Volume 29 Issue 11
Nov.  2021
Turn off MathJax
Article Contents
LYU J L, GAO Y B, LI T K, KONG H J, ZHANG J P, KOU C L. Effect of nitrogen fertilizer amount on N2O emission from wheat-maize rotation system in lime concretion black soil[J]. Chinese Journal of Eco-Agriculture, 2021, 29(11): 1846−1856 doi: 10.12357/cjea.20210444
Citation: LYU J L, GAO Y B, LI T K, KONG H J, ZHANG J P, KOU C L. Effect of nitrogen fertilizer amount on N2O emission from wheat-maize rotation system in lime concretion black soil[J]. Chinese Journal of Eco-Agriculture, 2021, 29(11): 1846−1856 doi: 10.12357/cjea.20210444

Effect of nitrogen fertilizer amount on N2O emission from wheat-maize rotation system in lime concretion black soil

doi: 10.12357/cjea.20210444
Funds:  This study was supported by the National Natural Science Foundation of China (41807098) and the National Key Research and Development Program of China (2017YFD0800600, 2017YFC0212400)
More Information
  • Corresponding author: E-mail: koucl@126.com
  • Received Date: 2021-07-12
  • Accepted Date: 2021-08-05
  • Available Online: 2021-08-27
  • Publish Date: 2021-11-10
  • Lime concretion black soil is an important medium and low-yield soil in the Huanghuaihai Plain. It is prone to cracks because containing a high clay and sand ginger layer, making it unique in nitrogen transport. This study used the wheat and corn rotation system in lime concretion black soil as the research object, researching the N2O emission characteristics and key driving factors by static box-gas chromatography methods. The experiment included four treatments: no fertilization (CK), traditional fertilization (TR), optimized fertilization (OPT), and re-optimized fertilization (ZOPT). Results showed that the average emission flux of N2O in the wheat season ranged from 14.2 to 21.6 μg∙m−2∙h−1, and the cumulative emission amount ranged from 0.82 to 1.24 kg(N)∙hm−2; the average emission flux of N2O in the corn season ranged from 14.4 to 24.5 μg∙m−2∙h−1, the cumulative emission amount ranged from 0.42 to 0.71 kg(N)∙hm−2; the N2O emission in the wheat season was higher than that in the corn season, and the N2O emission in the top dressing period of the two seasons was higher than that in the basal fertilizer period, demonstrating that the wheat season and top dressing period were high N2O emission periods for lime concretion black soil. The correlation analysis results showed that N2O emission of CK showed a significant multiple linear correlation with soil temperature, water content, and NO3-N content (P<0.05); whereas that of TR, OPT, and ZOPT only showed a significant multiple linear correlation with soil nitrate (P<0.01). There was no significant correlation between soil temperature and soil water content (except in individual cases), indicating that under fertilization conditions, the level of soil nitrate content was the most critical factor affecting N2O emissions from the farmland of lime concretion black soil. In addition, the cumulative N2O emissions of different nitrogen application rates were significantly different (P<0.05), and the N2O emissions of the TR treatment were the highest, which were 1.24 kg(N)∙hm−2 and 0.71 kg(N)∙hm−2, respectively, in the wheat and corn seasons, significantly higher than those of OPT treatment [0.99 kg(N)∙hm−2 and 0.51 kg(N)∙hm−2] and ZOPT treatment [0.82 kg(N)∙hm−2 and 0.42 kg(N)∙hm−2]. The cumulative emissions of N2O in both the wheat and corn seasons showed an exponentially increasing trend with the increase in nitrogen application, with the correlation coefficients reaching 0.997 and 0.977 (P<0.05), respectively, indicating that the traditional lime concretion black soil nitrogen application had the problem of excessive emissions of N2O. Overall, compared with other soils, although lime concretion black soil is not a high-emission soil of N2O, the N2O emission caused by higher nitrogen application cannot be ignored.
  • loading
  • [1]
    IPCC, STOCKER T F, QIN D, et al. The physical science basis. contribution of working groupⅠto the fifth assessment report of the intergovernmental panel on climate change[EB/OL]. Working GroupⅠto the Fifth Assess. 2013. https://www.oalib.com/references/14767623
    [2]
    李长生, 肖向明, FROLKING S, 等. 中国农田的温室气体排放[J]. 第四纪研究, 2003, 23(5): 493−503 doi: 10.3321/j.issn:1001-7410.2003.05.004

    LI C S, XIAO X M, FROLKING S, et al. Greenhouse gas emissions from croplands of China[J]. Quaternary Sciences, 2003, 23(5): 493−503 doi: 10.3321/j.issn:1001-7410.2003.05.004
    [3]
    DING T, NING Y D, ZHANG Y. Estimation of greenhouse gas emissions in China 1990−2013[J]. Greenhouse Gases: Science and Technology, 2017, 7(6): 1097−1115 doi: 10.1002/ghg.1718
    [4]
    ZHANG W F, DOU Z X, HE P, et al. New technologies reduce greenhouse gas emissions from nitrogenous fertilizer in China[J]. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110(21): 8375−8380 doi: 10.1073/pnas.1210447110
    [5]
    巨晓棠, 谷保静. 氮素管理的指标[J]. 土壤学报, 2017, 54(2): 281−296

    JU X T, GU B J. Indexes of nitrogen management[J]. Acta Pedologica Sinica, 2017, 54(2): 281−296
    [6]
    蔡祖聪, 颜晓元, 朱兆良. 立足于解决高投入条件下的氮污染问题[J]. 植物营养与肥料学报, 2014, 20(1): 1−6 doi: 10.11674/zwyf.2014.0101

    CAI Z C, YAN X Y, ZHU Z L. A great challenge to solve nitrogen pollution from intensive agriculture[J]. Journal of Plant Nutrition and Fertilizer, 2014, 20(1): 1−6 doi: 10.11674/zwyf.2014.0101
    [7]
    胡慧娴, 袁丹, 曾佳瑞, 等. 植物排放N2O研究进展[J]. 中国生态农业学报(中英文), 2021, 29(2): 345−354

    HU H X, YUAN D, ZENG J R, et al. Advances in plant nitrous oxide (N2O) emissions[J]. Chinese Journal of Eco-Agriculture, 2021, 29(2): 345−354
    [8]
    LEE A, WINTHER M, PRIEMÉ A, et al. Hot spots of N2O emission move with the seasonally mobile oxic-anoxic interface in drained organic soils[J]. Soil Biology and Biochemistry, 2017, 115: 178−186 doi: 10.1016/j.soilbio.2017.08.025
    [9]
    胡春胜, 张玉铭, 秦树平, 等. 华北平原农田生态系统氮素过程及其环境效应研究[J]. 中国生态农业学报, 2018, 26(10): 1501−1514

    HU C S, ZHANG Y M, QIN S P, et al. Nitrogen processes and related environmental effects on agro-ecosystem in the North China Plain[J]. Chinese Journal of Eco-Agriculture, 2018, 26(10): 1501−1514
    [10]
    LYU J, LIU X J, LIU H, et al. Greenhouse gas intensity and net annual global warming potential of cotton cropping systems in an extremely arid region[J]. Nutrient Cycling in Agroecosystems, 2014, 98(1): 15−26 doi: 10.1007/s10705-013-9592-7
    [11]
    熊丽萍, 吴家梅, 纪雄辉, 等. 水旱轮作系统中土壤CH4和N2O排放研究进展[J]. 农业环境科学学报, 2020, 39(4): 863−871 doi: 10.11654/jaes.2020-0101

    XIONG L P, WU J M, JI X H, et al. A review on soil CH4 and N2O emissions from paddy-upland rotation systems[J]. Journal of Agro-Environment Science, 2020, 39(4): 863−871 doi: 10.11654/jaes.2020-0101
    [12]
    吕金岭, 王小非, 李太魁, 等. 不同施肥方式下砂姜黑土冬小麦-夏玉米轮作农田氨挥发特征及排放系数[J]. 中国生态农业学报(中英文), 2020, 28(12): 1869−1879

    LYU J L, WANG X F, LI T K, et al. Ammonia emission characteristics and emission coefficients of wheat and corn rotation cropland under different fertilization methods in lime concretion black soil[J]. Chinese Journal of Eco-Agriculture, 2020, 28(12): 1869−1879
    [13]
    李欠欠. 脲酶抑制剂LIMUS对我国农田氨减排及作物产量和氮素利用的影响[D]. 北京: 中国农业大学, 2014

    LI Q Q. Effect of urease inhibitor LIMUS on ammonia mitigation and crop yield and nitrogen use efficiency in different croplands of China[D]. Beijing: China Agricultural University, 2014
    [14]
    姜超强, 卢殿君, 祖朝龙, 等. 施用方式和氮肥种类对砂姜黑土氮素迁移的影响[J]. 土壤, 2018, 50(2): 248−255

    JIANG C Q, LU D J, ZU C L, et al. Effects of different fertilization methods and nitrogen fertilizers on nitrogen diffusion and migration in lime concretion black soil[J]. Soils, 2018, 50(2): 248−255
    [15]
    王玥凯, 郭自春, 张中彬, 等. 不同耕作方式对砂姜黑土物理性质和玉米生长的影响[J]. 土壤学报, 2019, 56(6): 1370−1380 doi: 10.11766/trxb201902280624

    WANG Y K, GUO Z C, ZHANG Z B, et al. Effect of tillage practices on soil physical properties and maize growth in Shajiang black soil (vertisol)[J]. Acta Pedologica Sinica, 2019, 56(6): 1370−1380 doi: 10.11766/trxb201902280624
    [16]
    高学振, 张丛志, 张佳宝, 等. 生物炭、秸秆和有机肥对砂姜黑土改性效果的对比研究[J]. 土壤, 2016, 48(3): 468−474

    GAO X Z, ZHANG C Z, ZHANG J B, et al. Comparison of biochar, straw and manure in improving Shajiang black soil[J]. Soils, 2016, 48(3): 468−474
    [17]
    丁洪, 蔡贵信, 王跃思, 等. 华北平原几种主要类型土壤的硝化及反硝化活性[J]. 农业环境保护, 2001, 20(6): 390−393

    DING H, CAI G X, WANG Y S, et al. Nitrification and denitrification potential in different types of soils in the North China Plain[J]. Agro-Environmental Protection, 2001, 20(6): 390−393
    [18]
    鲍士旦. 土壤农化分析[M]. 北京: 中国农业出版社, 2000

    BAO S D. Soil Agrochemical Analysis[M]. Beijing: China Agriculture Press, 2000
    [19]
    肖乾颖, 黄有胜, 胡廷旭, 等. 施肥方式对紫色土农田生态系统N2O和NO排放的影响[J]. 中国生态农业学报, 2018, 26(2): 203−213

    XIAO Q Y, HUANG Y S, HU T X, et al. Effects of fertilization regimes on N2O and NO emissions from agro-ecosystem of purplish soil[J]. Chinese Journal of Eco-Agriculture, 2018, 26(2): 203−213
    [20]
    高建民. 水氮供应对小麦—玉米轮作农田N2O排放的影响及其机理研究[D]. 郑州: 河南农业大学, 2017

    GAO J M. N2O emission from the agricultural soil under the supply of nitrogen and water in wheat-maize rotation system[D]. Zhengzhou: Henan Agricultural University, 2017
    [21]
    张秀玲, 孙贇, 张水清, 等. 生物质炭对华北平原4种典型土壤N2O排放的影响[J]. 环境科学, 2019, 40(11): 5173−5181

    ZHANG X L, SUN Y, ZHANG S Q, et al. Effects of biochar on N2O emission from four typical soils in the North China Plain[J]. Environmental Science, 2019, 40(11): 5173−5181
    [22]
    LYU J, YIN X H, DORICH C, et al. Net field global warming potential and greenhouse gas intensity in typical arid cropping systems of China: a 3-year field measurement from long-term fertilizer experiments[J]. Soil and Tillage Research, 2021, 212: 105053 doi: 10.1016/j.still.2021.105053
    [23]
    DING W X, CAI Y, CAI Z C, et al. Nitrous oxide emissions from an intensively cultivated maize-wheat rotation soil in the North China Plain[J]. Science of the Total Environment, 2007, 373(2/3): 501−511
    [24]
    陈静, 王迎春, 李虎, 等. 基于DNDC模型的冬小麦-夏玉米农田滴灌施肥优化措施研究[J]. 植物营养与肥料学报, 2019, 25(2): 200−212 doi: 10.11674/zwyf.18017

    CHEN J, WANG Y C, LI H, et al. Optimization of drip fertilization practice for winter wheat-summer maize farmland using the DNDC model[J]. Journal of Plant Nutrition and Fertilizers, 2019, 25(2): 200−212 doi: 10.11674/zwyf.18017
    [25]
    邹凤亮, 曹凑贵, 马建勇, 等. 基于DNDC模型模拟江汉平原稻田不同种植模式条件下温室气体排放[J]. 中国生态农业学报, 2018, 26(9): 1291−1301

    ZOU F L, CAO C G, MA J Y, et al. Greenhouse gases emission under different cropping systems in the Jianghan Plain based on DNDC model[J]. Chinese Journal of Eco-Agriculture, 2018, 26(9): 1291−1301
    [26]
    吕金岭, 王小非, 寇长林. 两种方法测定砂姜黑土玉米季农田氨挥发[J]. 磷肥与复肥, 2020, 35(11): 45−49 doi: 10.3969/j.issn.1007-6220.2020.11.015

    LYU J L, WANG X F, KOU C L. Two methods for determination of ammonia volatilization in corn field of lime concretion black soil[J]. Phosphate& Compound Fertilizer, 2020, 35(11): 45−49 doi: 10.3969/j.issn.1007-6220.2020.11.015
    [27]
    曹文超, 宋贺, 王娅静, 等. 农田土壤N2O排放的关键过程及影响因素[J]. 植物营养与肥料学报, 2019, 25(10): 1781−1798 doi: 10.11674/zwyf.18441

    CAO W C, SONG H, WANG Y J, et al. Key production processes and influencing factors of nitrous oxide emissions from agricultural soils[J]. Journal of Plant Nutrition and Fertilizers, 2019, 25(10): 1781−1798 doi: 10.11674/zwyf.18441
    [28]
    曾江海, 王智平. 农田土壤N2O生成与排放研究[J]. 土壤通报, 1995, 26(3): 132−134

    ZENG J H, WANG Z P. Study on N2O generation and emission from farmland soil[J]. Chinese Journal of Soil Science, 1995, 26(3): 132−134
    [29]
    杨云, 黄耀, 姜纪峰. 土壤理化特性对冬季菜地N2O排放的影响[J]. 农村生态环境, 2005, 21(2): 7−12

    YANG Y, HUANG Y, JIANG J F. Influence of soil properties on N2O emission from vegetable soils in winter[J]. Rural Eco-Environment, 2005, 21(2): 7−12
    [30]
    赵燕. 河南省砂姜黑土系统分类归属及代表土系的建立[D]. 郑州: 郑州大学, 2012

    ZHAO Y. Calcic black soils classified in Chinese soil taxonomy and the soil series established in Henan Province[D]. Zhengzhou: Zhengzhou University, 2012
    [31]
    唐占明, 刘杏认, 张晴雯, 等. 对比研究生物炭和秸秆对麦玉轮作系统N2O排放的影响[J]. 环境科学, 2021, 42(3): 1569−1580

    TANG Z M, LIU X R, ZHANG Q W, et al. Effects of biochar and straw on soil N2O emission from a wheat-maize rotation system[J]. Environmental Science, 2021, 42(3): 1569−1580
    [32]
    许宏伟, 李娜, 冯永忠, 等. 氮肥和秸秆还田方式对麦玉轮作土壤N2O排放的影响[J]. 环境科学, 2020, 41(12): 5668−5676

    XU H W, LI N, FENG Y Z, et al. Effects of nitrogen fertilizer and straw returning methods on N2O emissions in wheat-maize rotational soils[J]. Environmental Science, 2020, 41(12): 5668−5676
    [33]
    SKIBA U S, VAN S D, BALL B C. The influence of tillage on NO and N2O fluxes under spring and winter barley[J]. Soil Use and Management, 2002, 18(4): 340−345 doi: 10.1079/SUM2002141
    [34]
    LUDWIG B, BERGSTERMANN A, PRIESACK E, et al. Modelling of crop yields and N2O emissions from silty arable soils with differing tillage in two long-term experiments[J]. Soil and Tillage Research, 2011, 112(2): 114−121 doi: 10.1016/j.still.2010.12.005
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)  / Tables(4)

    Article Metrics

    Article views (425) PDF downloads(59) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return