Turn off MathJax
Article Contents
DONG R X, WANG Y Q, WANG X B, LI Y Y, WANG X Q, ZHANG H Y, SONG J S, YU R, PANG H C, WANG J. Effects of salt stress on photosynthetic characteristics and canopy structure of edible sunflower leaves at budding stage[J]. Chinese Journal of Eco-Agriculture, 2024, 32(1): 1−12 doi: 10.12357/cjea.20230227
Citation: DONG R X, WANG Y Q, WANG X B, LI Y Y, WANG X Q, ZHANG H Y, SONG J S, YU R, PANG H C, WANG J. Effects of salt stress on photosynthetic characteristics and canopy structure of edible sunflower leaves at budding stage[J]. Chinese Journal of Eco-Agriculture, 2024, 32(1): 1−12 doi: 10.12357/cjea.20230227

Effects of salt stress on photosynthetic characteristics and canopy structure of edible sunflower leaves at budding stage

doi: 10.12357/cjea.20230227
Funds:  This study was supported by the National Key Research and Development Program (2021YFD1901002), Inner Mongolia Autonomous Region Science and Technology Planning Project (2022YFDZ0067, 2021GG0065) and the Fundamental Research Funds for Central Non-profit Scientific Institution of China (Y2021YJ20).
More Information
  • Corresponding author: E-mail: wangjing02@caas.cn
  • Received Date: 2023-04-27
  • Accepted Date: 2023-09-12
  • Rev Recd Date: 2023-09-12
  • Available Online: 2023-10-07
  • To explore the effects of the degree of salt-stress on the photosynthesis of edible sunflowers (hereafter referred to as “edible sunflower”) at the budding stage, the photosynthetic characteristics of the leaves and their canopy structures were obtained after three degrees of salt stress classed as lower (LS), medium (MS), and higher (HS) total dissolved solids values (1.00, 2.68, and 4.93 g∙kg−1, respectively). The results showed that the three salt stress treatments dramatically decreased the net photosynthetic rate (Pn) of the leaves and reduced the number of leaves with high Pn. When compared with that in the LS treatment, the maximum Pn in the MS and HS treatments decreased by 5.09% and 38.69%, respectively. In addition, salt stress reduced the Pn of the top leaves. The maximum Pn values of the top leaves in the MS and HS treatments were 8.08% and 14.66% lower than those in the LS treatment, respectively. The Pn of all leaves was mainly affected by the synergistic effects of stomatal and non-stomatal factors in the LS treatment, whereas it was mainly affected by non-stomatal factors in the MS and HS treatments. Salt stress also changed the plant type of the edible sunflowers. The canopy structure of LS treatment had a pagoda shape; however, the canopy structures of MS and HS treatments were flat and cylindrical, respectively. Salt stress reduced the total and main functional leaf areas of edible sunflower. Compared with the LS and MS treatments, the total leaf area of the HS treatment decreased by 56.03% and 47.74%, respectively; the maximum single leaf area of the HS treatment also decreased by 38.71% and 49.46%, respectively. Contrarily, the maximum leaf inclination angle of the HS treatment increased by 30.92% and 14.59% compared to those of the LS and MS treatments, respectively. Concludingly, salt stress significantly reduced the photosynthetic performance and leaf area of the main functional leaves of edible sunflowers, causing the canopy structure to change from extended to contracted, thereby inhibiting normal plant growth.
  • loading
  • [1]
    黄晶, 孔亚丽, 徐青山, 等. 盐渍土壤特征及改良措施研究进展[J]. 土壤, 2022, 54(1): 18−23

    HUANG J, KONG Y L, XU Q S, et al. Progresses for characteristics and amelioration measures of saline soil[J]. Soils, 2022, 54(1): 18−23
    [2]
    杨春武, 李长有, 张美丽, 等. 盐、碱胁迫下小冰麦体内的pH及离子平衡[J]. 应用生态学报, 2008, 19(5): 1000−1005

    YANG C W, LI C Y, ZHANG M L, et al. pH and ion balance in wheat-wheatgrass under salt- or alkali stress[J]. Chinese Journal of Applied Ecology, 2008, 19(5): 1000−1005
    [3]
    REHMAN S, ABBAS G, SHAHID M, et al. Effect of salinity on cadmium tolerance, ionic homeostasis and oxidative stress responses in conocarpus exposed to cadmium stress: implications for phytoremediation[J]. Ecotoxicology and Environmental Safety, 2019, 171: 146−153 doi: 10.1016/j.ecoenv.2018.12.077
    [4]
    李素萍. 食用型向日葵杂种优势及配合力研究[D]. 呼和浩特: 内蒙古农业大学, 2006

    LI S P. The study on heterosis and combining ability in confection sunflower[D]. Hohhot: Inner Mongolia Agricultural University, 2006
    [5]
    MUNIRA S, HOSSAIN M, ZAKARIA M, et al. Evaluation of potato varieties against salinity stress in Bangladesh[J]. International Journal of Plant & Soil Science, 2015, 6(2): 73−81
    [6]
    YANG X L, LI Y Y, CHEN H B, et al. Photosynthetic response mechanism of soil salinity-induced cross-tolerance to subsequent drought stress in tomato plants[J]. Plants, 2020, 9(3): 363 doi: 10.3390/plants9030363
    [7]
    MILLER G, SUZUKI N, CIFTCI-YILMAZ S, et al. Reactive oxygen species homeostasis and signalling during drought and salinity stresses[J]. Plant, Cell & Environment, 2010, 33(4): 453−467
    [8]
    曾文治. 向日葵水、氮、盐耦合效应及其模拟[D]. 武汉: 武汉大学, 2015

    ZENG W Z. Research and simulation for the coupling effects of water, nitrogen, and salt on sunflower[D]. Wuhan: Wuhan University, 2015
    [9]
    凌云鹤. 银叶向日葵响应盐胁迫的形态及生理机制的初步研究[D]. 杨凌: 西北农林科技大学, 2019

    LING Y H. Preliminary study on the morphology and physiological mechanism of silver leaf sunflower in response to salt stress[D]. Yangling: Northwest A & F University, 2019
    [10]
    LONG S P, ZHU X G, NAIDU S L, et al. Can improvement in photosynthesis increase crop yields?[J]. Plant, Cell & Environment, 2006, 29(3): 315−330
    [11]
    马韬, 曾文治, 伍靖伟, 等. 不同施氮量下盐渍农田向日葵冠层生长与辐射利用规律[J]. 农业机械学报, 2020, 51(12): 292−303

    MA T, ZENG W Z, WU J W, et al. Sunflower canopy development, radiation absorption and use efficiency at different nitrogen application rates in saline fields[J]. Transactions of the Chinese Society for Agricultural Machinery, 2020, 51(12): 292−303
    [12]
    陈泽彬. 盐胁迫对向日葵产质量及相关性状的影响研究[D]. 呼和浩特: 内蒙古农业大学, 2013

    CHEN Z B. Study on the impact of yield and quality with related properties of sunflower under salt stress[D]. Hohhot: Inner Mongolia Agricultural University, 2013
    [13]
    PANG H C, LI Y Y, YANG J S, et al. Effect of brackish water irrigation and straw mulching on soil salinity and crop yields under monsoonal climatic conditions[J]. Agricultural Water Management, 2010, 97(12): 1971−1977 doi: 10.1016/j.agwat.2009.08.020
    [14]
    BERRY J A, DOWNTON W J S. Environmental regulation of photosynthesis[M]//Photosynthesis. Amsterdam: Elsevier, 1982: 263–343
    [15]
    RIVELLI A R, LOVELLI S, PERNIOLA M. Effects of salinity on gas exchange, water relations and growth of sunflower (Helianthus annuus)[J]. Functional Plant Biology, 2002, 29(12): 1405−1415 doi: 10.1071/PP01086
    [16]
    MUNNS R, JAMES R A, LÄUCHLI A. Approaches to increasing the salt tolerance of wheat and other cereals[J]. Journal of Experimental Botany, 2006, 57(5): 1025−1043 doi: 10.1093/jxb/erj100
    [17]
    张俊莲, 陈勇胜, 武季玲, 等. 向日葵对盐逆境伤害的生理反应及耐盐性研究[J]. 中国油料作物学报, 2003, 25(1): 45−49 doi: 10.3321/j.issn:1007-9084.2003.01.012

    ZHANG J L, CHEN Y S, WU J L, et al. Physiological responses and salt-tolerance of sunflower (Helianthus annuus) under salt stress injury[J]. Chinese Journal of Oil Crop Sciences, 2003, 25(1): 45−49 doi: 10.3321/j.issn:1007-9084.2003.01.012
    [18]
    徐惠风, 金研铭, 徐克章. 向日葵不同节位叶片光合特性及其与产量关系的研究[J]. 吉林农业大学学报, 2001, 23(1): 6−9 doi: 10.3969/j.issn.1000-5684.2001.01.002

    XU H F, JIN Y M, XU K Z. Photosynthetic characteristics of sunflower leaves at different node positions and their relations to yield[J]. Journal of Jilin Agricultural University, 2001, 23(1): 6−9 doi: 10.3969/j.issn.1000-5684.2001.01.002
    [19]
    TEZARA W, LAWLOR D W. Effects of water stress on the biochemistry and physiology of photosynthesis in sunflower[M]//MANT A, ROBINSON C. Photosynthesis: From Light to Biosphere. Dordrecht: Springer Netherlands, 1995: 3589–3592
    [20]
    郑国琦, 许兴, 徐兆桢, 等. 盐胁迫对枸杞光合作用的气孔与非气孔限制[J]. 西北农业学报, 2002, 11(3): 87−90

    ZHENG G Q, XU X, XU Z Z, et al. The effect of salt stress on the stomatal and non-stomatal limitation of photosynthesis of wolf berry[J]. Acta Agriculturae Boreali-occidentalis Sinica, 2002, 11(3): 87−90
    [21]
    JAMES R A, RIVELLI A R, MUNNS R, et al. Factors affecting CO2 assimilation, leaf injury and growth in salt-stressed durum wheat[J]. Functional Plant Biology, 2002, 29(12): 1393 doi: 10.1071/FP02069
    [22]
    SANTOS C V. Regulation of chlorophyll biosynthesis and degradation by salt stress in sunflower leaves[J]. Scientia Horticulturae, 2004, 103(1): 93−99 doi: 10.1016/j.scienta.2004.04.009
    [23]
    MANIVANNAN P, JALEEL C A, SANKAR B, et al. Growth, biochemical modifications and proline metabolism in Helianthus annuus L. as induced by drought stress[J]. Colloids and Surfaces B: Biointerfaces, 2007, 59(2): 141−149 doi: 10.1016/j.colsurfb.2007.05.002
    [24]
    FOYER C H. Reactive oxygen species, oxidative signaling and the regulation of photosynthesis[J]. Environmental and Experimental Botany, 2018, 154: 134−142 doi: 10.1016/j.envexpbot.2018.05.003
    [25]
    孔东, 史海滨, 李延林, 等. 不同盐分条件下油葵光合日变化特征研究[J]. 干旱地区农业研究, 2005, 23(1): 111−115 doi: 10.3321/j.issn:1000-7601.2005.01.022

    KONG D, SHI H B, LI Y L, et al. Studies on photosynthetic rate of oil sunflower under difference salt stresses[J]. Agricultural Research in the Arid Areas, 2005, 23(1): 111−115 doi: 10.3321/j.issn:1000-7601.2005.01.022
    [26]
    杨晓盆, 张超, 王文梅, 等. 扁核木光合特性的研究[J]. 中国生态农业学报, 2008, 16(4): 909−913

    YANG X P, ZHANG C, WANG W M, et al. Photosynthetic characteristics of Prinsepla uniflora Batal[J]. Chinese Journal of Eco-agriculture, 2008, 16(4): 909−913
    [27]
    吾木提汗·卡克木, 海利力·库尔班, 陈其军, 等. 盐胁迫条件下骆驼刺与绿豆光合日变化特征及午休现象的成因[J]. 干旱区研究, 2012, 29(6): 1039−1045

    UMETHAN K, HALIL K, CHEN Q J, et al. Study on daily change and midday depression of photosynthesis of Alhagi pseudoalhagi Vigna radiata under salt stress[J]. Arid Zone Research, 2012, 29(6): 1039−1045
    [28]
    FARQUHAR G D, SHARKEY T D. Stomatal conductance and photosynthesis[J]. Annual Review of Plant Physiology, 1982, 33: 317−345 doi: 10.1146/annurev.pp.33.060182.001533
    [29]
    YANG H M, ZHANG X Y, ZHAO L A. Stomatal control partly explains different photosynthetic characteristics in Helianthus laetiflora and H. annuus[J]. New Zealand Journal of Crop and Horticultural Science, 2009, 37(1): 33−39 doi: 10.1080/01140670909510247
    [30]
    韩瑞锋, 李建明, 胡晓辉, 等. 甜瓜幼苗叶片光合变化特性[J]. 生态学报, 2012, 32(5): 1471−1480 doi: 10.5846/stxb201101190103

    HAN R F, LI J M, HU X H, et al. Research on dynamic characteristics of photosynthesis in muskmelon seedling leaves[J]. Acta Ecologica Sinica, 2012, 32(5): 1471−1480 doi: 10.5846/stxb201101190103
    [31]
    ORT D R, MERCHANT S S, ALRIC J, et al. Redesigning photosynthesis to sustainably meet global food and bioenergy demand[J]. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112(28): 8529−8536
    [32]
    谷艳芳, 丁圣彦, 李婷婷, 等. 盐胁迫对冬小麦幼苗干物质分配和生理生态特性的影响[J]. 生态学报, 2009, 29(2): 840−845

    GU Y F, DING S Y, LI T T, et al. Effects of saline stress on dry matter partitioning and ecophysiological characteristics of winter wheat seedlings[J]. Acta Ecologica Sinica, 2009, 29(2): 840−845
    [33]
    WU X H, FAN W L, DU H Q, et al. Estimating crown structure parameters of moso bamboo: leaf area and leaf angle distribution[J]. Forests, 2019, 10(8): 686 doi: 10.3390/f10080686
    [34]
    ANDERSON M C, DENMEAD O T. Short wave radiation on inclined surfaces in model plant communities[J]. Agronomy Journal, 1969, 61(6): 867−872 doi: 10.2134/agronj1969.00021962006100060012x
    [35]
    徐昭. 水肥调控对盐渍化灌区向日葵冠层结构和光合性能的影响研究[D]. 呼和浩特: 内蒙古农业大学, 2016

    XU Z. Study on the impact of water and fertilizer regulation on sunflower canopy structure and photosynthetic characteristics in salinization irrigation district[D]. Hohhot: Inner Mongolia Agricultural University, 2016
    [36]
    NIINEMETS Ü. A review of light interception in plant stands from leaf to canopy in different plant functional types and in species with varying shade tolerance[J]. Ecological Research, 2010, 25(4): 693−714 doi: 10.1007/s11284-010-0712-4
    [37]
    MEDINA E. Mangrove physiology: the challenge of salt, heat, and light stress under recurrent flooding[J]. Ecosistemas de Manglar en América Tropical, 1999: 109−126
    [38]
    刘星, 曹红霞, 廖阳, 等. 滴灌模式对苹果光合特性、产量及灌溉水利用的影响[J]. 中国农业科学, 2021, 54(15): 3264−3278

    LIU X, CAO H X, LIAO Y, et al. Effects of drip irrigation methods on photosynthetic characteristics, yield and irrigation water use of apple[J]. Scientia Agricultura Sinica, 2021, 54(15): 3264−3278
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)  / Tables(4)

    Article Metrics

    Article views (97) PDF downloads(13) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return