Turn off MathJax
Article Contents
LI Y Y, XUE C X, CHAI C Q, LI W, YAO S B. Can conservation tillage machinery drive the spatial spillover of the net carbon sink of conservation tillage?−Based on the perspective of cross-zone service of agricultural machinery[J]. Chinese Journal of Eco-Agriculture, 2023, 31(0): 1−14 doi: 10.12357/cjea.20230375
Citation: LI Y Y, XUE C X, CHAI C Q, LI W, YAO S B. Can conservation tillage machinery drive the spatial spillover of the net carbon sink of conservation tillage?−Based on the perspective of cross-zone service of agricultural machinery[J]. Chinese Journal of Eco-Agriculture, 2023, 31(0): 1−14 doi: 10.12357/cjea.20230375

Can conservation tillage machinery drive the spatial spillover of the net carbon sink of conservation tillage?Based on the perspective of cross-zone service of agricultural machinery

doi: 10.12357/cjea.20230375
Funds:  This study was supported by Ministry of Education, Humanities and Social Science Project (22YJA630042), Shaanxi Soft Science Project (2023-CX-RKX-043) and Postgraduate Science and Technology Innovation Project in College of Economics and Management, Northwest A& F University (JGYJSCXXM202206)
More Information
  • Corresponding author: E-mail: lyy020924@nwafu.edu.cn
  • Received Date: 2023-07-05
  • Accepted Date: 2023-10-18
  • Rev Recd Date: 2023-10-17
  • Available Online: 2023-10-21
  • Conservation tillage is an environment-friendly agricultural cultivation technique that distinguishes itself from traditional tillage, and its implementation relies on agricultural machinery. China’s unique situation as a large country with many small-scale farms has led to the development of a distinctive path for agricultural machinery in the form of cross-regional agricultural machinery services. Therefore, it is worth exploring whether conservation tillage machinery drives the spatial spillover of the net carbon sink of conservation tillage in the context of cross-regional agricultural machinery services. This study used panel data from 30 provinces in China (excluding Hong Kong, Macao, Taiwan, and Tibet) from 2000 to 2020. First, an exploratory spatial data analysis was used to reveal the spatial agglomeration characteristics of conservation tillage machinery and its net carbon sink. Second, the spatial spillover effect of conservation tillage machinery on net carbon sink was quantitatively analyzed using the spatial Durbin model. Furthermore, this study analyzed the heterogeneity of the spatial spillover effect of conservation tillage machinery on its net carbon sink from the dimensions of time, topography, and major grain-producing areas. The study found that: 1) from 2000 to 2020, mechanical power and the net carbon sink of conservation tillage increased from 22.55 million kW and 7.93 million t C in 2000 to 238.63 million kW and 33.17 million t C in 2020, with average annual growth rates of 12.52% and 7.42%, respectively. The growth trends were significant, and their development was closely synchronized. The spatial correlation results indicated that both of them mainly exhibited regional agglomeration characteristics with ‘high-high’ and ‘low-low’, showing a significant positive spatial correlation. 2) In the context of cross-regional agricultural machinery services, conservation tillage mechanical power significantly drove the spatial spillover effect of net carbon sink of conservation tillage. This manifested as a positive spatial spillover effect of the mechanical power of conservation tillage on the corresponding net carbon sink in neighboring provinces. Specifically, straw-returning mechanical power exhibited a positive spatial spillover effect, whereas no-tillage mechanical power, owing to its long-term implementation, mainly showed a negative spatial spillover effect, which can lead to crop yield reduction. 3) The spatial spillover effect of conservation tillage mechanical power on the corresponding net carbon sink exhibited heterogeneity across different time periods, topographies, and major grain-producing areas. In the temporal dimension, the spatial spillover effect was significantly positive and increased during the 2004–2009 and 2010–2013 periods. In the topographic dimension, the spatial spillover effect was positive in plain areas but negative in hilly and mountainous regions. Among the major grain-producing areas, the spatial spillover effect of conservation tillage mechanical power on the corresponding net carbon sink was more pronounced in rice-producing areas. The spatial spillover effect of no-tillage mechanical power was relatively prominent in the wheat-producing areas. The spatial spillover effect of the straw-returning mechanical power was essentially the same across the three major grain-producing areas. This study proposes measures to promote conservation tillage, establish an agricultural machinery service information platform, and enhance the level of conservation tillage of agricultural machinery and equipment. Additionally, the research findings hold significant reference value for how the government can use conservation tillage to contribute to the dual-carbon target.
  • loading
  • [1]
    田云, 尹忞昊. 产业集聚对中国农业净碳效应的影响研究[J]. 华中农业大学学报(社会科学版), 2021(3): 107−117,188 doi: 10.13300/j.cnki.hnwkxb.2021.03.012

    TIAN Y, YIN M H. Research on the impact of industrial agglomeration on China’s agricultural net carbon effect[J]. Journal of Huazhong Agricultural University (Social Sciences Edition), 2021(3): 107−117,188 doi: 10.13300/j.cnki.hnwkxb.2021.03.012
    [2]
    GHIMIRE R, LAMICHHANE S, ACHARYA B S, et al. Tillage, crop residue, and nutrient management effects on soil organic carbon in rice-based cropping systems: a review[J]. Journal of Integrative Agriculture, 2017, 16(1): 1−15 doi: 10.1016/S2095-3119(16)61337-0
    [3]
    薛彩霞, 李园园, 胡超, 等. 中国保护性耕作净碳汇的时空格局[J]. 自然资源学报, 2022, 37(5): 1164−1182 doi: 10.31497/zrzyxb.20220505

    XUE C X, LI Y Y, HU C, et al. Study on spatio-temporal pattern of conservation tillage on net carbon sink in China[J]. Journal of Natural Resources, 2022, 37(5): 1164−1182 doi: 10.31497/zrzyxb.20220505
    [4]
    YANG J, HUANG Z H, ZHANG X B, et al. The rapid rise of cross-regional agricultural mechanization services in China[J]. American Journal of Agricultural Economics, 2013, 95(5): 1245−1251 doi: 10.1093/ajae/aat027
    [5]
    张恒恒, 严昌荣, 张燕卿, 等. 北方旱区免耕对农田生态系统固碳与碳平衡的影响[J]. 农业工程学报, 2015, 31(4): 240−247 doi: 10.3969/j.issn.1002-6819.2015.04.034

    ZHANG H H, YAN C R, ZHANG Y Q, et al. Effect of no tillage on carbon sequestration and carbon balance in farming ecosystem in dryland area of Northern China[J]. Transactions of the Chinese Society of Agricultural Engineering, 2015, 31(4): 240−247 doi: 10.3969/j.issn.1002-6819.2015.04.034
    [6]
    李景, 吴会军, 武雪萍, 等. 15年保护性耕作对黄土坡耕地区土壤及团聚体固碳效应的影响[J]. 中国农业科学, 2015, 48(23): 4690−4697 doi: 10.3864/j.issn.0578-1752.2015.23.010

    LI J, WU H J, WU X P, et al. Effects of 15-year conservation tillage on soil and aggregate organic carbon sequestration in the loess hilly region of China[J]. Scientia Agricultura Sinica, 2015, 48(23): 4690−4697 doi: 10.3864/j.issn.0578-1752.2015.23.010
    [7]
    GÓMEZ-MUÑOZ B, JENSEN L S, MUNKHOLM L, et al. Long-term effect of tillage and straw retention in conservation agriculture systems on soil carbon storage[J]. Soil Science Society of America Journal, 2021, 85(5): 1465−1478 doi: 10.1002/saj2.20312
    [8]
    WAN X H, XIAO L J, VADEBONCOEUR M A, et al. Response of mineral soil carbon storage to harvest residue retention depends on soil texture: a meta-analysis[J]. Forest Ecology and Management, 2018, 408: 9−15 doi: 10.1016/j.foreco.2017.10.028
    [9]
    薛建福, 赵鑫, Shadrack Batsile Dikgwatlhe, 等. 保护性耕作对农田碳、氮效应的影响研究进展[J]. 生态学报, 2013, 33(19): 6006−6013 doi: 10.5846/stxb201305121021

    XUE J F, ZHAO X, DIKGWATLHE S B, et al. Advances in effects of conservation tillage on soil organic carbon and nitrogen[J]. Acta Ecologica Sinica, 2013, 33(19): 6006−6013 doi: 10.5846/stxb201305121021
    [10]
    田康, 赵永存, 邢喆, 等. 中国保护性耕作农田土壤有机碳变化速率研究−基于长期试验点的Meta分析[J]. 土壤学报, 2013, 50(3): 433−440

    TIAN K, ZHAO Y C, XING Z, et al. A meta-analysis of long-term experiment data for characterizing the topsoil organic carbon changes under different conservation tillage in cropland of China[J]. Acta Pedologica Sinica, 2013, 50(3): 433−440
    [11]
    DAS S, CHATTERJEE S, RAJBANSHI J. Responses of soil organic carbon to conservation practices including climate-smart agriculture in tropical and subtropical regions: a meta-analysis[J]. The Science of the Total Environment, 2022, 805: 150428 doi: 10.1016/j.scitotenv.2021.150428
    [12]
    李园园, 薛彩霞, 柴朝卿, 等. 中国保护性耕作净碳汇的时空分异特征及其驱动力[J]. 中国人口·资源与环境, 2022, 32(10): 15−23

    LI Y Y, XUE C X, CHAI C Q, et al. Spatio-temporal variation and driving forces of net carbon sink of conservation tillage in China[J]. China Population, Resources and Environment, 2022, 32(10): 15−23
    [13]
    方师乐, 卫龙宝, 伍骏骞. 农业机械化的空间溢出效应及其分布规律−农机跨区服务的视角[J]. 管理世界, 2017(11): 65−78,187 doi: 10.3969/j.issn.1002-5502.2017.11.006

    FANG S L, WEI L B, WU J Q. The spatial spillover effect of agricultural mechanization and its distribution pattern: the perspective of interregional-service of agricultural machinery[J]. Management World, 2017(11): 65−78,187 doi: 10.3969/j.issn.1002-5502.2017.11.006
    [14]
    伍骏骞, 方师乐, 李谷成, 等. 中国农业机械化发展水平对粮食产量的空间溢出效应分析−基于跨区作业的视角[J]. 中国农村经济, 2017(6): 44−57

    WU J Q, FANG S L, LI G C, et al. The spillover effect of agricultural mechanization on grain output in China: from the perspective of cross-regional mechanization service[J]. Chinese Rural Economy, 2017(6): 44−57
    [15]
    WU Z H, DANG J Q, PANG Y P, et al. Threshold effect or spatial spillover? The impact of agricultural mechanization on grain production[J]. Journal of Applied Economics, 2021, 24(1): 478−503 doi: 10.1080/15140326.2021.1968218
    [16]
    黎星池, 朱满德. 农业机械化对种植结构“趋粮化”的空间溢出效应分析[J]. 农业现代化研究, 2021, 42(4): 684−693 doi: 10.13872/j.1000-0275.2021.0085

    LI X C, ZHU M D. Analysis on the spatial spillover effect of agricultural mechanization on the “tendency to grain production” in planting structure[J]. Research of Agricultural Modernization, 2021, 42(4): 684−693 doi: 10.13872/j.1000-0275.2021.0085
    [17]
    吴海霞, 郝含涛, 史恒通, 等. 农业机械化对小麦全要素生产率的影响及其空间溢出效应[J]. 农业技术经济, 2022(8): 50−68

    WU H X, HAO H T, SHI H T, et al. Effect of agricultural mechanization on total factor productivity of wheat and its spatial spillover effect[J]. Journal of Agrotechnical Economics, 2022(8): 50−68
    [18]
    罗斯炫, 何可, 张俊飚. 修路能否促进农业增长? −基于农机跨区作业视角的分析[J]. 中国农村经济, 2018(6): 67−83

    LUO S X, HE K, ZHANG J B. Can road construction promote agricultural growth? An analysis based on the perspective of cross-regional operation of agricultural machinery[J]. Chinese Rural Economy, 2018(6): 67−83
    [19]
    徐清华, 张广胜. 农业机械化对农业碳排放强度影响的空间溢出效应−基于282个城市面板数据的实证[J]. 中国人口·资源与环境, 2022, 32(4): 23−33

    XU Q H, ZHANG G S. Spatial spillover effect of agricultural mechanization on agricultural carbon emission intensity: an empirical analysis of panel data from 282 cities[J]. China Population, Resources and Environment, 2022, 32(4): 23−33
    [20]
    HAN J Y, QU J S, MARASENI T N, et al. A critical assessment of provincial-level variation in agricultural GHG emissions in China[J]. Journal of Environmental Management, 2021, 296: 113190 doi: 10.1016/j.jenvman.2021.113190
    [21]
    TOBLER W R. A computer movie simulating urban growth in the Detroit region[J]. Economic Geography, 1970, 46: 234 doi: 10.2307/143141
    [22]
    何艳秋, 成雪莹, 王芳. 技术扩散视角下农业碳排放区域溢出效应研究[J]. 农业技术经济, 2022(4): 132−144 doi: 10.13246/j.cnki.jae.20211208.003

    HE Y Q, CHENG X Y, WANG F. Study on the regional spillover effect of agricultural carbon emission based on the perspective of agricultural technology diffusion[J]. Journal of Agrotechnical Economics, 2022(4): 132−144 doi: 10.13246/j.cnki.jae.20211208.003
    [23]
    徐秀英. 完善和发展农机跨区作业模式的思考[J]. 农机化研究, 2011, 33(6): 240−244,248 doi: 10.13427/j.cnki.njyi.2011.06.038

    XU X Y. Reflection on perfection and development of multi-regional operation pattern of agricultural machinery[J]. Journal of Agricultural Mechanization Research, 2011, 33(6): 240−244,248 doi: 10.13427/j.cnki.njyi.2011.06.038
    [24]
    马九杰, 赵将, 吴本健, 等. 提供社会化服务还是流转土地自营: 对农机合作社发展转型的案例研究[J]. 中国软科学, 2019(7): 35−46

    MA J J, ZHAO J, WU B J, et al. Providing outsourcing services or transferring land and servicing for themselves: a case study on the development and transition of agricultural machinery cooperatives[J]. China Soft Science, 2019(7): 35−46
    [25]
    ROMER P M. Increasing returns and long-run growth[J]. Journal of Political Economy, 1986, 94(5): 1002−1037 doi: 10.1086/261420
    [26]
    李卫, 薛彩霞, 姚顺波, 等. 保护性耕作技术、种植制度与土地生产率−来自黄土高原农户的证据[J]. 资源科学, 2017, 39(7): 1259−1271

    LI W, XUE C X, YAO S B, et al. Conservation tillage, cropping systems and land productivity for households on the Loess Plateau[J]. Resources Science, 2017, 39(7): 1259−1271
    [27]
    LESAGE J, PACE R K. Introduction to Spatial Econometrics[M]. New York: Chapman and Hall/CRC, 2009: 46-53
    [28]
    张雄智, 李帅帅, 刘冰洋, 等. 免耕与秸秆还田对中国农田固碳和作物产量的影响[J]. 中国农业大学学报, 2020, 25(5): 1−12 doi: 10.11841/j.issn.1007-4333.2020.05.01

    ZHANG X Z, LI S S, LIU B Y, et al. Effects of no-till and residue retention on carbon sequestration and yield in China[J]. Journal of China Agricultural University, 2020, 25(5): 1−12 doi: 10.11841/j.issn.1007-4333.2020.05.01
    [29]
    ALVAREZ R, STEINBACH H S. A review of the effects of tillage systems on some soil physical properties, water content, nitrate availability and crops yield in the Argentine Pampas[J]. Soil and Tillage Research, 2009, 104(1): 1−15 doi: 10.1016/j.still.2009.02.005
    [30]
    郑旭媛, 应瑞瑶. 农业机械对劳动的替代弹性及区域异质性分析−基于地形条件约束视角[J]. 中南财经政法大学学报, 2017(5): 52−58,136 doi: 10.3969/j.issn.1003-5230.2017.05.006

    ZHENG X Y, YING R Y. Analysis on the substitution elasticity and regional heterogeneity of agricultural machinery for labor—Based on the constraint of terrain conditions[J]. Journal of Zhongnan University of Economics and Law, 2017(5): 52−58,136 doi: 10.3969/j.issn.1003-5230.2017.05.006
    [31]
    虞松波, 刘婷, 曹宝明. 农业机械化服务对粮食生产成本效率的影响−来自中国小麦主产区的经验证据[J]. 华中农业大学学报(社会科学版), 2019(4): 81−89,173 doi: 10.13300/j.cnki.hnwkxb.2019.04.009

    YU S B, LIU T, CAO B M. Effects of agricultural mechanization service on the cost efficiency of grain production—Evidence from wheat-producing areas in China[J]. Journal of Huazhong Agricultural University (Social Sciences Edition), 2019(4): 81−89,173 doi: 10.13300/j.cnki.hnwkxb.2019.04.009
    [32]
    徐甜甜, 孟婷, 穆月英. 我国省域玉米生产比较优势及其影响因素−基于20个玉米主产区2008—2017年面板数据实证[J]. 中国农业大学学报, 2020, 25(6): 102−111 doi: 10.11841/j.issn.1007-4333.2020.06.12

    XU T T, MENG T, MU Y Y. Comparative advantages of maize production and its determining factors across major maize producing regions: empirical analyses based on the panel data of 20 major maize producing regions during the year 2008-2017[J]. Journal of China Agricultural University, 2020, 25(6): 102−111 doi: 10.11841/j.issn.1007-4333.2020.06.12
    [33]
    SOLOMON S. Climate Change 2007: The Physical Science Basis: Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change[M]. Cambridge: Cambridge University Press, 2007
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(2)  / Tables(10)

    Article Metrics

    Article views (77) PDF downloads(3) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return