Volume 31 Issue 2
Feb.  2023
Turn off MathJax
Article Contents
YAN G Y, CHEN W H, QIAN H H. Effects of agricultural technical efficiency on agricultural carbon emission: Based on spatial spillover effect and threshold effect analysis[J]. Chinese Journal of Eco-Agriculture, 2023, 31(2): 226−240 doi: 10.12357/cjea.20220571
Citation: YAN G Y, CHEN W H, QIAN H H. Effects of agricultural technical efficiency on agricultural carbon emission: Based on spatial spillover effect and threshold effect analysis[J]. Chinese Journal of Eco-Agriculture, 2023, 31(2): 226−240 doi: 10.12357/cjea.20220571

Effects of agricultural technical efficiency on agricultural carbon emission: Based on spatial spillover effect and threshold effect analysis

doi: 10.12357/cjea.20220571
Funds:  This study was supported by the New Agricultural Science Research and Reform Practice Project of Ministry of Education “Construction of Practical Education System for New Agricultural Science”, Guizhou Science and Technology Platform and Talent Team Plan Project (Guizhou Science and Technology Cooperation Platform Talent [2017] 5647), and Guizhou University Humanities and Social Sciences Research General Project (GDYB2021005).
More Information
  • Corresponding author: E-mail: 1565256754@qq.com
  • Received Date: 2022-07-24
  • Accepted Date: 2022-09-14
  • Available Online: 2022-11-07
  • Publish Date: 2023-02-10
  • Global warming, caused by the greenhouse effect, has triggered numerous unprecedented extreme weather events globally. Agricultural technology is the fundamental force that promotes the development of the agricultural industry. Studying the impact mechanism of agricultural technology on agricultural carbon emissions will help transform traditional agriculture into ecological, green, and low-carbon modern agriculture, and it is of great significance to the realization of carbon neutrality and carbon peaks. This study used panel data from 31 provinces and cities in China from 2001 to 2020. First, the stochastic frontier model was used to extend existing research from a broad and narrow sense of agricultural technical progress to agricultural technical efficiency. The total agricultural carbon emissions and intensity of agricultural carbon emissions were then calculated and compared. Finally, we constructed the spatial Dubin model and the threshold model with agricultural technical efficiency as the threshold variable, which revealed the spatial effect and non-linear relationship between agricultural technical efficiency and agricultural carbon emissions. The results showed that the total and intensity of agricultural carbon emissions had decreased in recent years. Central China had more agricultural carbon emissions than eastern and western China, and eastern China had a higher technical efficiency of agriculture and a lower carbon emission intensity of agriculture than central and western China. Agricultural carbon emission intensity and technical efficiency had spatial autocorrelation and agglomeration characteristics, and high-high clustering and low-low clustering are the main factors among the provinces. Agricultural carbon emission intensity had a positive spatial spillover effect on itself, but agricultural technical efficiency had a negative spatial spillover effect, which was conducive to the overall reduction of agricultural carbon emissions. Additionally, urbanization, human capital level, and per capita cultivated land area also had negative effects on agricultural carbon emission intensity, but the level of agricultural economic development and the degree of agricultural disaster had positive effects. There was a double threshold effect between agricultural technical efficiency and agricultural carbon emission intensity, which meant that when agricultural technical efficiency reached the “inflection point”, its impact on agricultural carbon emission intensity became negative, and after the level of agricultural technical efficiency was further improved, its influence weakened due to the diminishing marginal effect. Most existing research began with a broad or narrow definition of technological progress, but this study used technical efficiency as the research object after the decomposing technological progress in a broad sense, which further validated the indisputable and decisive role of technological progress in agricultural energy conservation and emission reduction. This study provides a theoretical and policy basis for exploring the path to achieving the “double carbon” goal.
  • loading
  • [1]
    王一鸣. 百年大变局、高质量发展与构建新发展格局[J]. 管理世界, 2020, 36(12): 1−13

    WANG Y M. Changes unseen in a century, high-quality development, and the construction of a new development pattern[J]. Management World, 2020, 36(12): 1−13
    [2]
    黄杰, 孙自敏. 中国种植业碳生产率的区域差异及分布动态演进[J]. 农业技术经济, 2022(7): 109−127

    HUANG J, SUN Z M. Regional differences and distribution dynamics of carbon productivity in planting industry in China[J]. Journal of Agrotechnical Economics, 2022(7): 109−127
    [3]
    李劼, 徐晋涛. 我国农业低碳技术的减排潜力分析[J]. 农业经济问题, 2022, 43(3): 117−135

    LI J, XU J T. Analyses of carbon reduction potential of low carbon technologies in China[J]. Issues in Agricultural Economy, 2022, 43(3): 117−135
    [4]
    YANG L S, LI Z. Technology advance and the carbon dioxide emission in China - Empirical research based on the rebound effect[J]. Energy Policy, 2017, 101(2): 150−161
    [5]
    李波, 张俊飚, 李海鹏. 中国农业碳排放时空特征及影响因素分解[J]. 中国人口·资源与环境, 2011, 21(8): 80−86

    LI B, ZHANG J B, LI H P. Research on spatial-temporal characteristics and affecting factors decomposition of agricultural carbon emission in China[J]. China Population, Resources and Environment, 2011, 21(8): 80−86
    [6]
    刘杨, 刘鸿斌. 山东省农业碳排放特征、影响因素及达峰分析[J]. 中国生态农业学报(中英文), 2022, 30(4): 558−569

    LIU Y, LIU H B. Characteristics, influencing factors and peak analysis of agricultural carbon emissions in Shandong Province[J]. Chinese Journal of Eco-Agriculture, 2022, 30(4): 558−569
    [7]
    ZHOU P, ANG B W, HAN J Y. Total factor carbon emission performance: a Malmquist index analysis[J]. Energy Economics, 2010, 32(1): 194−201
    [8]
    张永强, 田媛, 王珧, 等. 农村人力资本、农业技术进步与农业碳排放[J]. 科技管理研究, 2019, 39(14): 266−274

    ZHANG Y Q, TIAN Y, WANG Y, et al. Rural human capital, agricultural technology progress and agricultural carbon emissions[J]. Science and Technology Management Research, 2019, 39(14): 266−274
    [9]
    庞丽. 我国农业碳排放的区域差异与影响因素分析[J]. 干旱区资源与环境, 2014, 28(12): 1−7

    PANG L. Empirical study of regional carbon emissions of agriculture in China[J]. Journal of Arid Land Resources and Environment, 2014, 28(12): 1−7
    [10]
    邓祥征, 钟海玥, 白雪梅, 等. 中国西部城镇化可持续发展路径的探讨[J]. 中国人口·资源与环境, 2013, 23(10): 24−30

    DENG X Z, ZHONG H Y, BAI X M, et al. Path of sustainable urbanization in Western China[J]. China Population, Resources and Environment, 2013, 23(10): 24−30
    [11]
    杨钧. 农业技术进步对农业碳排放的影响−中国省级数据的检验[J]. 软科学, 2013, 27(10): 116−120

    YANG J. The effects of technological advances on agricultural carbon emission — Evidence from Chinese provincial data[J]. Soft Science, 2013, 27(10): 116−120
    [12]
    VALIN H, HAVLÍK P, MOSNIER A, et al. Agricultural productivity and greenhouse gas emissions: trade-offs or synergies between mitigation and food security?[J]. Environmental Research Letters, 2013, 8(3): 035019 doi: 10.1088/1748-9326/8/3/035019
    [13]
    周勇, 林源源. 技术进步对能源消费回报效应的估算[J]. 经济学家, 2007(2): 45−52 doi: 10.3969/j.issn.1003-5656.2007.02.007

    ZHOU Y, LIN Y Y. The estimation of technological progress on the energy consumption returns effects[J]. Economist, 2007(2): 45−52 doi: 10.3969/j.issn.1003-5656.2007.02.007
    [14]
    李成龙, 周宏. 农业技术进步与碳排放强度关系−不同影响路径下的实证分析[J]. 中国农业大学学报, 2020, 25(11): 162−171 doi: 10.11841/j.issn.1007-4333.2020.11.17

    LI C L, ZHOU H. Relationship between agricultural technology progress and carbon emission intensity: an empirical analysis under different influence paths[J]. Journal of China Agricultural University, 2020, 25(11): 162−171 doi: 10.11841/j.issn.1007-4333.2020.11.17
    [15]
    丁超. 三角贸易及其对中国劳动生产率的影响研究[D]. 厦门: 厦门大学, 2014

    DING C. Study on present situation of triangle trade and its influence on China’s labor productivity[D]. Xiamen: Xiamen University, 2014
    [16]
    徐清华, 张广胜. 农业机械化对农业碳排放强度影响的空间溢出效应−基于282个城市面板数据的实证[J]. 中国人口·资源与环境, 2022, 32(4): 23−33

    XU Q H, ZHANG G S. Spatial spillover effect of agricultural mechanization on agricultural carbon emission intensity: an empirical analysis of panel data from 282 cities[J]. China Population, Resources and Environment, 2022, 32(4): 23−33
    [17]
    陈军娟, 燕振刚, 李薇, 等. 基于系统动力学的民勤绿洲农业系统碳排放仿真模拟研究[J]. 西南农业学报, 2022, 35(6): 1432−1440

    CHEN J J, YAN Z G, LI W, et al. Simulation study on carbon emission of Minqin oasis agricultural system based on system dynamics[J]. Southwest China Journal of Agricultural Sciences, 2022, 35(6): 1432−1440
    [18]
    何炫蕾, 陈兴鹏, 庞家幸. 基于LMDI的兰州市农业碳排放现状及影响因素分析[J]. 中国农业大学学报, 2018, 23(7): 150−158

    HE X L, CHEN X P, PANG J X. Current situation and influencing factors of agricultural carbon emissions in Lanzhou based on LMDI[J]. Journal of China Agricultural University, 2018, 23(7): 150−158
    [19]
    贺青, 张虎, 张俊飚. 农业产业聚集对农业碳排放的非线性影响[J]. 统计与决策, 2021, 37(9): 75−78

    HE Q, ZHANG H, ZHANG J B. Nonlinear effects of agricultural industry aggregation on agricultural carbon emissions[J]. Statistics & Decision, 2021, 37(9): 75−78
    [20]
    张抗私, 史策. 认知能力、技术进步与就业极化[J]. 现代财经(天津财经大学学报), 2022, 42(5): 95−113

    ZHANG K S, SHI C. Cognitive ability, technological progress and employment polarization[J]. Modern Finance and Economics - Journal of Tianjin University of Finance and Economics, 2022, 42(5): 95−113
    [21]
    杨增旭, 韩洪云. 化肥施用技术效率及影响因素−基于小麦和玉米的实证分析[J]. 中国农业大学学报, 2011, 16(1): 140−147

    YANG Z X, HAN H Y. Technical efficiency of fertilizer and its influencing factors: based on wheat and corn empirical study[J]. Journal of China Agricultural University, 2011, 16(1): 140−147
    [22]
    汪小勤, 姜涛. 基于农业公共投资视角的中国农业技术效率分析[J]. 中国农村经济, 2009(5): 79−86

    WANG X Q, JIANG T. Analysis of China’s agricultural technical efficiency from the perspective of agricultural public investment[J]. Chinese Rural Economy, 2009(5): 79−86
    [23]
    高鸣, 宋洪远. 粮食生产技术效率的空间收敛及功能区差异−兼论技术扩散的空间涟漪效应[J]. 管理世界, 2014(7): 83−92

    GAO M, SONG H Y. Spatial convergence and functional zone differences of technical efficiency of grain production: a discussion on the spatial ripple effect of technology diffusion[J]. Management World, 2014(7): 83−92
    [24]
    张思麒, 刘导波. 技术进步视角下中国产业结构高级化格局及影响因素[J]. 经济地理, 2022, 42(5): 104−113

    ZHANG S Q, LIU D B. Spatial pattern and influencing factors of industrial structure advancement in China based on technological progress[J]. Economic Geography, 2022, 42(5): 104−113
    [25]
    杨义武, 林万龙, 张莉琴. 农业技术进步、技术效率与粮食生产−来自中国省级面板数据的经验分析[J]. 农业技术经济, 2017(5): 46−56

    YANG Y W, LIN W L, ZHANG L Q. Agricultural technical progress, technical efficiency and grain production: an empirical analysis from provincial panel data in China[J]. Journal of Agrotechnical Economics, 2017(5): 46−56
    [26]
    WANG Q Y. Fixed-effect panel threshold model using stata[J]. The Stata Journal, 2015, 15(1): 121−134 doi: 10.1177/1536867X1501500108
    [27]
    HANSEN B E. Threshold effects in non-dynamic panels: Estimation, testing, and inference[J]. Journal of Econometrics, 1999, 93(2): 345−368 doi: 10.1016/S0304-4076(99)00025-1
    [28]
    WEST T O, MARLAND G. A synthesis of carbon sequestration, carbon emissions, and net carbon flux in agriculture: comparing tillage practices in the United States[J]. Agriculture Ecosystems & Environment, 2002, 91(1/3): 217−232
    [29]
    智静, 高吉喜. 中国城乡居民食品消费碳排放对比分析[J]. 地理科学进展, 2009, 28(3): 429−434

    ZHI J, GAO J X. Comparative analysis of carbon emissions from food consumption of urban and rural residents in China[J]. Progress in Geography, 2009, 28(3): 429−434
    [30]
    IPCC. Climate Change 2007: The Physical Science Basis: Working Group I Contribution to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change[M]. New York: Cambridge University Press, 2007
    [31]
    伍芬琳, 李琳, 张海林, 等. 保护性耕作对农田生态系统净碳释放量的影响[J]. 生态学杂志, 2007(12): 2035−2039

    WU F L, LI L, ZHANG H L, et al. Effects of conservation tillage on net carbon release from farmland ecosystem[J]. Chinese Journal of Ecology, 2007(12): 2035−2039
    [32]
    傅晓霞, 吴利学. 前沿分析方法在中国经济增长核算中的适用性[J]. 世界经济, 2007, 30(7): 56−66

    FU X X, WU L X. Applicability of frontier analysis method in China’s economic growth accounting[J]. The Journal of World Economy, 2007, 30(7): 56−66
    [33]
    白俊红, 江可申, 李婧. 应用随机前沿模型评测中国区域研发创新效率[J]. 管理世界, 2009(10): 51−61

    BAI J H, JIANG K S, LI J. Stochastic frontier model is applied to evaluate the innovation efficiency of regional R&D in China[J]. Management World, 2009(10): 51−61
    [34]
    LESAGE J, PACE R K. Introduction to Spatial Econometrics[M]. Boca Raton: CRC Press, 2009: 155–165
    [35]
    赵昕东, 刘成坤. 人口老龄化对制造业结构升级的作用机制研究−基于中介效应模型的检验[J]. 中国软科学, 2019(3): 153−163

    ZHAO X D, LIU C K. Research on the mechanism of population aging to the upgrading of manufacturing structure — Based on the test of mediation effect model[J]. China Soft Science, 2019(3): 153−163
    [36]
    郭庆旺, 贾俊雪. 中国全要素生产率的估算: 1979—2004[J]. 经济研究, 2005, 40(6): 51−60

    GUO Q W, JIA J X. Estimating total factor productivity in China: 1979–2004[J]. Economic Research Journal, 2005, 40(6): 51−60
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(3)  / Tables(13)

    Article Metrics

    Article views (170) PDF downloads(35) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return