Volume 31 Issue 2
Feb.  2023
Turn off MathJax
Article Contents
LI H, LI X Y, WANG L, LI Y Y, WANG J. Development measures of the fertilizer industry under the carbon peaking and carbon neutrality goals: Analysis of carbon emission reduction and existing problems from 2011 to 2020[J]. Chinese Journal of Eco-Agriculture, 2023, 31(2): 206−213 doi: 10.12357/cjea.20220528
Citation: LI H, LI X Y, WANG L, LI Y Y, WANG J. Development measures of the fertilizer industry under the carbon peaking and carbon neutrality goals: Analysis of carbon emission reduction and existing problems from 2011 to 2020[J]. Chinese Journal of Eco-Agriculture, 2023, 31(2): 206−213 doi: 10.12357/cjea.20220528

Development measures of the fertilizer industry under the carbon peaking and carbon neutrality goals: Analysis of carbon emission reduction and existing problems from 2011 to 2020

doi: 10.12357/cjea.20220528
Funds:  The study was supported by the National Key Research & Development Program of China (2021YFD1901002).
More Information
  • Corresponding author: LI Hua, E-mail: lihua02@caas.cn
  • Received Date: 2022-07-08
  • Accepted Date: 2022-11-22
  • Available Online: 2023-01-03
  • Publish Date: 2023-02-10
  • Carbon peaking and carbon neutrality have become common goals in global development. Fertilizers play a dual role in carbon emissions. They not only emit carbon due to energy consumption but also reduce carbon emissions by improving the carbon sequestration capacity of crops. Fertilizers will continue to play an irreplaceable role in food and agricultural production for the near future. Appropriate fertilizer products and scientific applications can support carbon emission reduction. This study used data published by the FAO, the National Bureau of Statistics, the Ministry of Agriculture and Rural Affairs of China, and other websites to analyze the current situation of carbon emission reduction in China’s fertilizer industry. It identified the existing problems and discussed the development measures of the fertilizer industry under the carbon peaking and carbon neutrality goals, in the hope of providing a reference for the low-carbon development of the fertilizer industry. The results showed that China’s fertilizer industry had made remarkable progress in reducing carbon emissions from 2011 to 2020. Following an increase, the production and application of chemical fertilizers decreased, which made the largest contribution to emissions reduction from agriculture. The output of N, P2O5, and K2O in China decreased from the highest level of 7.43×107 t in 2015 to 5.50×107 t in 2020, a decline of 26.05%. The amount of chemical fertilizer application decreased by 12.82% from the highest 6.02×107 t in 2015 to 5.25×107 t in 2020. The carbon emissions from chemical fertilizers in China decreased from 3.35×108 t CO2 eq in 2015 to 2.74×108 t CO2 eq in 2020, dropping 18.21%. The output of organic fertilizers was on the rise, which was conducive to carbon sequestration and emission reduction. In 2020, the output of organic fertilizers reached 1.56×107 t, up by 29.46% over the 2015 level. Owing to the rapid extension of scientific fertilization technologies, the utilization rate of chemical fertilizers for three major grain crops, namely rice, corn, and wheat, had increased yearly to 40.20% in 2020, up by 5 percentage points over 2015. However, the fertilizer industry in China faced problems, including higher application amounts, low absorption, insufficient innovation, market disorder, unscientific fertilization, inadequate organic fertilizers, and weak legislation and supervision. To achieve carbon peaking and carbon neutrality goals, China’s fertilizer industry should strive toward the following five aspects: developing new types of fertilizers, promoting science-based technologies for energy-efficient use of fertilizers, improving comprehensive utilization of agricultural wastes, strengthening legislation and supervision of the fertilizer industry, and enhancing publicity and training in scientific low-carbon fertilization.
  • loading
  • [1]
    张卫建, 严圣吉, 张俊, 等. 国家粮食安全与农业双碳目标的双赢策略[J]. 中国农业科学, 2021, 54(18): 3892−3902

    ZHANG W J, YAN S J, ZHANG J, et al. Win-win strategy for national food security and agricultural double-carbon goals[J]. Scientia Agricultura Sinica, 2021, 54(18): 3892−3902
    [2]
    中国现代国际关系研究院能源安全研究中心. 国际碳中和发展态势及前景[J]. 现代国际关系, 2022(2): 22−28, 62

    Energy Security Research Center of China Institute of Contemporary International Relations. Development trend and prospect of international carbon neutrality[J]. Modern International Relations, 2022(2): 22−28, 62
    [3]
    陈炜, 殷田园, 李红兵. 1997—2015年中国种植业碳排放时空特征及与农业发展的关系[J]. 干旱区资源与环境, 2019, 33(2): 37−44

    CHEN W, YIN T Y, LI H B. Spatiotemporal distribution characteristics of carbon emission from plant industry and the relationship with agriculture development in China from 1997 to 2015[J]. Journal of Arid Land Resources and Environment, 2019, 33(2): 37−44
    [4]
    胡婉玲, 张金鑫, 王红玲. 中国农业碳排放特征及影响因素研究[J]. 统计与决策, 2020, 36(5): 56−62

    HU W L, ZHANG J X, WANG H L. Characteristics and influencing factors of agricultural carbon emission in China[J]. Statistics and Decision, 2020, 36(5): 56−62
    [5]
    丁宝根, 赵玉, 邓俊红. 中国种植业碳排放的测度、脱钩特征及驱动因素研究[J]. 中国农业资源与区划, 2022, 43(5): 1−11

    DING B G, ZHAO Y, DENG J H. Calculation, decoupling effects and driving factors of carbon emission from planting industry in China[J]. Chinese Journal of Agricultural Resources and Regional Planning, 2022, 43(5): 1−11
    [6]
    王兴仁, 江荣凤, 刘全清, 等. 施肥与环境的关系[J]. 磷肥与复肥, 2007, 22(5): 10−14

    WANG X R, JIANG R F, LIU Q Q, et al. Elementary discussion on relations between fertilization and environment[J]. Phosphate & Compound Fertilizer, 2007, 22(5): 10−14
    [7]
    奚振邦. 化肥与生态环境的宏观视角[J]. 磷肥与复肥, 2002, 17(6): 1−4

    XI Z B. Macroscopic view of fertilizers and ecological study[J]. Phosphate & Compound Fertilizer, 2002, 17(6): 1−4
    [8]
    白由路. 化学肥料与生态健康[J]. 肥料与健康, 2020, 47(1): 2−4, 31

    BAI Y L. Chemical fertilizer and ecological health[J]. Fertilizer & Health, 2020, 47(1): 2−4, 31
    [9]
    王占彪, 李亚兵. 优化施肥策略能够有效降低中国作物生产温室气体排放[J]. 基层农技推广, 2019, 7(6): 92

    WANG Z B, LI Y B. Optimizing fertilization strategies can effectively reduce greenhouse gas emissions from Chinese crop production[J]. Primary Agricultural Technology Extension, 2019, 7(6): 92
    [10]
    蒋高明. 呼唤生态的绿色革命[J]. 中国食品工业, 2019(1): 64−65

    JIANG G M. Call for ecological green revolution[J]. China Food, 2019(1): 64−65
    [11]
    LIU H T, LI J, LI X, et al. Mitigating greenhouse gas emissions through replacement of chemical fertilizer with organic manure in a temperate farmland[J]. Science Bulletin, 2015, 60(6): 598−606 doi: 10.1007/s11434-014-0679-6
    [12]
    国家统计局. 农用氮、磷、钾化肥产量(万吨)[EB/OL]. [2022-12-07]. https://data.stats.gov.cn/easyquery.htm?cn=C01&zb=A0E0H&sj=2021

    National Bureau of Statistics of China. Output of industrial products, chemical fertilizers (10000 tons). [EB/OL]. [2022-12-07]. https://data.stats.gov.cn/easyquery.htm?cn=C01&zb=A0E0H&sj=2021
    [13]
    Food and Agriculture Organization of United Nations. Emissions totals[EB/OL]. [2022-12-07]. https://www.fao.org/faostat/zh/#data/GT
    [14]
    金书秦, 林煜, 牛坤玉. 以低碳带动农业绿色转型: 中国农业碳排放特征及其减排路径[J]. 改革, 2021(5): 29−37

    JIN S Q, LIN Y, NIU K Y. Driving green transformation of agriculture with low carbon: characteristics of agricultural carbon emissions and its emission reduction path in China[J]. Reform, 2021(5): 29−37
    [15]
    中华人民共和国农业农村部. 关于做好2017年果菜茶有机肥替代化肥试点工作的通知[EB/OL]. (2017-06-12) [2022-12-07]. http://www.zzys.moa.gov.cn/gzdt/201706/t20170623_6310230.htm

    Ministry of Agriculture and Rural Affairs, Peoples’ Republic of China. Notice on the pilot work of substituting organic fertilizer for chemical fertilizer in fruit, vegetable and tea in 2017 [EB/OL]. (2017-06-12) [2022-12-07]. http://www.zzys.moa.gov.cn/gzdt/201706/t20170623_6310230.htm
    [16]
    产业信息网. 2020年中国有机肥产业概况分析: 产量达到1560万吨, 市场规模为978.7亿元[EB/OL]. (2021-05-24) [2022-04-15]. https://www.chyxx.com/industry/202105/952930.html

    Industrial Information Network. Analysis of China’s organic fertilizer industry in 2020: the output will reach 15.6 million tons and the market scale will be 97.87 billion yuan[EB/OL]. (2021-05-24) [2022-04-15]. https://www.chyxx.com/industry/202105/952930.html
    [17]
    WANG C, MA X F, SHEN J L, et al. Reduction in net greenhouse gas emissions through a combination of pig manure and reduced inorganic fertilizer application in a double-rice cropping system: three-year results[J]. Agriculture, Ecosystems & Environment, 2022. DOI: 10.1016/j.agee.2021.107799
    [18]
    中华人民共和国农业农村部. 化肥农药使用量零增长行动目标顺利实现 我国三大粮食作物化肥农药利用率双双达40%以上 [EB/OL]. (2021-07-19) [2022-04-15]. http://www.moa.gov.cn/xw/zwdt/202101/120210117_6360031.htm

    Ministry of Agriculture and Rural Affairs, Peoples’ Republic of China. The action goal of zero growth in the use of chemical fertilizers and pesticides was successfully achieved, and the utilization rate of chemical fertilizers and pesticides of China’s three major grain crops reached more than 40%[EB/OL]. (2021-07-19) [2022-04-15]. http://www. moa.gov.cn/xw/zwdt/202101/120210117_6360031.htm
    [19]
    Food and Agriculture Organization of United Nations. Fertilizers by nutrient[EB/OL]. [2022-04-15]. https://www.fao.org/faostat/zh/#data/RFN
    [20]
    林黎, 李敬, 肖波. 农户绿色生产技术采纳意愿决定: 市场驱动还是政府推动[J]. 经济问题, 2021(12): 67−74

    LIN L, LI J, XIAO B. What factors determine farmers’ willingness to adopt green production technology: market or government[J]. On Economic Problems, 2021(12): 67−74
    [21]
    汪普庆, 周德翼, 梁皖琪. 中国参与南南农业合作构建粮食安全共同体的战略思考与政策建议[J]. 武汉轻工大学学报, 2022, 41(1): 70−76

    WANG P Q, ZHOU D Y, LIANG W Q. Strategic thinking and policy suggestions on China’s participation in south-south agricultural cooperation and building a food security community[J]. Journal of Wuhan Polytechnic University, 2022, 41(1): 70−76
    [22]
    温倩. 合成氨行业发展情况及未来走势分析[J]. 肥料与健康, 2020, 47(2): 6−13

    WEN Q. Analysis of the development situation and future trend of the synthetic ammonia industry[J]. Fertilizer & Health, 2020, 47(2): 6−13
    [23]
    宋心怡, 炼晨, 张依然. “双碳”目标“施工图”日渐清晰−肥料行业将迎来新变革[J]. 中国农资, 2021(11): 3−5

    SONG X Y, LIAN C, ZHANG Y R. Construction drawing of the goal of double carbon is increasingly clear: the fertilizer industry will usher in new changes[J]. China Agri-Production News, 2021(11): 3−5
    [24]
    苗俊艳, 侯翠红, 许秀成. 正在全球兴起的未来肥料产业[J]. 肥料与健康, 2020, 47(5): 1−6 doi: 10.3969/j.issn.2096-7047.2020.05.002

    MIAO J Y, HOU C H, XU X C. The future fertilizer industry is emerging around the world[J]. Fertilizer & Health, 2020, 47(5): 1−6 doi: 10.3969/j.issn.2096-7047.2020.05.002
    [25]
    许祥富, 林明义. 我国新型肥料的研究现状及在水稻上的应用进展[J]. 安徽农业科学, 2021, 49(7): 17−19

    XU X F, LIN M Y. Research status of new fertilizer in China and its application in rice[J]. Journal of Anhui Agricultural Sciences, 2021, 49(7): 17−19
    [26]
    连煜阳. 新型肥料生产、销售和使用环节制约因素研究[D]. 北京: 中国农业科学院, 2019: 23

    LIAN Y Y. Study on the restrictive factors in the production, sale and use of new fertilizer[D]. Beijing: Chinese Academy of Agricultural Sciences, 2019: 23
    [27]
    祝宝林, 卢林纲. 微生物肥料的作用和选择[J]. 现代化农业, 2002(11): 19−20 doi: 10.3969/j.issn.1001-0254.2002.11.004

    ZHU B L, LU L G. Function and selection of microbial fertilizer[J]. Modernizing Agriculture, 2002(11): 19−20 doi: 10.3969/j.issn.1001-0254.2002.11.004
    [28]
    白由路. 国内外施肥机械的发展概况及需求分析[J]. 中国土壤与肥料, 2016, 53(32): 1−4

    BAI Y L. Analysis of the development and the demands of fertilization machinery[J]. Soil and Fertilizer Sciences in China, 2016, 53(32): 1−4
    [29]
    付宇超, 袁文胜, 张文毅, 等. 我国施肥机械化技术现状及问题分析[J]. 农机化研究, 2017, 39(1): 251−255, 263

    FU Y C, YUAN W S, ZHANG W Y, et al. Present situation and problem analysis of the technology of fertilizer mechanization in China[J]. Journal of Agricultural Mechanization Research, 2017, 39(1): 251−255, 263
    [30]
    叶洪岭, 邢婷婷. 河北省中小农户科学施肥的普及与调查[J]. 河北农业科学, 2021, 25(4): 71−75

    YE H L, XING T T. Popularity and survey of scientific fertilization of small and medium-sized farmers in Hebei Province[J]. Journal of Hebei Agricultural Sciences, 2021, 25(4): 71−75
    [31]
    潘文博. 我国肥料与节水工作的回顾与展望[J]. 中国农技推广, 2020, 36(11): 3−6

    PAN W B. Review and prospect of fertilizer and water saving work in China[J]. China Agricultural Technology Extension, 2020, 36(11): 3−6
    [32]
    梁靖, 梁宏, 胡卫静, 等. 农业可持续发展中土壤肥料利用发展途径[J]. 农村实用技术, 2021(5): 75−76

    LIANG J, LIANG H, HU W J, et al. Development approach of soil fertilizer utilization in agricultural sustainable development[J]. Applicable Technologies for Rural Areas, 2021(5): 75−76
    [33]
    梁永东. 土壤肥料在农业可持续发展中的问题与对策[J]. 农村科学实验, 2019(8): 33−34

    LIANG Y D. Problems and countermeasures of soil fertilizer in agricultural sustainable development[J]. Scientific Experiment in Countryside, 2019(8): 33−34
    [34]
    崔元培, 魏子鲲, 王建忠, 等. “双减”背景下化肥、农药施用现状与发展路径[J]. 北方园艺, 2021(9): 164−173

    CUI Y P, WEI Z K, WANG J Z, et al. Development status and path of application of chemical fertilizers and pesticides under the background of reduced[J]. Northern Horticulture, 2021(9): 164−173
    [35]
    谭海燕, 钱玲, 张少敏, 等. 滇池流域农业种植结构及农户施肥调查研究[J]. 云南农业科技, 2020(3): 8−10

    TAN H Y, QIAN L, ZHANG S M, et al. Investigation on agricultural planting structure and farmers’ fertilization in Dianchi Lake Basin[J]. Yunnan Agricultural Science and Technology, 2020(3): 8−10
    [36]
    博思数据. 全球有机肥料市场规模及消费区域分布格局分析[EB/OL]. (2018-10-30) [2022-04-15]. http://www.bosidata.com/news/167198509U.html

    Bosi Data. Analysis on the scale of global organic fertilizer market and regional distribution pattern of consumption [EB/OL]. (2018-10-30) [2022-04-15]. http://www.bosidata.com/news/167198509U.html
    [37]
    苟伟, 胡小刚. 有机肥料在农业生产中的应用及前景分析[J]. 磷肥与复肥, 2020, 35(12): 51−52

    GOU W, HU X G. Application and prospect analysis of organic fertilizer in agricultural production[J]. Phosphate & Compound Fertilizer, 2020, 35(12): 51−52
    [38]
    農林水产産省. 肥料取締法[EB/OL]. [2022-04-15]. http://law.e-gov.go.jp/htmldata/S25/S25HO127.html

    Ministry of Agriculture, Forestry and Fisheries (Japan). Fertilizer regulations[EB/OL]. [2022-04-15]. http://law.e-gov.go.jp/htmldata/S25/S25HO127.html
    [39]

    Ministry of Agriculture, Forestry, Animal Husbandry and Agri-food. Fertilizer management law [law No. 2985, 1976.12. 31., enacted] [EB/OL]. [2022-04-15]. http://www.law.go.kr/lsInfoP.do?lsiSeq=1880&ancYd=19761231&ancNo=02985&efYd=19770401&nwJoYnInfo=N&efGubun=Y&chrCls Cd=010202#0000
    [40]
    The Ministry of Justice (Canada). Fertilizers act[EB/OL]. [2022-04-15]. http://laws-lois.justice.gc.ca
    [41]
    The Bundestag, the Federal Senate. Fertilizer laws[EB/OL]. [2022-04-15]. http://www.gesetze-im-internet.de/bundesrecht/d_ngg/gesamt.pdf
    [42]
    Ministry of Agriculture, Fisheries and Food. Fertilisers regulations 1991[EB/OL]. [2022-04-15]. https://www.legislation.gov.uk/uksi/1991/2197/contents/made
    [43]
    The European Parliament and the Council of the European Union. Regulation (EC) No 2003/2003 of the European Parliament and the council of 13 October 2003 relating to fertilizers (Text with EEA relevance)[EB/OL]. [2022-04-15]. https://eur-lex.europa.eu/eli/reg/2003/2003/oj
    [44]
    杨帆. 美国肥料管理模式与启示[J]. 中国土壤与肥料, 2007(3): 1−3

    YANG F. Mode of fertilizer management in United State and elicitations for us[J]. Soil and Fertilizer Sciences in China, 2007(3): 1−3
    [45]
    邢文英. 美国、印度的肥料管理制度[J]. 中国农技推广, 1998(1): 24−25

    XING W Y. Fertilizer management systems in USA and India[J]. China Agricultural Technology Extension, 1998(1): 24−25
    [46]
    彭世琪. 中国肥料使用管理立法研究[J]. 中国农业科学, 2014, 47(20): 4109−4116 doi: 10.3864/j.issn.0578-1752.2014.20.019

    PENG S Q. Study on lawmaking about fertilizer use and management in China[J]. Scientia Agricultura Sinica, 2014, 47(20): 4109−4116 doi: 10.3864/j.issn.0578-1752.2014.20.019
    [47]
    张灿强, 王莉, 华春林, 等. 中国主要粮食生产的化肥削减潜力及其碳减排效应[J]. 资源科学, 2016, 38(4): 790−797

    ZHANG C Q, WANG L, HUA C L, et al. Potentialities of fertilizer reduction for grain produce and effects on carbon emissions[J]. Resources Science, 2016, 38(4): 790−797
    [48]
    农业农村部, 国家发展改革委, 财政部, 住房城乡建设部, 环境保护部, 科学技术部. 关于印发《关于推进农业废弃物资源化利用试点的方案》的通知[EB/OL]. (2016-08-11) [2022-04-15]. http://www.moa.gov.cn/gk/zcfg/nybgz/201609/t20160919_5277846.htm

    Ministry of Agriculture and Rural Affairs, National Development and Reform Commission, Ministry of Finance, Ministry of Housing and Urban Rural Development, Ministry of Environmental Protection, Ministry of Science and Technology. Notice on the issuance of the plan on pilot program for promoting the utilization of agricultural waste resources [EB/OL]. (2016-08-11) [2022-04-15]. http://www.moa.gov.cn/gk/zcfg/nybgz/201609/t20160919_5277846. htm
    [49]
    石祖梁, 贾涛, 王亚静, 等. 我国农作物秸秆综合利用现状及焚烧碳排放估算[J]. 中国农业资源与区划, 2017, 38(9): 32−37

    SHI Z L, JIA T, WANG Y J, et al. Comprehensive utilization status of crop straw and estimation of carbon from burning in China[J]. Chinese Journal of Agricultural Resources and Regional Planning, 2017, 38(9): 32−37
    [50]
    安思羽, 李艳霞, 张雪莲, 等. 我国果菜茶中畜禽粪便有机肥替代化肥潜力[J]. 农业环境科学学报, 2019, 38(8): 1712−1722

    AN S Y, LI Y X, ZHANG X L, et al. Potential of animal manure in replacing chemical fertilizers for fruit, vegetable, and tea production in China[J]. Journal of Agro-Environment Science, 2019, 38(8): 1712−1722
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(4)

    Article Metrics

    Article views (133) PDF downloads(33) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return