Volume 31 Issue 3
Mar.  2023
Turn off MathJax
Article Contents
ZHANG X J, WANG J T, DONG X L, TIAN L, LOU B Y, LIU X J, SUN H Y. Effect of underground brackish water depth on soil water-salt distribution and water consumption of winter wheat[J]. Chinese Journal of Eco-Agriculture, 2023, 31(3): 417−427 doi: 10.12357/cjea.20220882
Citation: ZHANG X J, WANG J T, DONG X L, TIAN L, LOU B Y, LIU X J, SUN H Y. Effect of underground brackish water depth on soil water-salt distribution and water consumption of winter wheat[J]. Chinese Journal of Eco-Agriculture, 2023, 31(3): 417−427 doi: 10.12357/cjea.20220882

Effect of underground brackish water depth on soil water-salt distribution and water consumption of winter wheat

doi: 10.12357/cjea.20220882
Funds:  This study was supported by the National Key Research and Development Project (2021YFE0114500).
More Information
  • Corresponding author: E-mail: hysun@sjziam.ac.cn
  • Received Date: 2022-11-10
  • Accepted Date: 2023-02-06
  • Rev Recd Date: 2023-02-06
  • Available Online: 2023-02-14
  • Publish Date: 2023-03-10
  • Production of winter wheat in the low plains around the Bohai Sea faces the constraint of freshwater resource shortage, and the efficient and safe use of the relatively abundant shallow brackish water resources is of great importance for sustainable agricultural development. Soil column simulation experiments were conducted at the Nanpi Ecological Agricultural Experiment Station of the Chinese Academy of Sciences in 2021–2022. Four treatments, including no groundwater but freshwater (487.5 mm) irrigation treatment (CK) and underground brackish water depths of 0.5 m (GW1), 1.0 m (GW2), and 1.5 m (GW3) with 20 mm freshwater irrigation were applied, with three replications for each treatment. This experiment investigated the characteristics of soil water, salinity content, and water use in winter wheat. The results showed that the distribution of soil water and salt in the surface soil (0–10 cm) gradually decreased with increasing groundwater depth. Compared with the CK treatment, the surface soil water content of the GW1 treatment significantly increased by 30.9% and that of the GW3 treatment significantly decreased by 79.3%, whereas there was no significant difference for the GW2 treatment. Compared with the CK treatment, the salinity of surface soil in the GW1 and GW2 treatments significantly increased by 3.4 g·kg−1 and 2.0 g·kg−1, respectively, whereas there was no significant difference in the GW3 treatment. Salt in the GW1 and GW2 treatments mainly accumulated in the surface soil, whereas that in the GW3 treatment was low and mainly accumulated at a depth of 30–50 cm. The evapotranspiration of winter wheat significantly decreased with increasing groundwater depth. The evapotranspiration of winter wheat significantly increased by 50.2% and 20.3% under the GW1 and GW2 treatments, respectively, compared to CK, and there was no significant difference between the GW3 and CK treatments. The grain yield of the GW3 treatment was the highest, which was significantly increased by 38.04% compared with that of the CK treatment. The highest values for water use efficiency at the biomass and yield levels in the GW3 treatment were significantly higher than those in the CK treatment by 26.7% and 40.1%, respectively. The above results show that 1.5 m is the upper limit of the suitable groundwater depth for winter wheat growth in underground brackish water shallow burial areas when the mass concentration of brackish water is 3 g·L−1 and groundwater depth is 0.5–1.5 m. Under these conditions, the surface salinity and crop evapotranspiration were the lowest, and the yield and water use efficiency were the best.
  • loading
  • [1]
    王树强. 地下水资源可持续利用的制度架构−以华北平原为例[J]. 地下水, 2012, 34(3): 6−8

    WANG S Q. Sustainable use of groundwater resources in the system frame — As an example of the North China Plain[J]. Ground Water, 2012, 34(3): 6−8
    [2]
    梅旭荣, 罗远培. 缺水与我国粮食生产: 问题、潜力与对策[J]. 科技导报, 2000(6): 31−34 doi: 10.3321/j.issn:1000-7857.2000.06.010

    MEI X R, LUO Y P. Water shortage and grain production in China: problems, potential and countermeasures[J]. Science & Technology Review, 2000(6): 31−34 doi: 10.3321/j.issn:1000-7857.2000.06.010
    [3]
    孙宏勇, 刘小京, 张喜英. 盐碱地水盐调控研究[J]. 中国生态农业学报, 2018, 26(10): 1528−1536

    SUN H Y, LIU X J, ZHANG X Y. Regulations of salt and water of saline-alkali soil: a review[J]. Chinese Journal of Eco-Agriculture, 2018, 26(10): 1528−1536
    [4]
    巴比江, 郑大玮, 贾云茂, 等. 地下水埋深对冬麦田土壤水分及产量的影响[J]. 节水灌溉, 2004(5): 5−9 doi: 10.3969/j.issn.1007-4929.2004.05.002

    BA B J, ZHENG D W, JIA Y M, et al. Influence of water table on the soil water variation and crop yield of winter wheat field[J]. Water Saving Irrigation, 2004(5): 5−9 doi: 10.3969/j.issn.1007-4929.2004.05.002
    [5]
    REN B Z, DONG S T, LIU P, et al. Ridge tillage improves plant growth and grain yield of waterlogged summer maize[J]. Agricultural Water Management, 2016, 177: 392−399 doi: 10.1016/j.agwat.2016.08.033
    [6]
    XU X, HUANG G H, SUN C, et al. Assessing the effects of water table depth on water use, soil salinity and wheat yield: searching for a target depth for irrigated areas in the upper Yellow River Basin[J]. Agricultural Water Management, 2013, 125: 46−60 doi: 10.1016/j.agwat.2013.04.004
    [7]
    SEPASKHAH A R, KANOONI A, GHASEMI M M. Estimating water table contributions to corn and sorghum water use[J]. Agricultural Water Management, 2003, 58(1): 67−79 doi: 10.1016/S0378-3774(02)00081-1
    [8]
    郝远远, 徐旭, 黄权中, 等. 土壤水盐与玉米产量对地下水埋深及灌溉响应模拟[J]. 农业工程学报, 2014, 30(20): 128−136 doi: 10.3969/j.issn.1002-6819.2014.20.016

    HAO Y Y, XU X, HUANG Q Z, et al. Modeling soil water-salt dynamics and maize yield responses to groundwater depths and irrigations[J]. Transactions of the Chinese Society of Agricultural Engineering, 2014, 30(20): 128−136 doi: 10.3969/j.issn.1002-6819.2014.20.016
    [9]
    MUELLER L, BEHRENDT A, SCHALITZ G, et al. Above ground biomass and water use efficiency of crops at shallow water tables in a temperate climate[J]. Agricultural Water Management, 2005, 75(2): 117−136 doi: 10.1016/j.agwat.2004.12.006
    [10]
    武朝宝. 地下水埋深对作物产量与水分利用效率的影响及作物系数变化[J]. 地下水, 2011, 33(4): 20−23 doi: 10.3969/j.issn.1004-1184.2011.04.008

    WU C B. Effect of groundwater depth on crop output and water-used efficiency and the change of crop coefficients[J]. Ground Water, 2011, 33(4): 20−23 doi: 10.3969/j.issn.1004-1184.2011.04.008
    [11]
    LIU T G, LUO Y. Effects of shallow water tables on the water use and yield of winter wheat (Triticum aestivum L.) under rain-fed condition[J]. Australian Journal of Crop Science, 2011, 5: 1692−1697
    [12]
    WESSTRÖM I, MESSING I. Effects of controlled drainage on N and P losses and N dynamics in a loamy sand with spring crops[J]. Agricultural Water Management, 2007, 87(3): 229−240 doi: 10.1016/j.agwat.2006.07.005
    [13]
    SOYLU M E, KUCHARIK C J, LOHEIDE S P. Influence of groundwater on plant water use and productivity: development of an integrated ecosystem-variably saturated soil water flow model[J]. Agricultural and Forest Meteorology, 2014, 189/190: 198−210
    [14]
    刘战东, 肖俊夫, 牛豪震, 等. 地下水埋深对冬小麦和春玉米产量及水分生产效率的影响[J]. 干旱地区农业研究, 2011, 29(1): 29−33

    LIU Z D, XIAO J F, NIU H Z, et al. Influence of groundwater depth on yield and WUE of winter wheat and spring maize[J]. Agricultural Research in the Arid Areas, 2011, 29(1): 29−33
    [15]
    NARJARY B, KUMAR S, MEENA M D, et al. Effects of shallow saline groundwater table depth and evaporative flux on soil salinity dynamics using hydrus-1D[J]. Agricultural Research, 2021, 10(1): 105−115 doi: 10.1007/s40003-020-00484-1
    [16]
    张喜英, 刘小京, 陈素英, 等. 环渤海低平原农田多水源高效利用机理和技术研究[J]. 中国生态农业学报, 2016, 24(8): 995−1004

    ZHANG X Y, LIU X J, CHEN S Y, et al. Efficient utilization of various water sources in farmlands in the low plain nearby Bohai Sea[J]. Chinese Journal of Eco-Agriculture, 2016, 24(8): 995−1004
    [17]
    李佳, 曹彩云, 郑春莲, 等. 河北低平原冬小麦长期咸水灌溉矿化度阈值研究[J]. 中国生态农业学报, 2016, 24(5): 643−651

    LI J, CAO C Y, ZHENG C L, et al. Salinity threshold of long-term saline water irrigation for winter wheat in Hebei Lowland Plain[J]. Chinese Journal of Eco-Agriculture, 2016, 24(5): 643−651
    [18]
    HARGREAVES G H, ALLEN R G. History and evaluation of Hargreaves evapotranspiration equation[J]. Journal of Irrigation and Drainage Engineering, 2003, 129(1): 53−63 doi: 10.1061/(ASCE)0733-9437(2003)129:1(53)
    [19]
    LUO Y F, CHANG X M, PENG S Z, et al. Short-term forecasting of daily reference evapotranspiration using the Hargreaves-Samani model and temperature forecasts[J]. Agricultural Water Management, 2014, 136: 42−51 doi: 10.1016/j.agwat.2014.01.006
    [20]
    ALLEN R G, PEREIRA L S, RAES D, et al. Crop evapotranspiration-guidelines for computing crop requirements, FAO Irrigation and Drainage Paper 56[J]. FAO: Rome, Italy, 1998. https://www.docin.com/p-408591772.html
    [21]
    ZHANG X Y, QIN W L, CHEN S Y, et al. Responses of yield and WUE of winter wheat to water stress during the past three decades— A case study in the North China Plain[J]. Agricultural Water Management, 2017, 179: 47−54 doi: 10.1016/j.agwat.2016.05.004
    [22]
    LIU R X, ZHOU Z G, GUO W Q, et al. Effects of N fertilization on root development and activity of water-stressed cotton (Gossypium hirsutum L.) plants[J]. Agricultural Water Management, 2008, 95(11): 1261−1270 doi: 10.1016/j.agwat.2008.05.002
    [23]
    CUI B S, YANG Q C, ZHANG K J, et al. Responses of saltcedar (Tamarix chinensis) to water table depth and soil salinity in the Yellow River Delta, China[J]. Plant Ecology, 2010, 209(2): 279−290 doi: 10.1007/s11258-010-9723-z
    [24]
    李小倩, 夏江宝, 赵西梅, 等. 不同潜水埋深下浅层土壤的水盐分布特征[J]. 中国水土保持科学, 2017, 15(2): 43−50

    LI X Q, XIA J B, ZHAO X M, et al. Water and salt distribution characteristics of shallow soil at different diving water levels[J]. Science of Soil and Water Conservation, 2017, 15(2): 43−50
    [25]
    XIA J B, LANG Y, ZHAO Q K, et al. Photosynthetic characteristics of Tamarix chinensis under different groundwater depths in freshwater habitats[J]. Science of the Total Environment, 2021, 761: 143221
    [26]
    李文昊, 王振华, 王凯飞. 蒸发条件下地下水埋深对土壤水盐含量的影响[J]. 石河子大学学报(自然科学版), 2020, 38(4): 443−448

    LI W H, WANG Z H, WANG K F. Effect of groundwater depth on soil water and salt content under evaporation[J]. Journal of Shihezi University (Natural Science), 2020, 38(4): 443−448
    [27]
    崔亚莉, 张德强, 邵景力, 等. 地下水浅埋区土壤水TDS变化规律分析[J]. 水土保持学报, 2004(1): 185−188

    CUI Y L, ZHANG D Q, SHAO J L, et al. Study on variation and influence factor of soil-water TDS in shallow groundwater areas[J]. Journal of Soil Water Conservation, 2004(1): 185−188
    [28]
    糟凯龙. 毛管力与植物蒸腾拉力综合作用提升地下水试验研究[D]. 乌鲁木齐: 新疆农业大学, 2021

    ZAO K L. Experimental study on comprehensive effect of capillary force and transpiration pulling force of plants to enhance groundwater[D]. Urumqi: Xinjiang Agricultural University, 2021
    [29]
    ZHANG J, HEYDEN J V, BENDEL D, et al. Combination of soil-water balance models and water-table fluctuation methods for evaluation and improvement of groundwater recharge calculations[J]. Hydrogeology Journal, 2011, 19(8): 1487−1502 doi: 10.1007/s10040-011-0772-8
    [30]
    王峰, 姚宝林, 孙三民, 等. 矿化度对均质土壤毛管水上升特性与土壤盐分的影响[J]. 中国农村水利水电, 2017(9): 27−31 doi: 10.3969/j.issn.1007-2284.2017.09.007

    WANG F, YAO B L, SUN S M, et al. The effects of different total dissolved solids degree on characteristics of capillary water rise and soil salt under homogeneous soil[J]. China Rural Water and Hydropower, 2017(9): 27−31 doi: 10.3969/j.issn.1007-2284.2017.09.007
    [31]
    LI J, YU B, ZHAO C, et al. Physiological and morphological responses of Tamarix ramosissima and Populus euphratica to altered groundwater availability[J]. Tree Physiology, 2013, 33(1): 57−68 doi: 10.1093/treephys/tps120
    [32]
    姚宝林, 孙三民, 李发永, 等. 潜水蒸发条件下不同棉秆隔层埋深对土壤盐分时空分布的影响[J]. 灌溉排水学报, 2021, 40(10): 95−102

    YAO B L, SUN S M, LI F Y, et al. Using cotton straw interlayer to reduce evaporation and salt migration from groundwater to the soil surface[J]. Journal of Irrigation and Drainage, 2021, 40(10): 95−102
    [33]
    窦超银, 康跃虎, 万书勤. 地下水浅埋区重度盐碱地覆膜咸水滴灌水盐动态试验研究[J]. 土壤学报, 2011, 48(3): 524−532

    DOU C Y, KANG Y H, WAN S Q. Water and salt dynamics of saline-sodic soil with shallow water table under mulch-drip irrigation with saline water[J]. Acta Pedologica Sinica, 2011, 48(3): 524−532
    [34]
    SOPPE R W O, AYARS J E. Characterizing ground water use by safflower using weighing lysimeters[J]. Agricultural Water Management, 2003, 60(1): 59−71 doi: 10.1016/S0378-3774(02)00149-X
    [35]
    顾南, 张建云, 刘翠善, 等. 地下水埋深对淮北平原冬小麦耗水量影响试验研究[J]. 水文地质工程地质, 2021, 48(4): 15−24

    GU N, ZHANG J Y, LIU C S, et al. An experimental study of the influence of groundwater level on water consumption of winter wheat in the Huaibei Plain[J]. Hydrogeology & Engineering Geology, 2021, 48(4): 15−24
    [36]
    ZHAO P, KANG S Z, LI S E, et al. Seasonal variations in vineyard ET partitioning and dual crop coefficients correlate with canopy development and surface soil moisture[J]. Agricultural Water Management, 2018, 197: 19−33 doi: 10.1016/j.agwat.2017.11.004
    [37]
    彭正凯, 李玲玲, 谢军红, 等. 不同耕作措施对旱地作物生育期农田耗水结构和水分利用效率的影响[J]. 水土保持学报, 2018, 32(5): 214−221

    PENG Z K, LI L L, XIE J H, et al. Effects of different tillage practices on water consumption structure and water use efficiency during crop growth period in arid farmland[J]. Journal of Soil and Water Conservation, 2018, 32(5): 214−221
    [38]
    KAHLOWN M A, ASHRAF M, ZIA-UL-HAQ. Effect of shallow groundwater table on crop water requirements and crop yields[J]. Agricultural Water Management, 2005, 76(1): 24−35 doi: 10.1016/j.agwat.2005.01.005
    [39]
    CHRISTIANSON J A, LLEWELLYN D J, DENNIS E S, et al. Global gene expression responses to waterlogging in roots and leaves of cotton (Gossypium hirsutum L.)[J]. Plant and Cell Physiology, 2010, 51(1): 21−37 doi: 10.1093/pcp/pcp163
    [40]
    ZHANG H, LI D S, ZHOU Z G, et al. Soil water and salt affect cotton (Gossypium hirsutum L.) photosynthesis, yield and fiber quality in coastal saline soil[J]. Agricultural Water Management, 2017, 187: 112−121 doi: 10.1016/j.agwat.2017.03.019
    [41]
    ABLIZ A, TIYIP T, GHULAM A, et al. Effects of shallow groundwater table and salinity on soil salt dynamics in the Keriya Oasis, Northwestern China[J]. Environmental Earth Sciences, 2016, 75(3): 260 doi: 10.1007/s12665-015-4794-8
    [42]
    ZHANG W C, ZHU J Q, ZHOU X G, et al. Effects of shallow groundwater table and fertilization level on soil physico-chemical properties, enzyme activities, and winter wheat yield[J]. Agricultural Water Management, 2018, 208: 307−317 doi: 10.1016/j.agwat.2018.06.039
    [43]
    ASLAM R. A critical review on halophytes: Salt tolerant plants[J]. Journal of Medicinal Plants Research, 2011, 5(33): 7108−7118
    [44]
    刘铁刚, 罗毅, 袁国富. 不同水分条件下冬小麦浅层地下水利用试验研究[J]. 灌溉排水学报, 2010, 29(3): 6−11

    LIU T G, LUO Y, YUAN G F. Experimental research on the uptake of shallow ground water by winter wheat under different water conditions[J]. Journal of Irrigation and Drainage, 2010, 29(3): 6−11
    [45]
    王征宏, 戴凌峰, 赵威, 等. 盐胁迫对玉米根、芽主要渗透调节物质的影响[J]. 河南农业科学, 2013, 42(6): 21−23 doi: 10.3969/j.issn.1004-3268.2013.06.005

    WANG Z H, DAI L F, ZHAO W, et al. Effects of salt stress on main osmotic adjustment substance in root and shoot of maize[J]. Journal of Henan Agricultural Sciences, 2013, 42(6): 21−23 doi: 10.3969/j.issn.1004-3268.2013.06.005
    [46]
    杨晓慧, 蒋卫杰, 魏珉, 等. 植物对盐胁迫的反应及其抗盐机理研究进展[J]. 山东农业大学学报(自然科学版), 2006(2): 302−305, 308

    YANG X H, JIANG W J, WEI M, et al. Review on plant response and resistance mechanism to salt stress[J]. Journal of Shandong Agricultural University (Natural Science Edition), 2006(2): 302−305, 308
    [47]
    王元华. 小麦适宜地下水位试验[J]. 土壤学报, 1994, 31(4): 439−446

    WANG Y H. Study on suitable groundwater levels for wheat growth[J]. Acta Pedologica Sinica, 1994, 31(4): 439−446
    [48]
    FIDANTEMIZ Y F, JIA X H, DAIGH A L M, et al. Effect of water table depth on soybean water use, growth, and yield parameters[J]. Water, 2019, 11(5): 931 doi: 10.3390/w11050931
    [49]
    DONG H Z, LI W J, TANG W, et al. Early plastic mulching increases stand establishment and lint yield of cotton in saline fields[J]. Field Crops Research, 2009, 111(3): 269−275 doi: 10.1016/j.fcr.2009.01.001
    [50]
    ZHU W, YANG J S, YAO R J, et al. Soil water-salt control and yield improvement under the effect of compound control in saline soil of the Yellow River Delta, China[J]. Agricultural Water Management, 2022, 263: 107455 doi: 10.1016/j.agwat.2022.107455
    [51]
    贺苗. 淮北平原区旱涝均衡治理适宜地下水埋深研究[D]. 扬州: 扬州大学, 2014

    HE M. Study on suitable groundwater depth for balanceing drought and flood in Huaibei Plain[D]. Yangzhou: Yangzhou University, 2014
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(4)  / Tables(4)

    Article Metrics

    Article views (116) PDF downloads(41) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return