Volume 31 Issue 2
Feb.  2023
Turn off MathJax
Article Contents
LUO S Q, HU X M, SUN Y, YAN C, ZHANG X. Multi-scenario land use change and its impact on carbon storage based on coupled Plus-Invest model[J]. Chinese Journal of Eco-Agriculture, 2023, 31(2): 300−314 doi: 10.12357/cjea.20220520
Citation: LUO S Q, HU X M, SUN Y, YAN C, ZHANG X. Multi-scenario land use change and its impact on carbon storage based on coupled Plus-Invest model[J]. Chinese Journal of Eco-Agriculture, 2023, 31(2): 300−314 doi: 10.12357/cjea.20220520

Multi-scenario land use change and its impact on carbon storage based on coupled Plus-Invest model

doi: 10.12357/cjea.20220520
Funds:  This study was supported by the Science and Technology Coordinated Innovation Plan Project of Shaanxi Province (2016KTZDNY-01-01).
More Information
  • Corresponding author: E-mail: zhxin@nwsuaf.edu.cn
  • Received Date: 2022-07-06
  • Accepted Date: 2022-10-25
  • Rev Recd Date: 2022-10-25
  • Available Online: 2022-11-07
  • Publish Date: 2023-02-10
  • Land use/cover change (LUCC) is an important cause of carbon storage change in terrestrial ecosystems. Land use change is often constrained by policy, which affects carbon stock changes. To forecast the LUCC of Xi’an in 2030 under the guidance of the policy, and analyze its impact on carbon storage is of great significance for Xi’an policy-making, land use structure adjustment, and the realization of the “double carbon” goal. Based on the land use data (LULC) of 2000, 2010, and 2020, this study selected 11 driving factors and established three development scenarios of business as usual (Q1), ecological protection (Q2), and town development (Q3), respectively, according to the Xi’an “14th Five-Year Plan” policy planning. The PLUS model was used to predict and analyze the spatial distribution pattern of land use in Xi’an in 2030, and the InVEST model was coupled to evaluate the carbon storage of Xi’an in different development scenarios and analyze the change in carbon storage. The results show that: 1) the PLUS model has strong applicability in Xi’an City. The overall accuracy of the model was 0.93 and the Kappa coefficient was 0.89. 2) From 2000 to 2020, the areas of construction lands, grasslands and water bodies in Xi’an increased, while the areas of arable land, woodland, and wetland decreased. From the perspective of the transfer direction, arable land was mainly converted to construction land. 3) Q1 continued with the previous development pattern. In 2030, the quantity of ecological land, such as woodlands and water bodies, under Q2 increased compared with that in 2020, and the construction land areas under Q3 increased by 10.42%. 4) LUCC was the main reason for changes in ecosystem carbon storage. The total carbon storage under Q1 in 2030 decreased by 373.28 t compared with that in 2020, indicating that a continuation of the previous development mode would reduce the total carbon storage. Under Q2 in 2030, carbon storage increased by 564.73 t from 2020, which explains certain ecological protection measures to protect forest land, wetland, and increase the amount of cultivated land. This would also limit the transfer of ecological lands with high carbon density, such as cultivated land, into low carbon density land for construction purposes, potentially slowing the increasing trend of carbon reserves in terrestrial ecosystems. Under Q3, with the acceleration of urbanization, the scale of construction land has expanded, and a large number of urban areas occupy ecological and cultivated lands, which greatly reduces carbon storage. The results show that the major reason for the loss of carbon storage is the large expansion of construction land and the encroachment of ecological and arable land. The implementation of scientific and reasonable ecological protection measures can solve the carbon storage decline problem caused by economic development.
  • loading
  • [1]
    方精云, 于贵瑞, 任小波, 等. 中国陆地生态系统固碳效应−中国科学院战略性先导科技专项“应对气候变化的碳收支认证及相关问题”之生态系统固碳任务群研究进展[J]. 中国科学院院刊, 2015, 30(6): 848−857, 875 doi: 10.16418/j.issn.1000-3045.2015.06.019

    FANG J Y, YU G R, REN X B, et al. Carbon sequestration in China’s terrestrial ecosystems under climate change — Progress on ecosystem carbon sequestration from the CAS strategic priority research program[J]. Bulletin of Chinese Academy of Sciences, 2015, 30(6): 848−857, 875 doi: 10.16418/j.issn.1000-3045.2015.06.019
    [2]
    陈理庭, 蔡海生, 张婷, 等. 基于Markov-FLUS模型的饶河流域土地利用多情景模拟分析[J]. 生态学报, 2022, 42(10): 3947−3958

    CHEN L T, CAI H S, ZHANG T, et al. Land use multi-scenario simulation analysis of Rao River Basin based on Markov-FLUS model[J]. Acta Ecologica Sinica, 2022, 42(10): 3947−3958
    [3]
    朱志强, 马晓双, 胡洪. 基于耦合FLUS-InVEST模型的广州市生态系统碳储量时空演变与预测[J]. 水土保持通报, 2021, 41(2): 222−229, 239 doi: 10.13961/j.cnki.stbctb.2021.02.030

    ZHU Z Q, MA X S, HU H. Spatio-temporal evolution and prediction of ecosystem carbon stocks in Guangzhou City by coupling FLUS-InVEST models[J]. Bulletin of Soil and Water Conservation, 2021, 41(2): 222−229, 239 doi: 10.13961/j.cnki.stbctb.2021.02.030
    [4]
    王佳楠, 张志. 基于Markov-PLUS模型的柴北缘土地利用变化及模拟分析[J]. 西北林学院学报, 2022, 37(3): 139−148, 179 doi: 10.3969/j.issn.1001-7461.2022.03.20

    WANG J N, ZHANG Z. Land use change and simulation analysis in the northern margin of the Qaidam Basin based on Markov-PLUS model[J]. Journal of Northwest Forestry University, 2022, 37(3): 139−148, 179 doi: 10.3969/j.issn.1001-7461.2022.03.20
    [5]
    蒋小芳, 段翰晨, 廖杰, 等. 基于PLUS-SD耦合模型的黑河流域中游甘临高地区土地利用研究[J]. 干旱区研究, 2022, 39(4): 1246−1258 doi: 10.13866/j.azr.2022.04.25

    JIANG X F, DUAN H C, LIAO J, et al. Land use in the Gan-Lin-Gao Region of middle reaches of Heihe River Basin based on a PLUS-SD coupling model[J]. Arid Zone Research, 2022, 39(4): 1246−1258 doi: 10.13866/j.azr.2022.04.25
    [6]
    张海青, 任婷. 基于PLUS模型的空间格局演变特征及驱动力研究−以辽宁省北镇市为例[J]. 沈阳建筑大学学报(社会科学版), 2022, 24(3): 230−238

    ZHANG H Q, REN T. Study on spatial pattern evolution characteristics and driving forces based on PLUS model: taking Beizhen City in Liaoning Province as an example[J]. Journal of Shenyang Jianzhu University (Social Science), 2022, 24(3): 230−238
    [7]
    马瑞, 范燕敏, 武红旗, 等. 耦合GMOP与PLUS模型的干旱区土地利用格局模拟[J/OL]. 农业资源与环境学报. [2022-09-15]. DOI: 10.13254/j.jare.2021.0865

    MA R , FAN Y M, WU H Q, et al. Simulation of land-use patterns in arid areas coupled with GMOP and PLUS models[J/OL]. Journal of Agricultural Resources and Environment. [2022-09-15]. DOI: 10.13254/j.jare.2021.0865
    [8]
    林彤, 杨木壮, 吴大放, 等. 基于InVEST-PLUS模型的广东省碳储量空间关联性及预测[J]. 中国环境科学, 2022, 42(10): 4827−4839

    LIN T, YANG M Z, WU D F, et al. Spatial correlation and prediction of land use carbon storage in Guangdong Province based on InVEST-PLUS model[J]. China Environmental Science, 2022, 42(10): 4827−4839
    [9]
    LIU Q, YANG D D, CAO L, et al. Assessment and prediction of carbon storage based on land use/land cover dynamics in the tropics: a case study of Hainan Island, China[J]. Land, 2022, 11(2): 244 doi: 10.3390/land11020244
    [10]
    DENG Z W, QUAN B. Intensity characteristics and multi-scenario projection of land use and land cover change in Hengyang, China[J]. International Journal of Environmental Research and Public Health, 2022, 19(14): 8491 doi: 10.3390/ijerph19148491
    [11]
    GAO L N, TAO F, LIU R R, et al. Multi-scenario simulation and ecological risk analysis of land use based on the PLUS model: a case study of Nanjing[J]. Sustainable Cities and Society, 2022, 85: 104055 doi: 10.1016/j.scs.2022.104055
    [12]
    BAO S W, YANG F. Spatio-temporal dynamic of the land use/cover change and scenario simulation in the southeast coastal shelterbelt system construction project region of China[J]. Sustainability, 2022, 14: 8952 doi: 10.3390/su14148952
    [13]
    SHI M, WU H Q, JIANG P G, et al. Cropland expansion mitigates the supply and demand deficit for carbon sequestration service under different scenarios in the future — The case of Xinjiang[J]. Agriculture, 2022, 12(8): 1182 doi: 10.3390/agriculture12081182
    [14]
    SUN J, ZHANG Y, QIN W S, et al. Estimation and simulation of forest carbon stock in northeast China forestry based on future climate change and LUCC[J]. Remote Sens, 2022, 14: 3653 doi: 10.3390/rs14153653
    [15]
    WANG Z Y, GAO Y, WANG X R, et al. A new approach to land use optimization and simulation considering urban development sustainability: a case study of Bortala, China[J]. Sustainable Cities and Society, 2022, 87: 104135 doi: 10.1016/j.scs.2022.104135
    [16]
    张斌, 李璐, 夏秋月, 等. “三线”约束下土地利用变化及其对碳储量的影响−以武汉城市圈为例[J]. 生态学报, 2022, 42(6): 2265−2280

    ZHANG B, LI L, XIA Q Y, et al. Land use change and its impact on carbon storage under the constraints of “three lines”: a case study of Wuhan City circle[J]. Acta Ecologica Sinica, 2022, 42(6): 2265−2280
    [17]
    张平平, 李艳红, 殷浩然, 等. 中国南北过渡带生态系统碳储量时空变化及动态模拟[J]. 自然资源学报, 2022, 37(5): 1183−1197 doi: 10.31497/zrzyxb.20220506

    ZHANG P P, LI Y H, YIN H R, et al. Spatio-temporal variation and dynamic simulation of ecosystem carbon storage in the north-south transitional zone of China[J]. Journal of Natural Resources, 2022, 37(5): 1183−1197 doi: 10.31497/zrzyxb.20220506
    [18]
    柯新利, 唐兰萍. 城市扩张与耕地保护耦合对陆地生态系统碳储量的影响−以湖北省为例[J]. 生态学报, 2019, 39(2): 672−683

    KE X L, TANG L P. Impact of cascading processes of urban expansion and cropland reclamation on the ecosystem of a carbon storage service in Hubei Province, China[J]. Acta Ecologica Sinica, 2019, 39(2): 672−683
    [19]
    罗芳, 潘安, 陈忠升, 等. 四川省宜宾市1980—2018年耕地时空格局变化及其驱动因素[J]. 水土保持通报, 2021, 41(6): 336−344 doi: 10.3969/j.issn.1000-288X.2021.6.stbctb202106043

    LUO F, PAN A, CHEN Z S, et al. Spatiotemporal pattern change of cultivated land and its driving forces in Yibin City, Sichuan Province during 1980–2018[J]. Bulletin of Soil and Water Conservation, 2021, 41(6): 336−344 doi: 10.3969/j.issn.1000-288X.2021.6.stbctb202106043
    [20]
    张燕, 师学义, 唐倩. 不同土地利用情景下汾河上游地区碳储量评估[J]. 生态学报, 2021, 41(1): 360−373

    ZHANG Y, SHI X Y, TANG Q. Carbon storage assessment in the upper reaches of the Fenhe River under different land use scenarios[J]. Acta Ecologica Sinica, 2021, 41(1): 360−373
    [21]
    刘冠, 李国庆, 李洁, 等. 基于InVEST模型的1999—2016年麻塔流域碳储量变化及空间格局研究[J]. 干旱区研究, 2021, 38(1): 267−274

    LIU G, LI G Q, LI J, et al. Study on change in carbon storage and its spatial pattern in Mata Watershed from 1999 to 2016 based on InVEST model[J]. Arid Zone Research, 2021, 38(1): 267−274
    [22]
    WANG Z Y, LI X, MAO Y T, et al. Dynamic simulation of land use change and assessment of carbon storage based on climate change scenarios at the city level: a case study of Bortala, China[J]. Ecological Indicators, 2022, 134: 108499 doi: 10.1016/j.ecolind.2021.108499
    [23]
    伍丹, 朱康文, 张晟, 等. 基于PLUS模型和InVEST模型的成渝经济区碳储量演化分析[J]. 三峡生态环境监测, 2022, 7(2): 85−96

    WU D, ZHU K W, ZHANG S, et al. Evolution analysis of carbon stock in Chengdu-Chongqing economic zone based on PLUS model and InVEST model[J]. Ecology and Environmental Monitoring of Three Gorges, 2022, 7(2): 85−96
    [24]
    刘晓娟, 黎夏, 梁迅, 等. 基于FLUS-InVEST模型的中国未来土地利用变化及其对碳储量影响的模拟[J]. 热带地理, 2019, 39(3): 397−409 doi: 10.13284/j.cnki.rddl.003138

    LIU X J, LI X, LIANG X, et al. Simulating the change of terrestrial carbon storage in China based on the FLUS-InVEST model[J]. Tropical Geography, 2019, 39(3): 397−409 doi: 10.13284/j.cnki.rddl.003138
    [25]
    柳梅英, 包安明, 陈曦, 等. 近30年玛纳斯河流域土地利用/覆被变化对植被碳储量的影响[J]. 自然资源学报, 2010, 25(6): 926−938 doi: 10.11849/zrzyxb.2010.06.005

    LIU M Y, BAO A M, CHEN X, et al. Impact of land use/cover change on the vegetation carbon storage in the Manas River basin between 1976 and 2007[J]. Journal of Natural Resources, 2010, 25(6): 926−938 doi: 10.11849/zrzyxb.2010.06.005
    [26]
    顾张锋, 徐丽华, 马淇蔚, 等. 浙江省都市区碳排放时空演变及其影响因素[J]. 自然资源学报, 2022, 37(6): 1524−1539

    GU Z F, XU L H, MA Q W, et al. Spatio-temporal evolution of carbon emissions in metropolitan areas and its influencing factors: a case study of Zhejiang Province[J]. Journal of Natural Resources, 2022, 37(6): 1524−1539
    [27]
    向书江, 张骞, 王丹, 等. 近20年重庆市主城区碳储量对土地利用/覆被变化的响应及脆弱性分析[J]. 自然资源学报, 2022, 37(5): 1198−1213

    XIANG S J, ZHANG Q, WANG D, et al. Response and vulnerability analysis of carbon storage to LUCC in the main urban area of Chongqing during 2000−2020[J]. Journal of Natural Resources, 2022, 37(5): 1198−1213
    [28]
    LIANG X, GUAN Q F, CLARKE K C, et al. Understanding the drivers of sustainable land expansion using a patch-generating land use simulation (PLUS) model: a case study in Wuhan, China[J]. Computers, Environment and Urban Systems, 2021, 85: 101569 doi: 10.1016/j.compenvurbsys.2020.101569
    [29]
    LIANG X, LIU X P, LI D, et al. Urban growth simulation by incorporating planning policies into a CA-based future land-use simulation model[J]. International Journal of Geographical Information Science, 2018, 32(11): 2294−2316 doi: 10.1080/13658816.2018.1502441
    [30]
    LI C, WU Y M, GAO B P, et al. Multi-scenario simulation of ecosystem service value for optimization of land use in the Sichuan-Yunnan ecological barrier, China[J]. Ecological Indicators, 2021, 132: 108328 doi: 10.1016/j.ecolind.2021.108328
    [31]
    IANG Y F, HUANG M X, CHEN X Y, et al. Identification and risk prediction of potentially contaminated sites in the Yangtze River Delta[J]. The Science of the Total Environment, 2022, 815: 151982 doi: 10.1016/j.scitotenv.2021.151982
    [32]
    ENG D R, BAO W K, FU M C, et al. Current and future land use characters of a national central city in eco-fragile region — A case study in Xi’an City based on FLUS model[J]. Land, 2021, 10(3): 286 doi: 10.3390/land10030286
    [33]
    张志国, 班高晗. 土地利用变化驱动下洛阳市生态系统碳储量时空变异[J]. 江苏农业科学, 2021, 49(14): 226−230

    ZHANG Z G, BAN G H. Temporal and spatial variation of ecosystem carbon storage based on land use change in Luoyang City[J]. Jiangsu Agricultural Sciences, 2021, 49(14): 226−230
    [34]
    喇蕗梦, 勾蒙蒙, 李乐, 等. 三峡库区生态系统服务权衡时空动态与情景模拟: 以秭归县为例[J]. 生态与农村环境学报, 2021, 37(11): 1368−1377

    LA L M, GOU M M, LI L, et al. Spatiotemporal dynamics and scenarios analysis on trade-offs between ecosystem service in Three Gorges Reservoir area: a case study of Zigui County[J]. Journal of Ecology and Rural Environment, 2021, 37(11): 1368−1377
    [35]
    ZHAI H, LV C Q, LIU W Z, et al. Understanding spatio-temporal patterns of land use/land cover change under urbanization in Wuhan, China, 2000–2019[J]. Remote Sensing, 2021, 13(16): 3331 doi: 10.3390/rs13163331
    [36]
    SHI M, WU H Q, FAN X G, et al. Trade-offs and synergies of multiple ecosystem services for different land use scenarios in the Yili River Valley, China[J]. Sustainability, 2021, 13: 1577 doi: 10.3390/su13031577
    [37]
    DING Q L, CHEN Y, BU L T, et al. Multi-scenario analysis of habitat quality in the Yellow River Delta by coupling FLUS with InVEST model[J]. International Journal of Environmental Research and Public Health, 2021, 18(5): 2389 doi: 10.3390/ijerph18052389
    [38]
    史名杰, 武红旗, 贾宏涛, 等. 基于MCE-CA-Markov和InVEST模型的伊犁谷地碳储量时空演变及预测[J]. 农业资源与环境学报, 2021, 38(6): 1010−1019

    SHI M J, WU H Q, JIA H T, et al. Temporal and spatial evolution and prediction of carbon stocks in Yili Valley based on MCE-CA-Markov and InVEST models[J]. Journal of Agricultural Resources and Environment, 2021, 38(6): 1010−1019
    [39]
    王旭, 马伯文, 李丹, 等. 基于FLUS模型的湖北省生态空间多情景模拟预测[J]. 自然资源学报, 2020, 35(1): 230−242 doi: 10.31497/zrzyxb.20200119

    WANG X, MA B W, LI D, et al. Multi-scenario simulation and prediction of ecological space in Hubei Province based on FLUS model[J]. Journal of Natural Resources, 2020, 35(1): 230−242 doi: 10.31497/zrzyxb.20200119
    [40]
    李克让, 王绍强, 曹明奎. 中国植被和土壤碳贮量[J]. 中国科学(D辑: 地球科学), 2003, 33(1): 72−80

    LI K R, WANG S Q, CAO M K. Vegetation and soil carbon storage in China[J]. Science in China, SerD, 2003, 33(1): 72−80
    [41]
    解宪丽, 孙波, 周慧珍, 等. 中国土壤有机碳密度和储量的估算与空间分布分析[J]. 土壤学报, 2004, 41(1): 35−43 doi: 10.3321/j.issn:0564-3929.2004.01.006

    XIE X L, SUN B, ZHOU H Z, et al. Organic carbon density and storage in soils of China and spatial analysis[J]. Acta Pedologica Sinica, 2004, 41(1): 35−43 doi: 10.3321/j.issn:0564-3929.2004.01.006
    [42]
    许泉, 芮雯奕, 何航, 等. 不同利用方式下中国农田土壤有机碳密度特征及区域差异[J]. 中国农业科学, 2006, 39(12): 2505−2510

    XU Q, RUI W Y, HE H, et al. Characteristics and regional differences of soil organic carbon density in farmland under different land use patterns in China[J]. Scientia Agricultura Sinica, 2006, 39(12): 2505−2510
    [43]
    杨洁, 谢保鹏, 张德罡. 基于InVEST和CA-Markov模型的黄河流域碳储量时空变化研究[J]. 中国生态农业学报(中英文), 2021, 29(6): 1018−1029

    YANG J, XIE B P, ZHANG D G. Spatio-temporal evolution of carbon stocks in the Yellow River Basin based on InVEST and CA-Markov models[J]. Chinese Journal of Eco-Agriculture, 2021, 29(6): 1018−1029
    [44]
    井梅秀. 西安市土地利用格局预测及碳储量价值研究[D]. 西安: 陕西师范大学, 2014

    JING M X. Study on land use pattern prediction and carbon storage value in Xi’an City[D]. Xi’an: Shaanxi Normal University, 2014
    [45]
    李妙宇, 上官周平, 邓蕾. 黄土高原地区生态系统碳储量空间分布及其影响因素[J]. 生态学报, 2021, 41(17): 6786−6799

    LI M Y, SHANGGUAN Z P, DENG L. Spatial distribution of carbon storages in the terrestrial ecosystems and its influencing factors on the Loess Plateau[J]. Acta Ecologica Sinica, 2021, 41(17): 6786−6799
    [46]
    刘洋, 张军, 周冬梅, 等. 基于InVEST模型的疏勒河流域碳储量时空变化研究[J]. 生态学报, 2021, 41(10): 4052−4065

    LIU Y, ZHANG J, ZHOU D M, et al. Temporal and spatial variation of carbon storage in the Shule River Basin based on InVEST model[J]. Acta Ecologica Sinica, 2021, 41(10): 4052−4065
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(10)  / Tables(8)

    Article Metrics

    Article views (219) PDF downloads(43) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return