Turn off MathJax
Article Contents
LI Y, CHEN H L, LIANG C, SU W, HE T. Estimation and spatio-temporal characteristics of winter wheat evapotranspiration in Henan Province based on NPP VIIRS data and SEBS model[J]. Chinese Journal of Eco-Agriculture, 2022, 30(0): 1−10 doi: 10.12357/cjea.20220422
Citation: LI Y, CHEN H L, LIANG C, SU W, HE T. Estimation and spatio-temporal characteristics of winter wheat evapotranspiration in Henan Province based on NPP VIIRS data and SEBS model[J]. Chinese Journal of Eco-Agriculture, 2022, 30(0): 1−10 doi: 10.12357/cjea.20220422

Estimation and spatio-temporal characteristics of winter wheat evapotranspiration in Henan Province based on NPP VIIRS data and SEBS model

doi: 10.12357/cjea.20220422
Funds:  This research was supported by the National Natural Science Foundation of China (41805090).
More Information
  • Corresponding author: E-mail: H.chen@vip.163.com
  • Received Date: 2022-06-02
  • Accepted Date: 2022-08-31
  • Rev Recd Date: 2022-08-31
  • Available Online: 2022-09-06
  • Crop evapotranspiration (ET), a key variable in water and heat exchange in agricultural fields, is of great significance for understanding the dynamics of soil moisture changes in agricultural fields, monitoring and predicting crop drought conditions, and guiding scientific irrigation. This study combined the Surface Energy Balance System (SEBS) model to estimate ET of winter wheat in Henan Province during the critical growth period from 2016 to 2018 using the Visible Infrared Imaging Radiation Suite (VIIRS) data of the Sumi National Polar-orbiting Partnership (NPP) satellite. Experimental accuracies were compared between VIIRS ET and the other three ET products (estimated by Penman-Monteith formula, P-M ET; estimated with MODIS data, MODIS ET; and macro-weighing lysimeter-measured ET, Real ET), and the spatial and temporal variation characteristics of ET in winter wheat area of Henan Province were analyzed. The results showed that comparing the VIIRS ET estimated by our proposed method with the P-M ET, the total average relative deviation was 10.1%, and VIIRS ET exhibited high consistency with P-M ET. The measured ET of the macro-weighing lysimeter was used to verify accuracy, and the root mean square error (RMSE) of the calculated VIIRS ET was 0.203 mm·d–1. The verification results showed that the NPP VIIRS data are suitable for ET inversion. The determination coefficients of linear regression analysis of VIIRS ET and MODIS ET were 0.804, 0.734, and 0.802 for the April 17th in 2016, 2017 and 2018, respectively. The three years RMSE of VIIRS ET based on MODIS ET were 0.222 mm·d–1, 0.158 mm·d–1, and 0.211 mm·d–1, respectively. This shows that there is good consistency between VIIRS ET and MODIS ET, and that VIIRS data can be used as an effective supplement and substitute. The ET spatial distribution was generally higher in the middle and southeast and gradually decreased to the northwest and southwest. The spatial variation characteristics of ET corresponded well with that of irrigation conditions. According to the time characteristics of farmland ET during the key growth period of winter wheat in the study area, the average daily ET in the regeneration stage was the lowest, and then it increased gradually, reached a maximum at the heading stage, and began to decrease at the filling stage. The temporal and spatial characteristics of winter wheat field ET in Henan Province were closely related to the local field management mode. The accurate estimation of winter wheat field ET can provide a scientific basis for the design of irrigation management systems. This is important for the management, distribution, and efficient utilization of agricultural water resources.
  • loading
  • [1]
    郑珍, 王子凯, 蔡焕杰. 基于SIMDualKc模型估算非充分灌水条件下冬小麦蒸散量[J]. 排灌机械工程学报, 2020, 38(2): 212−216

    ZHENG Z, WANG Z K, CAI H J. Estimation of evapotranspiration of winter wheat under deficient irrigation based on SIMDualKc model[J]. Journal of Drainage and Irrigation Machinery Engineering, 2020, 38(2): 212−216
    [2]
    FONG B N, REBA M L, TEAGUE T G, et al. Eddy covariance measurements of carbon dioxide and water fluxes in US mid-south cotton production[J]. Agriculture, Ecosystems & Environment, 2020, 292: 106813
    [3]
    李杰, 陈锐, 吴杨焕, 等. 北疆地区滴灌冬小麦农田蒸散特征[J]. 干旱地区农业研究, 2016, 34(1): 31−37,80 doi: 10.7606/j.issn.1000-7601.2016.01.05

    LI J, CHEN R, WU Y H, et al. Evapotranspiration in a drip-irrigated winter wheat field in Northern Xinjiang[J]. Agricultural Research in the Arid Areas, 2016, 34(1): 31−37,80 doi: 10.7606/j.issn.1000-7601.2016.01.05
    [4]
    王妍, 张晓龙, 石嘉丽, 等. 中国冬小麦主产区气候变化及其对小麦产量影响研究[J]. 中国生态农业学报(中英文), 2022, 30(5): 723−734 doi: 10.12357/cjea.20210702

    WANG Y, ZHANG X L, SHI J L, et al. Climate change and its effect on winter wheat yield in the main winter wheat production areas of China[J]. Chinese Journal of Eco-Agriculture, 2022, 30(5): 723−734 doi: 10.12357/cjea.20210702
    [5]
    胡程达, 方文松, 王红振, 等. 河南省冬小麦农田蒸散和作物系数[J]. 生态学杂志, 2020, 39(9): 3004−3010

    HU C D, FANG W S, WANG H Z, et al. Evapotranspiration and crop coefficient of winter wheat cropland in Henan Province[J]. Chinese Journal of Ecology, 2020, 39(9): 3004−3010
    [6]
    宋璐璐, 尹云鹤, 吴绍洪. 蒸散发测定方法研究进展[J]. 地理科学进展, 2012, 31(9): 1186−1195 doi: 10.11820/dlkxjz.2012.09.010

    SONG L L, YIN Y H, WU S H. Advancements of the metrics of evapotranspiration[J]. Progress in Geography, 2012, 31(9): 1186−1195 doi: 10.11820/dlkxjz.2012.09.010
    [7]
    LI Z L, TANG R L, WAN Z M, et al. A review of current methodologies for regional evapotranspiration estimation from remotely sensed data[J]. Sensors, 2009, 9(5): 3801−3853 doi: 10.3390/s90503801
    [8]
    郑超磊, 胡光成, 陈琪婷, 等. 遥感土壤水分对蒸散发估算的影响[J]. 遥感学报, 2021, 25(4): 990−999

    ZHENG C L, HU G C, CHEN Q T, et al. Impact of remote sensing soil moisture on the evapotranspiration estimation[J]. National Remote Sensing Bulletin, 2021, 25(4): 990−999
    [9]
    TANG R L, LI Z L, TANG B H. An application of the Ts-VI triangle method with enhanced edges determination for evapotranspiration estimation from MODIS data in arid and semi-arid regions: implementation and validation[J]. Remote Sensing of Environment, 2010, 114(3): 540−551 doi: 10.1016/j.rse.2009.10.012
    [10]
    矫京均, 辛晓洲, 余珊珊, 等. HJ-1卫星数据估算地表能量平衡[J]. 遥感学报, 2014, 18(5): 1048−1058 doi: 10.11834/jrs.20143322

    JIAO J J, XIN X Z, YU S S, et al. Estimation of surface energy balance from HJ-1 satellite data[J]. Journal of Remote Sensing, 2014, 18(5): 1048−1058 doi: 10.11834/jrs.20143322
    [11]
    张振宇, 李小玉, 孙浩. 地表反照率不同计算方法对干旱区流域蒸散反演结果的影响−以新疆三工河流域为例[J]. 生态学报, 2019, 39(8): 2911−2921

    ZHANG Z Y, LI X Y, SUN H. Influence of different surface albedo calculation methods on the simulation of evapotranspiration from the Sangong River Basin in the arid region of Xinjiang[J]. Acta Ecologica Sinica, 2019, 39(8): 2911−2921
    [12]
    SU Z. The Surface Energy Balance System (SEBS) for estimation of turbulent heat fluxes[J]. Hydrology and Earth System Sciences, 2002, 6(1): 85−100 doi: 10.5194/hess-6-85-2002
    [13]
    MA W Q, HAFEEZ M, ISHIKAWA H, et al. Evaluation of SEBS for estimation of actual evapotranspiration using ASTER satellite data for irrigation areas of Australia[J]. Theoretical and Applied Climatology, 2013, 112(3/4): 609−616
    [14]
    张亚丽, 王万同. 遥感估算伊洛河流域地表蒸散的空间尺度转换[J]. 测绘学报, 2013, 42(6): 906−912

    ZHANG Y L, WANG W T. Spatial scaling transformation of evapotranspiration based on remote sensing in Yiluo River basin[J]. Acta Geodaetica et Cartographica Sinica, 2013, 42(6): 906−912
    [15]
    WU X J, ZHOU J, WANG H J, et al. Evaluation of irrigation water use efficiency using remote sensing in the middle reach of the Heihe River, in the semi-arid Northwestern China[J]. Hydrological Processes, 2015, 29(9): 2243−2257 doi: 10.1002/hyp.10365
    [16]
    张圆, 郑江华, 刘志辉, 等. 基于Landsat8遥感影像和SEBS模型的呼图壁县蒸散量时空格局分析[J]. 生态科学, 2016, 35(2): 26−32

    ZHANG Y, ZHENG J H, LIU Z H, et al. Spatial and temporal distribution of evapotranspiration in the Hutubi County based on Landsat8 data and SEBS model[J]. Ecological Science, 2016, 35(2): 26−32
    [17]
    MOHAMMADIAN M, ARFANIA R, SAHOUR H. Evaluation of SEBS algorithm for estimation of daily evapotranspiration using landsat-8 dataset in a semi-arid region of central Iran[J]. Open Journal of Geology, 2017, 7(3): 335−347 doi: 10.4236/ojg.2017.73023
    [18]
    郑倩倩, 代鹏超, 张金燕, 等. 基于SEBS模型的精河流域蒸散发研究[J]. 干旱区研究, 2020, 37(6): 1378−1387

    ZHENG Q Q, DAI P C, ZHANG J Y, et al. Evapotranspiration in the Jinghe River Basin based on the surface energy balance system[J]. Arid Zone Research, 2020, 37(6): 1378−1387
    [19]
    赵笑然, 石汉青, 杨平吕, 等. NPP卫星VIIRS微光资料反演夜间PM2.5质量浓度[J]. 遥感学报, 2017, 21(2): 291−299

    ZHAO X R, SHI H Q, YANG P L, et al. Inversion algorithm of PM2.5 air quality based on nighttime light data from NPP-VIIRS[J]. Journal of Remote Sensing, 2017, 21(2): 291−299
    [20]
    丁梦娇, 丘仲锋, 张海龙, 等. 基于NPP-VIIRS卫星数据的渤黄海浊度反演算法研究[J]. 光学学报, 2019, 39(6): 17−25

    DING M J, QIU Z F, ZHANG H L, et al. Inversion algorithm for turbidity of Bohai and Yellow Seas based on NPP-VIIRS satellite data[J]. Acta Optica Sinica, 2019, 39(6): 17−25
    [21]
    孙皓, 李传华, 姚晓军. 基于NPP-VIIRS数据的喜马拉雅山北坡典型湖泊湖冰提取分析[J]. 冰川冻土, 2021, 43(1): 70−79

    SUN H, LI C H, YAO X J. Extraction and analysis of lake ice in typical lakes on the northern slopes of the Himalayas based on NPP-VIIRS data[J]. Journal of Glaciology and Geocryology, 2021, 43(1): 70−79
    [22]
    LI F, WANG Q L, HU W J, et al. Rapid assessment of disaster damage and economic resilience in relation to the flooding in Zhengzhou, China in 2021[J]. Remote Sensing Letters, 2022, 13(7): 651−662 doi: 10.1080/2150704X.2022.2068987
    [23]
    WANG M J, WANG Y J, TENG F, et al. Estimation and analysis of PM2.5 concentrations with NPP-VIIRS nighttime light images: a case study in the Chang-Zhu-Tan urban agglomeration of China[J]. International Journal of Environmental Research and Public Health, 2022, 19(7): 4306 doi: 10.3390/ijerph19074306
    [24]
    苏城林, 苏林, 陈良富, 等. NPP VIIRS数据反演气溶胶光学厚度[J]. 遥感学报, 2015, 19(6): 977−982

    SU C L, SU L, CHEN L F, et al. Retrieval of aerosol optical depth using NPP VIIRS data[J]. Journal of Remote Sensing, 2015, 19(6): 977−982
    [25]
    张宇. 基于SEBS模型的河南省麦区蒸散发估算[D]. 郑州: 郑州大学, 2019

    ZHANG Y. Estimation of evapotranspiration in wheat area of Henan Province based on SEBS model[D]. Zhengzhou: Zhengzhou University, 2019
    [26]
    PEREIRA L S, ALLEN R G, SMITH M, et al. Crop evapotranspiration estimation with FAO56: Past and future[J]. Agricultural Water Management, 2015, 147: 4−20 doi: 10.1016/j.agwat.2014.07.031
    [27]
    王欢, 张超, 郧文聚, 等. 基于多时相GF1-WFV和GF3-FSⅡ极化特征的湿地分类[J]. 农业机械学报, 2020, 51(3): 209−215 doi: 10.6041/j.issn.1000-1298.2020.03.024

    WANG H, ZHANG C, YUN W J, et al. Wetland classification based on multi-temporal GF1-WFV and GF3-FSⅡ polarization features[J]. Transactions of the Chinese Society for Agricultural Machinery, 2020, 51(3): 209−215 doi: 10.6041/j.issn.1000-1298.2020.03.024
    [28]
    何真, 胡洁, 蔡志文, 等. 协同多时相国产GF-1和GF-6卫星影像的艾草遥感识别[J]. 农业工程学报, 2022, 38(1): 186−195 doi: 10.11975/j.issn.1002-6819.2022.01.021

    HE Z, HU J, CAI Z W, et al. Remote sensing identification forArtemisia argyi integrating multi-temporal GF-1 and GF-6 images[J]. Transactions of the Chinese Society of Agricultural Engineering, 2022, 38(1): 186−195 doi: 10.11975/j.issn.1002-6819.2022.01.021
    [29]
    李颖, 李耀辉, 王金鑫, 等. SVM和ANN在多光谱遥感影像分类中的比较研究[J]. 海洋测绘, 2016, 36(5): 19−22 doi: 10.3969/j.issn.1671-3044.2016.05.005

    LI Y, LI Y H, WANG J X, et al. A comparative study of SVM and ANN in multispectral image classification[J]. Hydrographic Surveying and Charting, 2016, 36(5): 19−22 doi: 10.3969/j.issn.1671-3044.2016.05.005
    [30]
    王蕊, 张继权, 曹永强, 等. 基于SEBS模型估算辽西北地区蒸散发及时空特征[J]. 水土保持研究, 2017, 24(6): 382−387

    WANG R, ZHANG J Q, CAO Y Q, et al. Estimation of evapotranspiration and analysis of temporal-space characteristic in northwest of Liaoning Province based on SEBS model[J]. Research of Soil and Water Conservation, 2017, 24(6): 382−387
    [31]
    何磊, 王瑶, 别强, 等. 基于SEBS-METRIC方法的黑河流域中游地区农田蒸散[J]. 兰州大学学报(自然科学版), 2013, 49(4): 504−510

    HE L, WANG Y, BIE Q, et al. Estimation of field evapotranspiration in the middle reaches of Heihe River Basin based on SEBS-METRIC method[J]. Journal of Lanzhou University (Natural Sciences), 2013, 49(4): 504−510
    [32]
    李颖, 李耀辉, 王金鑫. 夏玉米生长过程曲线重建研究−以鹤壁市为例[J]. 气象与环境科学, 2016, 39(4): 7−13

    LI Y, LI Y H, WANG J X. Research on summer corn growth curve reconstruction: a case study in Hebi[J]. Meteorological and Environmental Sciences, 2016, 39(4): 7−13
    [33]
    DJAMAN K, IRMAK S, KABENGE I, et al. Evaluation of FAO-56 Penman-Monteith model with limited data and the valiantzas models for estimating grass-reference evapotranspiration in Sahelian conditions[J]. Journal of Irrigation and Drainage Engineering, 2016, 142(11)
    [34]
    韩淑敏, 程一松, 胡春胜. 太行山山前平原作物系数与降水年型关系探讨[J]. 干旱地区农业研究, 2005, 23(5): 152−158 doi: 10.3321/j.issn:1000-7601.2005.05.030

    HAN S M, CHENG Y S, HU C S. Relationship between crop coefficient and precipitation pattern in the piedmont of Mt. Taihang[J]. Agricultural Research in the Arid Areas, 2005, 23(5): 152−158 doi: 10.3321/j.issn:1000-7601.2005.05.030
    [35]
    何延波, 王石立. 遥感数据支持下不同地表覆盖的区域蒸散[J]. 应用生态学报, 2007, 18(2): 288−296 doi: 10.3321/j.issn:1001-9332.2007.02.010

    HE Y B, WANG S L. Regional evapotranspiration of different land covers based on remote sensing[J]. Chinese Journal of Applied Ecology, 2007, 18(2): 288−296 doi: 10.3321/j.issn:1001-9332.2007.02.010
    [36]
    曾丽红, 宋开山, 张柏, 等. 松嫩平原不同地表覆盖蒸散特征的遥感研究[J]. 农业工程学报, 2010, 26(9): 233−242,388 doi: 10.3969/j.issn.1002-6819.2010.09.039

    ZENG L H, SONG K S, ZHANG B, et al. Analysis of evapotranspiration characteristics for different land covers over Songnen Plain based on remote sensing[J]. Transactions of the Chinese Society of Agricultural Engineering, 2010, 26(9): 233−242,388 doi: 10.3969/j.issn.1002-6819.2010.09.039
    [37]
    褚荣浩, 李萌, 谢鹏飞, 等. 安徽省近20年地表蒸散和干旱变化特征及其影响因素分析[J]. 生态环境学报, 2021, 30(6): 1229−1239

    CHU R H, LI M, XIE P F, et al. Characteristics and influencing factors of surface evapotranspiration and drought in Anhui Province during recent 20 years[J]. Ecology and Environmental Sciences, 2021, 30(6): 1229−1239
    [38]
    赵红, 赵玉金, 李峰, 等. FY-3/VIRR卫星遥感数据反演省级区域蒸散量[J]. 农业工程学报, 2014, 30(13): 111−118,294 doi: 10.3969/j.issn.1002-6819.2014.13.014

    ZHAO H, ZHAO Y J, LI F, et al. Modelling evapotranspiration in provincial regions based on FY-3/VIRR remote sensing data[J]. Transactions of the Chinese Society of Agricultural Engineering, 2014, 30(13): 111−118,294 doi: 10.3969/j.issn.1002-6819.2014.13.014
    [39]
    姚瑶, 唐婉莹, 袁宏伟, 等. 基于称重式蒸渗仪的淮北平原冬小麦蒸散估算模型的本地化[J]. 麦类作物学报, 2020, 40(6): 737−745 doi: 10.7606/j.issn.1009-1041.2020.06.12

    YAO Y, TANG W Y, YUAN H W, et al. Calibration of evapotranspiration for winter wheat based on the value of weighing lysimeter measurements in Huaibei Plain[J]. Journal of Triticeae Crops, 2020, 40(6): 737−745 doi: 10.7606/j.issn.1009-1041.2020.06.12
    [40]
    赵焕, 徐宗学, 赵捷. 基于CWSI及干旱稀遇程度的农业干旱指数构建及应用[J]. 农业工程学报, 2017, 33(9): 116−125,316 doi: 10.11975/j.issn.1002-6819.2017.09.015

    ZHAO H, XU Z X, ZHAO J. Development and application of agricultural drought index based on CWSI and drought event rarity[J]. Transactions of the Chinese Society of Agricultural Engineering, 2017, 33(9): 116−125,316 doi: 10.11975/j.issn.1002-6819.2017.09.015
    [41]
    张志高, 邵亚军, 郭超凡, 等. 基于MOD16的河南省地表蒸散量时空变化特征[J]. 西南师范大学学报(自然科学版), 2021, 46(9): 128−135

    ZHANG Z G, SHAO Y J, GUO C F, et al. On spatial-temporal variation charaateristics of evapotranspiration in Henan Province based on MOD16 data[J]. Journal of Southwest China Normal University (Natural Science Edition), 2021, 46(9): 128−135
    [42]
    蒋博武, 孟丹, 郭晓彤, 等. 基于Landsat-8 遥感数据的冬小麦种植区地表蒸散量时空分布研究[J]. 灌溉排水学报, 2022, 41(7): 140−146

    JIANG B W, MENG D, GUO X T, et al. Calculating spatiotemporal distribution of evapotranspiration of winter wheat using the Landsat-8 imageries[J]. Journal of Irrigation and Drainage, 2022, 41(7): 140−146
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(3)  / Tables(3)

    Article Metrics

    Article views (102) PDF downloads(8) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return