Volume 31 Issue 2
Feb.  2023
Turn off MathJax
Article Contents
WANG X L, ZHANG N, HE G H, LIN X H, CHEN Y, WANG R, GUO S L. Response of deep soil CO2 concentration to precipitation events in semi-arid areas[J]. Chinese Journal of Eco-Agriculture, 2023, 31(2): 336−344 doi: 10.12357/cjea.20220586
Citation: WANG X L, ZHANG N, HE G H, LIN X H, CHEN Y, WANG R, GUO S L. Response of deep soil CO2 concentration to precipitation events in semi-arid areas[J]. Chinese Journal of Eco-Agriculture, 2023, 31(2): 336−344 doi: 10.12357/cjea.20220586

Response of deep soil CO2 concentration to precipitation events in semi-arid areas

doi: 10.12357/cjea.20220586
Funds:  The study was supported by the National Natural Science Foundation of China (41830751).
More Information
  • Corresponding author: E-mail: slguo@ms.iswc.ac.cn
  • Received Date: 2022-07-29
  • Accepted Date: 2022-11-25
  • Available Online: 2022-12-27
  • Publish Date: 2023-02-10
  • In arid and semi-arid areas, soil moisture strongly influences the balance between respiration and diffusion, altering soil CO2 concentration and surface flux. Numerous studies have focused on the relationship between surface soil CO2 flux changes and rainfall events. Subsoil carbon constitutes a large fraction of the total carbon stock, but it is unclear how rainfall events influence subsoil CO2 concentration dynamics. We continuously monitored CO2 concentrations at 10, 50, and 100 cm in the soil profile from 2019 to 2021, and analyzed the various responses of subsoil CO2 concentration to rainfall events. In this study, soil temperature showed apparent seasonal characteristics. As the air temperature changed, the soil temperature of different depths also changed from 100 cm < 50 cm < 10 cm to 10 cm < 50 cm < 100 cm. The soil moisture content of different layers was in the order of 10 cm < 100 cm < 50 cm, and a significant fluctuation was found at 10 cm. The soil CO2 concentration gradually increased with the increase of the depth in the order of 10 cm < 50 cm < 100 cm, with mean values of 0.66×104, 0.87×104, and 1.04×104 μmol∙mol−1, respectively. On sunny days, the soil CO2 concentrations at 10, 50, and 100 cm showed apparent diurnal variations and could be expressed as a single-peak curve. However, rainfall events significantly affected the change trends of CO2 concentrations. Approximately 78% of the rainfall events quickly altered the soil CO2 concentration in 10 cm layer. When the rainfall amount was exceeded 25 mm, the CO2 concentration at 50 and 100 cm decreased after 91 and 121 hours. When the soil moisture status changed from drying to wetting phases under rainfall events, > 25 mm precipitation promoted an increase in soil CO2 concentration at 10 cm by 30% which then began to decrease. The soil CO2 concentrations at 50 and 100 cm decreased by 16.3% and 10.9%, respectively, with an increase in soil moisture. In arid and semi-arid areas, rainfall negatively affects the changes in soil CO2 concentration at 10 cm depth under lower soil moisture content. This is because the decrease in gas diffusivity led to an increase in CO2 concentration. Soil CO2 concentrations at 50 and 100 cm depths decreased under rainfall events, although the soil moisture was higher than the field capacity. This was caused by the high soil moisture content, which inhibited microbial respiration. The responses of soil CO2 concentration at different depths to rainfall differed and largely depended on the soil moisture content.
  • loading
  • [1]
    NAN W, YUE S, LI S, et al. The factors related to carbon dioxide effluxes and production in the soil profiles of rain-fed maize-fields[J]. Agriculture, Ecosystems & Environment, 2016, 216: 177−187
    [2]
    MIN K, BERHE A A, KHOI C M, et al. Differential effects of wetting and drying on soil CO2 concentration and flux in near-surface vs. deep soil layers[J]. Biogeochemistry, 2020, 148(3): 255−269 doi: 10.1007/s10533-020-00658-7
    [3]
    FIERER N, ALLEN A S, SCHIMEL J P, et al. Controls on microbial CO2 production: a comparison of surface and subsurface soil horizons[J]. Global Change Biology, 2010, 9(9): 1322−1332
    [4]
    WANG X L, FU S L, LI J X, et al. Forest soil profile inversion and mixing change the vertical stratification of soil CO2 concentration without altering soil surface CO2 flux[J]. Forests, 2019, 10(2): 192 doi: 10.3390/f10020192
    [5]
    HARRISONR B, FOOTEN P W, STRAHM B D. Deep soil horizons: contribution and importance to soil carbon pools and in assessing whole-ecosystem response to management and global change[J]. Forest Science, 2011, 57(1): 67−76
    [6]
    RATTAN L. Digging deeper: a holistic perspective of factors affecting soil organic carbon sequestration in agroecosystems[J]. Global Change Biology, 2018, 24(8): 3285−3301 doi: 10.1111/gcb.14054
    [7]
    RAICH J W, SCHLESINGER W H. The global carbon dioxide flux in soil respiration and its relationship to vegetation and climate[J]. Tellus B, 1992, 44(2): 81−99 doi: 10.3402/tellusb.v44i2.15428
    [8]
    LI X, WANG H H, LI X, et al. Shifts in bacterial community composition increase with depth in three soil types from paddy fields in China[J]. Pedobiologia, 2019, 77: 150589 doi: 10.1016/j.pedobi.2019.150589
    [9]
    GABRIEL C E, KELLMAN L. Investigating the role of moisture as an environmental constraint in the decomposition of shallow and deep mineral soil organic matter of a temperate coniferous soil[J]. Soil Biology & Biochemistry, 2014, 68: 373−384
    [10]
    TAYLOR J P, WILSON B, MILLS M S, et al. Comparison of microbial numbers and enzymatic activities in surface soils and subsoils using various techniques[J]. Soil Biology & Biochemistry, 2002, 34(3): 387−401
    [11]
    TIAN Q X, YANG X L, WANG X G, et al. Microbial community mediated response of organic carbon mineralization to labile carbon and nitrogen addition in topsoil and subsoil[J]. Biogeochemistry, 2016, 128(1/2): 125−139
    [12]
    SHEN R, PENNELL K G, SUUBERG E M. Influence of soil moisture on soil gas vapor concentration for vapor intrusion[J]. Environmental Engineering Science, 2013, 30(10): 628−637 doi: 10.1089/ees.2013.0133
    [13]
    GHEZZEHEI T A, SULMAN B, ARNOLD C L, et al. On the role of soil water retention characteristic on aerobic microbial respiration[J]. Biogeosciences, 2019, 16(6): 1187−1209 doi: 10.5194/bg-16-1187-2019
    [14]
    LEE X H, WU H J, SIGLER J, et al. Rapid and transient response of soil respiration to rain[J]. Global Change Biology, 2004, 10(6): 1017−1026 doi: 10.1111/j.1529-8817.2003.00787.x
    [15]
    MAIER M, SCHACK-KIRCHNER H, HILDEBRAND E E, et al. Pore-space CO2 dynamics in a deep, well-aerated soil[J]. European Journal of Soil Science, 2010, 61(6): 877−887 doi: 10.1111/j.1365-2389.2010.01287.x
    [16]
    BALESDENT J, BASILE-DOELSCH I, CHADOEUF J, et al. Atmosphere–soil carbon transfer as a function of soil depth[J]. Nature, 2018, 559(7715): 599−602 doi: 10.1038/s41586-018-0328-3
    [17]
    YU Y X, ZHAO C Y, JIA H T, et al. Effects of nitrogen fertilizer, soil temperature and moisture on the soil-surface CO2 efflux and production in an oasis cotton field in arid northwestern China[J]. Geoderma, 2017, 308: 93−103 doi: 10.1016/j.geoderma.2017.07.032
    [18]
    郎红东, 杨剑虹. 土壤CO2浓度变化及其影响因素的研究[J]. 西南大学学报(自然科学版), 2004, 26(6): 731−734, 739

    LANG H D, YANG J H. Study of CO2 concentration changes in soil profile and its affecting factors[J]. Journal of Southwest University (Natural Science Edition), 2004, 26(6): 731−734, 739
    [19]
    DELSARTE I, COHEN G J V, MOMTBRUN M, et al. Soil carbon dioxide fluxes to atmosphere: the role of rainfall to control CO2 transport[J]. Applied Geochemistry, 2021, 127: 104854 doi: 10.1016/j.apgeochem.2020.104854
    [20]
    RACHHPAL J, ANDY B, MIKE N, et al. Relationship between soil CO2 concentrations and forest-floor CO2 effluxes[J]. Agricultural and Forest Meteorology, 2005, 130(3): 176−192
    [21]
    FERNANDEZ-BOU A S, DIERICK D, ALLEN M F, et al. Precipitation-drainage cycles lead to hot moments in soil carbon dioxide dynamics in a neotropical wet forest[J]. Global Change Biology, 2020, 26(9): 5303−5319 doi: 10.1111/gcb.15194
    [22]
    刘合满, 曹丽花, 李江荣, 等. 色季拉山急尖长苞冷杉林不同层次土壤CO2浓度对短时降雨的响应[J]. 生态学报, 2020, 40(22): 8354−8363

    LIU H M, CAO L H, LI J R, et al. Response of soil CO2 concentration at different depth of Abies georgei var Smithii forest to short-time rainfall on Sejila Mountain, southeastern Tibet[J]. Acta Ecologica Sinica, 2020, 40(22): 8354−8363
    [23]
    CHEN Q. Characteristics of soil profile CO2 concentrations in karst areas and their significance for global carbon cycles and climate change[J]. Earth System Dynamics, 2019, 10(3): 525−538 doi: 10.5194/esd-10-525-2019
    [24]
    张芳, 郭胜利, 邹俊亮, 等. 长期施氮和水热条件对夏闲期土壤呼吸的影响[J]. 环境科学, 2011, 32(11): 3174−3180 doi: 10.13227/j.hjkx.2011.11.023

    ZHANG F, GUO S L, ZOU J L, et al. Effects of nitrogen fertilization, soil moisture and soil temperature on soil respiration during summer fallow season[J]. Environmental Science, 2011, 32(11): 3174−3180 doi: 10.13227/j.hjkx.2011.11.023
    [25]
    郭正, 李军, 张玉娇, 等. 黄土高原不同降水量区旱作苹果园地水分生产力和土壤干燥化效应模拟与比较[J]. 自然资源学报, 2016, 31(1): 135−150 doi: 10.11849/zrzyxb.20141498

    GUO Z, LI J, ZHANG Y J, et al. Simulation and comparison of water productivity and soil desiccation effects of apple orchards in different rainfall regions of the loess plateau[J]. Journal of Natural Resources, 2016, 31(1): 135−150 doi: 10.11849/zrzyxb.20141498
    [26]
    白岗栓, 邹超煜, 邵发琦, 等. 自然生草和蚯蚓对渭北旱塬苹果园土壤特性及苹果品质的影响[J]. 中国农业大学学报, 2022, 27(3): 146−157 doi: 10.11841/j.issn.1007-4333.2022.03.16

    BAI G S, ZOU C Y, SHAO F Q, et al. Effects of self-sown grass and earthworm on the soil property and apple quality of apple orchard in weibei dry plateau[J]. Journal of China Agricultural University, 2022, 27(3): 146−157 doi: 10.11841/j.issn.1007-4333.2022.03.16
    [27]
    苏志慧. 应用浓度梯度法估算农田和草地土壤地表CO2通量[D]. 北京: 中国农业大学, 2016

    SU Z H. Using gradient method to estimate soil surface CO2 flux in crop and grass field[D]. Beijing: China Agricultural University, 2016
    [28]
    MOLDRUP P, OLESEN T, GAMST J, et al. Predicting the gas diffusion coefficient in repacked soil water‐induced linear reduction model[J]. Soil Science Society of America Journal, 2000, 64(5): 1588−1594 doi: 10.2136/sssaj2000.6451588x
    [29]
    EILERS K G, DEBENPORT S, ANDERSON S, et al. Digging deeper to find unique microbial communities: the strong effect of depth on the structure of bacterial and archaeal communities in soil[J]. Soil Biology & Biochemistry, 2012, 50: 58−65
    [30]
    WORDELL-DIETRICH P, DON A, Helfrich M. Controlling factors for the stability of subsoil carbon in a Dystric Cambisol[J]. Geoderma, 2017, 304: 40−48 doi: 10.1016/j.geoderma.2016.08.023
    [31]
    程建中, 李心清, 周志红, 等. 土壤CO2浓度与地表CO2通量的季节变化及其相互关系[J]. 地球与环境, 2011, 39(2): 196−202

    CHENG J Z, LI X Q, ZHOU Z H, et al. Seasonal variation and relationship between soil CO2 concentrations and surface CO2 fluxes[J]. Earth and Environment, 2011, 39(2): 196−202
    [32]
    戴万宏, 王益权, 黄耀, 等. 土剖面CO2浓度的动态变化及其受环境因素的影响[J]. 土壤学报, 2004, 41(5): 827−831 doi: 10.3321/j.issn:0564-3929.2004.05.026

    DAI W H, WANG Y Q, HUANG Y, et al. Seasonal dynamic of CO2 concentration in Lou soil and impact by environment factors[J]. Acta Pedologica Sinica, 2004, 41(5): 827−831 doi: 10.3321/j.issn:0564-3929.2004.05.026
    [33]
    ZHOU L X, FU S L, DING M M, et al. Soil CO2 concentration and efflux from three forests in subtropical China[J]. Soil Research, 2012, 50(4): 328−336 doi: 10.1071/SR12109
    [34]
    张红星, 王效科, 冯宗炜, 等. 黄土高原小麦田土壤呼吸对强降雨的响应[J]. 生态学报, 2008, 28(12): 6189−6196 doi: 10.3321/j.issn:1000-0933.2008.12.049

    ZHANG H X, WANG X K, FENG Z W, et al. The great rainfall effect on soil respiration of wheat field in semi-arid region of the Loess Plateau[J]. Acta Ecologica Sinica, 2008, 28(12): 6189−6196 doi: 10.3321/j.issn:1000-0933.2008.12.049
    [35]
    LIU Y C, LIU S R, MIAO R H, et al. Seasonal variations in the response of soil CO2 efflux to precipitation pulse under mild drought in a temperate oak (Quercus variabilis) forest[J]. Agricultural and Forest Meteorology, 2019, 271: 240−250 doi: 10.1016/j.agrformet.2019.03.009
    [36]
    SIERRA C A, MALGHANI S, LOESCHER H W. Interactions among temperature, moisture, and oxygen concentrations in controlling decomposition rates in a boreal forest soil[J]. Biogeosciences, 2017, 14(3): 703−710 doi: 10.5194/bg-14-703-2017
    [37]
    王融融, 余海龙, 李诗瑶, 等. 干湿交替对土壤呼吸和土壤有机碳矿化的影响述评[J]. 水土保持研究, 2022, 29(1): 78−85 doi: 10.3969/j.issn.1005-3409.2022.1.stbcyj202201012

    WANG R R, YU H L, LI S Y, et al. Review on the effects of soil alternate drying-rewetting cycle on soil respiration and soil organic carbon mineralization[J]. Research of Soil and Water Conservation, 2022, 29(1): 78−85 doi: 10.3969/j.issn.1005-3409.2022.1.stbcyj202201012
    [38]
    DAVIDSON E A, BELK E, BOONE R D. Soil water content and temperature as independent or confounded factors controlling soil respiration in a temperate mixed hardwood forest[J]. Global Change Biology, 1998, 4(2): 217−227 doi: 10.1046/j.1365-2486.1998.00128.x
    [39]
    ZHU M X, De BOECK H J, XU H, et al. Seasonal variations in the response of soil respiration to rainfall events in a riparian poplar plantation[J]. Science of the Total Environment, 2020, 747: 141222 doi: 10.1016/j.scitotenv.2020.141222
    [40]
    王旭, 闫玉春, 闫瑞瑞, 等. 降雨对草地土壤呼吸季节变异性的影响[J]. 生态学报, 2013, 33(18): 5631−5635 doi: 10.5846/stxb201304080631

    WANG X, YAN Y C, YAN R R, et al. Effect of rainfall on the seasonal variation of soil respiration in Hulumber Meadow Steppe[J]. Acta Ecologica Sinica, 2013, 33(18): 5631−5635 doi: 10.5846/stxb201304080631
    [41]
    郭胜利, 高会议, 党廷辉. 施氮水平对黄土旱塬区小麦产量和土壤有机碳、氮的影响[J]. 植物营养与肥料学报, 2009, 15(4): 808−814 doi: 10.3321/j.issn:1008-505X.2009.04.011

    GUO S L, GAO H Y, DANG T H. Effects of nitrogen application rates on grain yield, soil organic carbon and nitrogen under a rainfed cropping system in the loess tablelands of China[J]. Plant Nutrition and Fertilizer Science, 2009, 15(4): 808−814 doi: 10.3321/j.issn:1008-505X.2009.04.011
    [42]
    GAO Y, ZHANG P, LIU J. One third of the abiotically-absorbed atmospheric CO2 by the loess soil is conserved in the solid phase[J]. Geoderma, 2020, 374: 11448
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)  / Tables(2)

    Article Metrics

    Article views (87) PDF downloads(30) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return