23.4% (P<0.05). In conclusion, elevated CO2 concentration could alleviate the negative impact of increased temperatures on maize biomass by increasing photosynthesis and the activity of enzymes related to glucose metabolism and photosynthetic metabolites. Under elevated CO2, increased temperature, or their combination, nitrogen metabolism in maize is inhibited; thus, leaves are subjected to nitrogen stress, which harms maize quality.
  • loading
  • [1]
    IPCC. Summary for Policymakers[M]//MASSON-DELMOTTE V, ZHAI P M, PIRANI A, et al. Climate Change 2021: The Physical Science Basis. Contribution of Working GroupⅠ to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press, 2021: 3−32
    [2]
    宗毓铮, 张函青, 李萍, 等. 大气CO2与温度升高对北方冬小麦旗叶光合特性、碳氮代谢及产量的影响[J]. 中国农业科学, 2021, 54(23): 4984−4995 doi: 10.3864/j.issn.0578-1752.2021.23.005

    ZONG Y Z, ZHANG H Q, LI P, et al. Effects of elevated atmospheric CO2 concentration and temperature on photosynthetic characteristics, carbon and nitrogen metabolism in flag leaves and yield of winter wheat in North China[J]. Scientia Agricultura Sinica, 2021, 54(23): 4984−4995 doi: 10.3864/j.issn.0578-1752.2021.23.005
    [3]
    黄辉, 王春乙, 白月明, 等. O3与CO2浓度倍增对大豆叶片及其总生物量的影响研究[J]. 中国生态农业学报, 2005, 13(4): 52−55

    HUANG H, WANG C Y, BAI Y M, et al. Impact of O3 and CO2 concentration doubling on the soybean leaf development and biomass[J]. Chinese Journal of Eco-Agriculture, 2005, 13(4): 52−55
    [4]
    任宏芳, 李阿立, 郝兴宇, 等. 大气CO2浓度和气温升高对谷子生长及产量的影响[J]. 生态环境学报, 2020, 29(6): 1123−1129

    REN H F, LI A L, HAO X Y, et al. Effects of elevated atmospheric CO2 concentration and temperature on the growth and yield of millet[J]. Ecology and Environmental Sciences, 2020, 29(6): 1123−1129
    [5]
    MYERS S S, ZANOBETTI A, KLOOG I, et al. Increasing CO2 threatens human nutrition[J]. Nature, 2014, 510(7503): 139−142 doi: 10.1038/nature13179
    [6]
    ZHU C W, KOBAYASHI K, LOLADZE I, et al. Carbon dioxide (CO2) levels this century will alter the protein, micronutrients, and vitamin content of rice grains with potential health consequences for the poorest rice-dependent countries[J]. Science Advances, 2018, 4(5): 1012−1012 doi: 10.1126/sciadv.aaq1012
    [7]
    张小琴, 郝兴宇, 宗毓铮, 等. CO2浓度升高对大豆糖代谢和脂肪代谢影响的研究[J]. 激光生物学报, 2022, 31(1): 70−78

    ZHANG X Q, HAO X Y, ZONG Y Z, et al. Effects of elevated CO2 concentration on sugar metabolism and fat metabolism in soybean[J]. Acta Laser Biology Sinica, 2022, 31(1): 70−78
    [8]
    郝兴宇, 李萍, 杨宏斌, 等. 大气CO2浓度升高对绿豆生长及C、N吸收的影响[J]. 中国生态农业学报, 2011, 19(4): 794−798 doi: 10.3724/SP.J.1011.2011.00794

    HAO X Y, LI P, YANG H B, et al. Effects of enriched atmospheric CO2 on the growth and uptake of N and C in mung bean[J]. Chinese Journal of Eco-Agriculture, 2011, 19(4): 794−798 doi: 10.3724/SP.J.1011.2011.00794
    [9]
    WANG Y L, ZHANG Y K, SHI Q H, et al. Decrement of sugar consumption in rice young panicle under high temperature aggravates spikelet number reduction[J]. Rice Science, 2020, 27(1): 44−55 doi: 10.1016/j.rsci.2019.12.005
    [10]
    HU Q, WEISS A, FENG S, et al. Earlier winter wheat heading dates and warmer spring in the US Great Plains[J]. Agricultural and Forest Meteorology, 2005, 135(1/2/3/4): 284−290
    [11]
    TAO F L, ZHANG S, ZHANG Z, et al. Maize growing duration was prolonged across China in the past three decades under the combined effects of temperature, agronomic management, and cultivar shift[J]. Global Change Biology, 2014, 20(12): 3686−3699 doi: 10.1111/gcb.12684
    [12]
    刘亮, 郝立华, 李菲, 等. CO2浓度和温度对玉米光合性能及水分利用效率的影响[J]. 农业工程学报, 2020, 36(5): 122−129 doi: 10.11975/j.issn.1002-6819.2020.05.014

    LIU L, HAO L H, LI F, et al. Effects of CO2 concentration and temperature on leaf photosynthesis and water use efficiency in maize[J]. Transactions of the Chinese Society of Agricultural Engineering, 2020, 36(5): 122−129 doi: 10.11975/j.issn.1002-6819.2020.05.014
    [13]
    张秀云, 姚玉璧, 雷俊, 等. CO2浓度升高与增温对马铃薯产量及品质的复合影响[J]. 干旱地区农业研究, 2019, 37(4): 240−246

    ZHANG X Y, YAO Y B, LEI J, et al. Collaborative impact of elevated CO2 concentration and temperature on potato yield and quality[J]. Agricultural Research in the Arid Areas, 2019, 37(4): 240−246
    [14]
    陈楠楠, 周超, 王浩成, 等. 大气二氧化碳含量升高对稻麦产量影响的整合分析[J]. 南京农业大学学报, 2013, 36(2): 83−90 doi: 10.7685/j.issn.1000-2030.2013.02.014

    CHEN N N, ZHOU C, WANG H C, et al. Impacts of elevated atmospheric CO2 on growth and yield of rice and wheat: a Meta-analysis[J]. Journal of Nanjing Agricultural University, 2013, 36(2): 83−90 doi: 10.7685/j.issn.1000-2030.2013.02.014
    [15]
    杨小倩, 郅慧, 张辉, 等. 玉米不同部位化学成分、药理作用、利用现状研究进展[J]. 吉林中医药, 2019, 39(6): 837−840

    YANG X Q, ZHI H, ZHANG H, et al. Research progress on chemical constituents, pharmacological activity and utilization status of different parts of corn[J]. Jilin Journal of Chinese Medicine, 2019, 39(6): 837−840
    [16]
    李明, 李迎春, 牛晓光, 等. 大气CO2浓度升高与氮肥互作对玉米花后碳氮代谢及产量的影响[J]. 中国农业科学, 2021, 54(17): 3647−3665 doi: 10.3864/j.issn.0578-1752.2021.17.008

    LI M, LI Y C, NIU X G, et al. Effects of elevated atmospheric CO2 concentration and nitrogen fertilizer on the yield of summer maize and carbon and nitrogen metabolism after flowering[J]. Scientia Agricultura Sinica, 2021, 54(17): 3647−3665 doi: 10.3864/j.issn.0578-1752.2021.17.008
    [17]
    HUANG Y L, FANG R, LI Y S, et al. Warming and elevated CO2 alter the transcriptomic response of maize (Zea mays L.) at the silking stage[J]. Scientific Reports, 2019, 9: 17948 doi: 10.1038/s41598-019-54325-5
    [18]
    高俊凤. 植物生理学实验指导[M]. 北京: 高等教育出版社, 2006

    GAO J F. Experimental Guidance for Plant Physiology[M]. Beijing: Higher Education Press, 2006
    [19]
    郭茜茜. 大豆子粒蛋白质积累与碳代谢关系的研究[D]. 哈尔滨: 东北农业大学, 2010

    GUO X X. Research on the relationship between protein accumulation and carbon metabolism in soybean grain[D]. Harbin: Northeast Agricultural University, 2010
    [20]
    BHATT R, BAIG M J, TIWARI H S, et al. Growth, yield and photosynthesis of Panicum maximum and Stylosanthes hamata under elevated CO2[J]. Journal of Environmental Biology, 2010, 31: 549−52
    [21]
    金奖铁, 李扬, 李荣俊, 等. 大气二氧化碳浓度升高影响植物生长发育的研究进展[J]. 植物生理学报, 2019, 55(5): 558−568 doi: 10.13592/j.cnki.ppj.2018.0533

    JIN J T, LI Y, LI R J, et al. Advances in studies on effects of elevated atmospheric carbon dioxide concentration on plant growth and development[J]. Plant Physiology Journal, 2019, 55(5): 558−568 doi: 10.13592/j.cnki.ppj.2018.0533
    [22]
    吴雪霞, 张圣美, 张爱冬, 等. 外源褪黑素对高温胁迫下茄子幼苗光合和生理特性的影响[J]. 植物生理学报, 2019, 55(1): 49−60

    WU X X, ZHANG S M, ZHANG A D, et al. Effect of exogenous melatonin on photosynthetic and physiological characteristics of eggplant seedlings under high temperature stress[J]. Plant Physiology Journal, 2019, 55(1): 49−60
    [23]
    刘紫娟, 李萍, 宗毓铮, 等. 大气CO2浓度升高对谷子生长发育及玉米螟发生的影响[J]. 中国生态农业学报, 2017, 25(1): 55−60

    LIU Z J, LI P, ZONG Y Z, et al. Effect of elevated [CO2] on growth and attack of Asian corn borers (Ostrinia furnacalis) in foxtail millet (Setaria italica)[J]. Chinese Journal of Eco-Agriculture, 2017, 25(1): 55−60
    [24]
    赵天宏, 黄国宏. 大气二氧化碳浓度升高对植物影响的研究进展[J]. 作物杂志, 2003(3): 3−6

    ZHAO T H, HUANG G H. Research Progress on the effects of elevated atmospheric carbon dioxide concentration on plants[J]. Crops, 2003(3): 3−6
    [25]
    AINSWORTH E, ROGERS A. The response of photosynthesis and stomatal conductance to rising [CO2]: mechanisms and environmental interactions[J]. Plant, Cell & Environment, 2007, 30(3): 258−270
    [26]
    CURTIS P S, WANG X Z. A meta-analysis of elevated CO2 effects on woody plant mass, form, and physiology[J]. Oecologia, 1998, 113(3): 299−313 doi: 10.1007/s004420050381
    [27]
    廖轶, 陈根云, 张海波, 等. 水稻叶片光合作用对开放式空气CO2浓度增高(FACE)的响应与适应[J]. 应用生态学报, 2002, 13(10): 1205−1209 doi: 10.3321/j.issn:1001-9332.2002.10.002

    LIAO Y, CHEN G Y, ZHANG H B, et al. Response and acclimation of photosynthesis in rice leaves to free-air CO2 enrichment (FACE)[J]. Chinese Journal of Applied Ecology, 2002, 13(10): 1205−1209 doi: 10.3321/j.issn:1001-9332.2002.10.002
    [28]
    谢辉, 范桂枝, 荆彦辉, 等. 植物对大气CO2浓度升高的光合适应机理研究进展[J]. 中国农业科技导报, 2006, 8(3): 29−34

    XIE H, FAN G Z, JING Y H, et al. Progress of research on photosynthetic acclimation of plant to elevated atmospheric CO2[J]. Review of China Agricultural Science and Technology, 2006, 8(3): 29−34
    [29]
    胡晓雪, 杜维俊, 杨珍平, 等. 大气CO2浓度和气温升高对野生大豆光合作用的影响[J]. 山西农业科学, 2015, 43(7): 798−801, 853

    HU X X, DU W J, YANG Z P, et al. Effect of elevated CO2 concentration and increased temperature on the photosynthesis of wild soybean[J]. Journal of Shanxi Agricultural Sciences, 2015, 43(7): 798−801, 853
    [30]
    赵娜, 孙艳, 王德玉, 等. 外源褪黑素对高温胁迫条件下黄瓜幼苗氮代谢的影响[J]. 植物生理学报, 2012, 48(6): 557−564 doi: 10.13592/j.cnki.ppj.2012.06.007

    ZHAO N, SUN Y, WANG D Y, et al. Effects of exogenous melatonin on nitrogen metabolism in cucumber seedlings under high temperature stress[J]. Plant Physiology Journal, 2012, 48(6): 557−564 doi: 10.13592/j.cnki.ppj.2012.06.007
    [31]
    LI S H, LI Y M, GAO Y, et al. Effects of CO2 enrichment on non-structural carbohydrate metabolism in leaves of cucumber seedlings under salt stress[J]. Scientia Horticulturae, 2020, 265: 109275 doi: 10.1016/j.scienta.2020.109275
    [32]
    曹新超. 铁皮石斛蔗糖代谢及抗氧化酶对逆境胁迫的响应[D]. 杭州: 浙江农林大学, 2018

    CAO X C. Responses of sucrose metabolism and antioxidant enzymes of Dendrobium catenatum to stress[D]. Hangzhou: Zhejiang A & F University, 2018
    [33]
    王军可, 王亚梁, 陈惠哲, 等. 灌浆初期高温影响水稻籽粒碳氮代谢的机理[J]. 中国农业气象, 2020, 41(12): 774−784 doi: 10.3969/j.issn.1000-6362.2020.12.003

    WANG J K, WANG Y L, CHEN H Z, et al. Mechanism of high temperature affecting carbon and nitrogen metabolism of rice grain at the early stage of grain filling[J]. Chinese Journal of Agrometeorology, 2020, 41(12): 774−784 doi: 10.3969/j.issn.1000-6362.2020.12.003
    [34]
    刘昭霖, 宗毓铮, 张东升, 等. 大气CO2浓度和气温升高对大豆叶片光合特性及氮代谢的影响[J]. 中国农业气象, 2021, 42(5): 426−437 doi: 10.3969/j.issn.1000-6362.2021.05.007

    LIU Z L, ZONG Y Z, ZHANG D S, et al. Effects of elevated atmospheric CO2 concentration and increased air temperature on photosynthetic characteristics and nitrogen metabolism of soybean leaves[J]. Chinese Journal of Agrometeorology, 2021, 42(5): 426−437 doi: 10.3969/j.issn.1000-6362.2021.05.007
    [35]
    LI Y S, YU Z H, LIU X B, et al. Elevated CO2 increases nitrogen fixation at the reproductive phase contributing to various yield responses of soybean cultivars[J]. Frontiers in Plant Science, 2017, 8: 1546 doi: 10.3389/fpls.2017.01546
    [36]
    李春华, 曾青, 沙霖楠, 等. 大气CO2浓度和温度升高对水稻地上部干物质积累和分配的影响[J]. 生态环境学报, 2016, 25(8): 1336−1342

    LI C H, ZENG Q, SHA L N, et al. Impacts of elevated atmospheric CO2 and temperature on above-ground dry matter accumulation and distribution of rice (Oryza sativa L.)[J]. Ecology and Environmental Sciences, 2016, 25(8): 1336−1342
    [37]
    SCHIERMEIER Q. Climate change offers bleak future[J]. Nature, 2001, 409(6823): 971
    [38]
    WANG J Q, LIU X Y, ZHANG X H, et al. Size and variability of crop productivity both impacted by CO2 enrichment and warming — A case study of 4 years field experiment in a Chinese paddy[J]. Agriculture, Ecosystems & Environment, 2016, 221: 40−49
    [39]
    MOHAMMED A R, TARPLEY L. High nighttime temperatures affect rice productivity through altered pollen germination and spikelet fertility[J]. Agricultural and Forest Meteorology, 2009, 149(6/7): 999−1008
    [40]
    宋磊, 次仁央金, 王小强, 等. 小麦对高温胁迫的响应机制研究进展[J]. 中国农学通报, 2021, 37(36): 6−12 doi: 10.11924/j.issn.1000-6850.casb2021-0681

    SONG L, CIRENYANGJIN, WANG X Q, et al. Response mechanism of wheat to high temperature stress: a review[J]. Chinese Agricultural Science Bulletin, 2021, 37(36): 6−12 doi: 10.11924/j.issn.1000-6850.casb2021-0681
    [41]
    伍卫, 李永明, 普丽花, 等. 高温多雨寡照对西双版纳州玉米的影响[J]. 现代化农业, 2022(2): 20−22 doi: 10.3969/j.issn.1001-0254.2022.02.007

    WU W, LI Y M, PU L H, et al. Effects of high temperature and rainfall on maize in Xishuangbanna Prefecture[J]. Modernizing Agriculture, 2022(2): 20−22 doi: 10.3969/j.issn.1001-0254.2022.02.007
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(3)  / Tables(7)

    Article Metrics

    Article views (135) PDF downloads(38) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return